Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks
Abstract
:1. Introduction
- Alongside the assimilation of measurement data, the NLSE-PINN will facilitate fine tuning the base parameters ( and ) of the NLSE coefficients. We expect this approach to enhance the reconstruction performance compared with using constant coefficients predetermined from spectral wave properties.
2. Method
2.1. Numerical Wave Tank and Measurement Data Generation
2.2. Hydrodynamic Nonlinear Schrödinger Equation
2.3. Physics-Informed Neural Network for the NLSE
2.3.1. PINN Architecture
2.3.2. PINN Loss Function and Training
2.3.3. Evaluation
3. Results and Discussion
3.1. Data Assimilation with Constant NLSE Coefficients
3.2. Coefficient Fine Tuning Alongside Data Assimilation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Automatic differentiation |
HOSM | High-order spectral method |
MSE | Mean-squared error |
NLSE | Nonlinear Schrödinger equation |
PDE | Partial differential equation |
PINN | Physics-informed neural network |
SSP | Surface similarity parameter |
Appendix A
Appendix A.1. Graphical Representation of SSP Error Metric
Appendix A.2. NLSE-PINN Validation Using Analytic Solution
References
- Klein, M.; Dudek, M.; Clauss, G.F.; Ehlers, S.; Behrendt, J.; Hoffmann, N.; Onorato, M. On the deterministic prediction of water waves. Fluids 2020, 5, 9. [Google Scholar] [CrossRef]
- Ehlers, S.; Klein, M.; Heinlein, A.; Wedler, M.; Desmars, N.; Hoffmann, N.; Stender, M. Machine learning for phase-resolved reconstruction of nonlinear ocean wave surface elevations from sparse remote sensing data. Ocean. Eng. 2023, 288, 116059. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Mitsotakis, D.; Karniadakis, G.E. Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations. Ocean Eng. 2022, 248, 110775. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Physics 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating physics-based modeling with machine learning: A survey. arXiv 2020, arXiv:2003.04919. [Google Scholar]
- Mohaghegh, F.; Murthy, J.; Alam, M.R. Rapid phase-resolved prediction of nonlinear dispersive waves using machine learning. Appl. Ocean. Res. 2021, 117, 102920. [Google Scholar] [CrossRef]
- Klein, M.; Stender, M.; Wedler, M.; Ehlers, S.; Hartmann, M.; Desmars, N.; Pick, M.-A.; Seifried, R.; Hoffmann, N. Application of machine learning for the generation of tailored wave sequences. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Volume 5B: Ocean Engineering, Honoring Symposium for Professor Günther F. Clauss on Hydrodynamics and Ocean Engineering, Hamburg, Germany, 5–10 June 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Chen, G.; Dong, Q.; Guo, X.; Tian, X.; Lu, W.; Peng, T. Deterministic wave prediction model for irregular long-crested waves with Recurrent Neural Network. J. Ocean. Eng. Sci. 2022, 9, 251–263. [Google Scholar] [CrossRef]
- Wedler, M.; Stender, M.; Klein, M.; Hoffmann, N. Machine learning simulation of one-dimensional deterministic water wave propagation. Ocean Eng. 2023, 284, 115222. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, Y.; Lin, Z. Sea surface reconstruction from marine radar images using deep convolutional neural networks. J. Ocean. Eng. Sci. 2023, 8, 647–661. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics-informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Kissas, G.; Yang, Y.; Hwuang, E.; Witschey, W.R.; Detre, J.A.; Perdikaris, P. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2020, 358, 112623. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Rasht-Behesht, M.; Huber, C.; Shukla, K.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023120. [Google Scholar] [CrossRef]
- Zobeiry, N.; Humfeld, K.D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng. Appl. Artif. Intell. 2021, 101, 104232. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks for heat transfer problems. J. Heat Transf. 2021, 143, 060801. [Google Scholar] [CrossRef]
- Kashinath, K.; Mustafa, M.; Albert, A.; Wu, J.-L.; Jiang, C.; Esmaeilzadeh, S.; Azizzadenesheli, K.; Wang, R.; Chattopadhyay, A.; Singh, A.; et al. Physics-informed machine learning: Case studies for weather and climate modelling. Philos. Trans. Ser. Math. Phys. Eng. Sci. 2021, 379, 2194. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, L.; Karniadakis, G.E.; Dal Negro, L. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 2020, 28, 11618–11633. [Google Scholar] [CrossRef]
- Nguyen-Thanh, V.M.; Zhuang, X.; Rabczuk, T. A deep energy method for finite deformation hyperelasticity. Eur. J. Mech. A/Solids 2020, 80, 103874. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Q.; Chen, Z. Reconstruction of nearshore wave fields based on physics-informed neural networks. Coast. Eng. 2022, 176, 104167. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, N.; Chen, Z. Simultaneous mapping of nearshore bathymetry and waves based on physics-informed deep learning. Coast. Eng. 2023, 183, 104337. [Google Scholar] [CrossRef]
- Feng, D.; Tan, Z.; He, Q. Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model. Water Resour. Res. 2023, 59, e2022WR033168. [Google Scholar] [CrossRef]
- Chiang, C.M.; Stiassnie, M.; Yue, D.K.-P. Theory and Applications of Ocean Surface Waves; World Scientific: Singapore, 2005. [Google Scholar] [CrossRef]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Shemer, L.; Kit, E.; Jiao, H.; Eitan, O. Experiments on nonlinear wave groups in intermediate water depth. J. Waterw. Port Coast. Ocean. Eng. 1998, 124, 320–327. [Google Scholar] [CrossRef]
- Trulsen, K.; Stansberg, C.T. Spatial evolution of water surface waves: Numerical simulation and experiment of bichromatic waves. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, ISOPE–I, Kitakyushu, Japan, 25–31 May 2001. [Google Scholar]
- Dysthe, K.B.; Trulsen, K.; Krogstadd, H.E.; Socquet-Juglard, H. Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 2003, 478, 1–10. [Google Scholar] [CrossRef]
- Chabchoub, A.; Hoffmann, N.P. Rogue wave observation in a water wave tank. Phys. Rev. Lett. 2011, 106, 204502. [Google Scholar] [CrossRef]
- Ruban, V.P. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation. J. Exp. Theor. Phys. 2015, 120, 925–932. [Google Scholar] [CrossRef]
- Li, J.; Li, B. Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized PT-symmetric Scarf-II potential via PINN deep learning. Commun. Theor. Phys. 2021, 73, 125001. [Google Scholar] [CrossRef]
- Pu, J.-C.; Li, J.; Chen, Y. Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 2021, 105, 1723–1739. [Google Scholar] [CrossRef]
- Pu, J.-C.; Li, J.; Chen, Y. Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 2021, 30, 060202. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Z. Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 2021, 404, 127408. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, D.; Fan, Q.; Zhang, M.; Lu, C.; Lau, A.P.T. Physics-informed neural network for nonlinear dynamics in fiber optics. Laser Photonics Rev. 2022, 16, 2100483. [Google Scholar] [CrossRef]
- Zhang, S.; Lan, P.; Su, J.-J. Wave-packet behaviors of the defocusing nonlinear Schrödinger equation based on the modified physics-informed neural networks. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 113107. [Google Scholar] [CrossRef]
- He, Q.Z.; Barajas-Solano, D.; Tartakovsky, G.; Tartakovsky, A.M. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv. Water Resour. 2020, 141, 103610. [Google Scholar] [CrossRef]
- Von Saldern, J.G.R.; Reumschüssel, J.M.; Kaiser, T.L.; Sieber, M.; Oberleithner, K. Mean flow data assimilation based on physics-informed neural networks. Phys. Fluids 2022, 34, 115129. [Google Scholar] [CrossRef]
- West, B.J.; Brueckner, K.A.; Janda, R.S.; Milder, D.M.; Milton, R.L. A new numerical method for surface hydrodynamics. J. Geophys. Res. Ocean. 1987, 92, 11803–11824. [Google Scholar] [CrossRef]
- Ducrozet, G.; Bonnefoy, F.; Perignon, Y. Applicability and limitations of highly non-linear potential flow solvers in the context of water waves. Ocean Eng. 2017, 142, 233–244. [Google Scholar] [CrossRef]
- Lünser, H.; Hartmann, M.; Desmars, N.; Behrendt, J.; Hoffmann, N.; Klein, M. The influence of characteristic sea state parameters on the accuracy of irregular wave field simulations of different complexity. Fluids 2022, 7, 243. [Google Scholar] [CrossRef]
- Zou, Z.; Meng, X.; Karniadakis, G.E. Correcting model misspecification in physics-informed neural networks (PINNs). arXiv 2023, arXiv:2310.10776. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). ErgäNzung Zur Dtsch. Hydrogr. Z. Reihe A 1973, 12, 1–95. [Google Scholar]
- Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C.L. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res. 1985, 90, 975–986. [Google Scholar] [CrossRef]
- Amir, M.A.U.; Wahid, A.S.A.; Appelbe, H.; Aziz, H.A.; Ahmad, M.A.; Azmir, H.; Jamil, R.A.; Radzi, Z.M. Optimal specification of wave flume in confined space. In Proceedings of the 2016 International Conference on Information and Communication Technology (ICICTM), Kuala Lumpur, Malaysia, 16–17 May 2016; pp. 136–140. [Google Scholar]
- Khalilabadi, M.R.; Bidokhti, A.A. Design and Construction of an Optimum Wave Flume. J. Appl. Fluid Mech. 2013, 5, 99–103. [Google Scholar]
- Hasimoto, H.; Ono, H. Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 1972, 33, 805–811. [Google Scholar] [CrossRef]
- Yuen, H.C.; Lake, B.M. Nonlinear Dynamics of Deep-Water Gravity Waves. Adv. Appl. Mech. 1982, 22, 67–229. [Google Scholar] [CrossRef]
- Chabchoub, A.; Grimshaw, R.H.J. The hydrodynamic nonlinear Schrödinger equation: Space and time. Fluids 2016, 1, 23. [Google Scholar] [CrossRef]
- Osborne, A.R. Nonlinear Ocean Waves and the Inverse Scattering Transform; Academic Press: Amsterdam, The Netherlands, 2010; Volume 97. [Google Scholar]
- Sobey, R.J. Real Sea States—Wave Grouping. In Real Sea States: Advanced Short Course Notes; Leichtweiß-Institut für Wasserbau, Technische Universität Braunschweig: Braunschweig, Germany, 1999. [Google Scholar]
- Mansard, E.P.D.; Funke, E.R. On the fitting of parametric models to measured wave spectra. In Proceedings of the 2nd International Symposium on Waves and Coastal Engineering, Hannover, Germany, 12–14 October 1988; pp. 12–14. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech. 1999, 31, 417–457. [Google Scholar] [CrossRef]
- Thrane, N.; Wismer, J.; Konstantin-Hansen, H.; Gade, S. Application Note: Practical Use of the “Hilbert Transform”. Brüel & Kjær. 2011. Available online: https://www.bksv.com/media/doc/bo0437.pdf (accessed on 5 September 2024).
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; Sardinia, Italy, 13–15 May 2010, Teh, Y.W., Titterington, M., Eds.; PMLR: Sardinia, Italy, 2010; Volume 9, pp. 249–256. Available online: https://proceedings.mlr.press/v9/glorot10a.html (accessed on 10th September 2024).
- Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 2020, 404, 109136. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200334. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Shukla, K.; Di Leoni, P.C.; Blackshire, J.; Sparkman, D.; Karniadakis, G.E. Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks. J. Nondestruct. Eval. 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Peng, K. Solving nonlinear soliton equations using improved physics-informed neural networks with adaptive mechanisms. Commun. Theor. Phys. 2023, 75, 095003. [Google Scholar] [CrossRef]
- McClenny, L.; Braga-Neto, U. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. arXiv 2020, arXiv:2009.04544. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 12–15 May 2015; pp. 1–15. [Google Scholar]
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Markidis, S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Front. Big Data 2021, 4, 669097. [Google Scholar] [CrossRef]
- Reddi, S.J.; Kale, S.; Kumar, S. On the Convergence of Adam and Beyond. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; Available online: https://openreview.net/pdf?id=ryQu7f-RZ (accessed on 5 September 2024).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 8024–8035. Available online: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf (accessed on 5 September 2024).
- Wedler, M.; Stender, M.; Klein, M.; Ehlers, S.; Hoffmann, N. Surface Similarity Parameter: A New Machine Learning Loss Metric for Oscillatory Spatio-Temporal Data. Neural Netw. 2022, 156, 123–134. [Google Scholar] [CrossRef]
- Perlin, M.; Bustamante, M. A robust quantitative comparison criterion of two signals based on the Sobolev norm of their difference. J. Eng. Math. 2016, 101, 115–124. [Google Scholar] [CrossRef]
- Desmars, N.; Hartmann, M.; Behrendt, J.; Klein, M.; Hoffmann, N. Reconstruction of Ocean Surfaces from Randomly Distributed Measurements Using a Grid-Based Method. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Virtual Conference, 21–30 June 2021; Volume 6: Ocean Engineering. [Google Scholar] [CrossRef]
- Desmars, N.; Hartmann, M.; Behrendt, J.; Klein, M.; Hoffmann, N. Nonlinear Reconstruction and Prediction of Regular Waves. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 5–10 June 2022. [Google Scholar] [CrossRef]
- Kim, I.-C.; Ducrozet, G.; Bonnefoy, F.; Leroy, V.; Perignon, Y. Real-time phase-resolved ocean wave prediction in directional wave fields: Enhanced algorithm and experimental validation. Ocean Eng. 2023, 276, 114212. [Google Scholar] [CrossRef]
- Dysthe, K.B. Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 1979, 369, 105–114. [Google Scholar] [CrossRef]
- Trulsen, K.; Dysthe, K.B. A Modified Nonlinear Schrödinger Equation for Broader Bandwidth Gravity Waves on Deep Water. Wave Motion 1996, 24, 281–289. [Google Scholar] [CrossRef]
- Peregrine, D.H. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 1983, 25, 16. [Google Scholar] [CrossRef]
NLSE Coefficients | Mean Error | ||||||||
---|---|---|---|---|---|---|---|---|---|
Re. | Im. | Re. | Im. | ||||||
Initial | 8.344 | 7.097 | 0.588 | −0.102 | −357.4 | 0.194 | 0.242 | × | × |
Learned | 9.355 | 6.202 | 0.754 | −0.071 | −256.7 | 0.150 | 0.188 | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehlers, S.; Wagner, N.A.; Scherzl, A.; Klein, M.; Hoffmann, N.; Stender, M. Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks. Fluids 2024, 9, 231. https://doi.org/10.3390/fluids9100231
Ehlers S, Wagner NA, Scherzl A, Klein M, Hoffmann N, Stender M. Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks. Fluids. 2024; 9(10):231. https://doi.org/10.3390/fluids9100231
Chicago/Turabian StyleEhlers, Svenja, Niklas A. Wagner, Annamaria Scherzl, Marco Klein, Norbert Hoffmann, and Merten Stender. 2024. "Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks" Fluids 9, no. 10: 231. https://doi.org/10.3390/fluids9100231
APA StyleEhlers, S., Wagner, N. A., Scherzl, A., Klein, M., Hoffmann, N., & Stender, M. (2024). Data Assimilation and Parameter Identification for Water Waves Using the Nonlinear Schrödinger Equation and Physics-Informed Neural Networks. Fluids, 9(10), 231. https://doi.org/10.3390/fluids9100231