Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions
Abstract
:1. Introduction
2. Background and Numerical Methodology
2.1. Description of the Studied Case
2.2. Governing Equations
2.3. k-ω SST Turbulence Model
3. Numerical Analyses
3.1. Generalities
3.2. Straight-Line Simulation
3.2.1. Geometry Module
3.2.2. Mesh Module
3.2.3. Setup Module
3.3. Medium-Speed Curve Simulation
3.3.1. Geometry Module
3.3.2. Mesh Module
3.3.3. Setup Module
4. Results and Discussion
4.1. Straight-Line Simulation
4.2. Medium-Speed Curve Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
u | Velocity field |
p | Pressure field |
ρ | Density |
μ | Dynamic viscosity |
Sij | Rate of the mean strain tensor |
Reynolds stress | |
k | Turbulent kinetic energy |
ω | Specific dissipation rate |
vt | Eddy viscosity |
β, β*, σk, σω, σω2 | Turbulence model closure coefficients |
F1, F2 | Blending functions |
V | Flow speed |
A | Reference area |
Cp | Pressure coefficient |
CDf | Downforce coefficient |
CD | Drag coefficient |
CY | Yaw coefficient |
Y+ | Non-dimensional wall distance |
References
- Næss, H.E. A History of Organizational Change: The Case of Fédération Internationale de l’Automobile (FIA), 1946–2020, 1st ed.; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 27–193. [Google Scholar]
- Hutton, R. Fédération Internationale de l’Automobile Centenary; Fédération Internationale de l’Automobile: Paris, France, 2004; pp. 113–161. [Google Scholar]
- Katz, J. Aerodynamics in motorsports. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 235, 324–338. [Google Scholar] [CrossRef]
- Dominy, R.G. Aerodynamics of Grand Prix cars. Proc. IMechE Part D J. Automob. Eng. 1992, 206, 267–274. [Google Scholar] [CrossRef]
- Agathangelou, B.; Gascoyne, M. Aerodynamic Design Considerations of a Formula 1 Racing Car; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 1998. [Google Scholar]
- Mokhtar, W.A.; Lane, J. Racecar Front Wing Aerodynamics. SAE Int. J. Passeng. Cars—Mech. Syst. 2009, 1, 1392–1403. [Google Scholar] [CrossRef]
- Roberts, L.S.; Correia, J.; Finnis, M.V.; Knowles, K. Aerodynamic characteristic of a wing-and-flap configuration in ground effect and yaw. Proc. IMechE Part D J. Automob. Eng. 2016, 230, 841–854. [Google Scholar] [CrossRef]
- Castro, X.; Rana, Z.A. Aerodynamic and structural design of a 2022 Formula One front wing assembly. Fluids 2020, 5, 237–259. [Google Scholar] [CrossRef]
- Basso, M.; Cravero, C.; Marsano, D. Aerodynamic Effect of the Gurney Flap on the Front Wing of a F1 Car and Flow Interactions with Car Components. Energies 2021, 14, 2059. [Google Scholar] [CrossRef]
- Gere-Gurky, R.; Adhitya, M. Front Wing Aerodynamic Analysis of formula 1 Cars in 2018 and 2019 with Computational Fluid Dynamics (CFD). AIP Conf. Proc. 2024, 2710, 030006. [Google Scholar]
- Petrone, G.; Hill, C.; Biancolini, M. Track by Track Robust Optimization of a F1 Front Wing using Adjoint Solutions and Radical Basis Functions. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. Techniques for Aerodynamic Analysis of Cornering Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Patel, D.; Garmory, A.; Passmore, M. The Effect of Cornering on the Aerodynamics of a Multi-Element Wingin Ground Effect. Fluids 2021, 6, 3. [Google Scholar] [CrossRef]
- Ahlfeld, R.; Ciampoli, F.; Pietropaoli, M.; Pepper, N.; Montomoli, F. Data-driven uncertainty quantification for Formula 1: Diffuser, wing tip and front wing variations. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 1495–1506. [Google Scholar] [CrossRef]
- Fédération Internationale de l’Automobile. 2022 Formula One Technical Regulations, 2022 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2022; p. 13. [Google Scholar]
- Formula One TV Archive. Available online: https://f1tv.formula1.com/page/493/archive (accessed on 15 July 2024).
- Fédération Internationale de l’Automobile. 2021 Formula One Technical Regulations, 2021 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2021; p. 10. [Google Scholar]
- Fédération Internationale de l’Automobile. 2023 Formula One Technical Regulations, 2023 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2023; p. 7. [Google Scholar]
- Fédération Internationale de l’Automobile. 2024 Formula One Technical Regulations, 2024 ed.; Fédération Internationale de l’Automobile: Geneve, Switzerland, 2024; p. 6. [Google Scholar]
- Minguez, M.; Pasquetti, R.; Serre, E. High-order large-eddy simulation of flow over the “Ahmed body” car model. Phys. Fluids 2008, 20, 095101. [Google Scholar] [CrossRef]
- Guilmineau, E.; Wackers, J. CFD Simulation with Automatic Mesh Refinement for the Flow around Simplifies Car Models. SAE Int. J. Passeng. Cars—Mech. Syst. 2012, 5, 580–591. [Google Scholar] [CrossRef]
- Guerrero, A.; Castilla, R. Aerodynamic Study of the Wake Effects on a Formula 1 Car. Energies 2020, 13, 5183. [Google Scholar] [CrossRef]
- Aultman, M.; Wang, Z.; Auza-Gutierrez, R.; Duan, L. Evaluation of CFD methodologies for prediction of flows around simplifies and complex automotive models. Comput. Fluids 2022, 236, 105297. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Afshari, F.; Zavaragh, H.G.; Sahin, B.; Grifoni, R.C.; Corvaro, F.; Marchetti, B.; Polonara, F. On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers. Math. Comput. Simul. 2018, 152, 51–68. [Google Scholar] [CrossRef]
- Ehirim, O.H.; Knowles, L.; Saddington, A.J. A Review of Ground-Effect Diffuser Aerodynamics. J. Fluids Eng. 2019, 141, 020801. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Li, D.; Wei, H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 2019, 137, 700–712. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. In Proceedings of the AIAA 24th Fluid Dynamics Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Fu, C.; Uddin, M.; Robinson, C.; Guzman, A.; Bailey, D. Turbulence Models and Model Closure Coefficients Sensitivity of NASCAR Racecar RANS CFD Aerodynamic Predictions. SAE Int. J. Passeng. Cars—Mech. Syst. 2017, 10, 330–344. [Google Scholar] [CrossRef]
- Zhang, C.; Bounds, C.P.; Foster, L.; Uddin, M. Turbulence Modeling Effects on the CFD Predictions of Flow over a Detailed Full-Scale Sedan Vehicle. Fluids 2019, 4, 148. [Google Scholar] [CrossRef]
- Laguna-Canales, A.S.; Urriolagoitia-Sosa, G.; Romero-Ángeles, B.; Martinez-Mondragon, M.; García-Laguna, M.A.; Correa-Corona, M.I.; Maya-Anaya, D.; Urriolagoitia-Calderón, G.M. Mechanical Design and Numerical Analysis of a New Front Wing for a Formula One Vehicle. Fluids 2023, 8, 210. [Google Scholar] [CrossRef]
- Desai, S.; Leylek, E.; Lo, C.-M.B.; Doddegowda, P.; Bychkovsky, A.; George, A.R. Experimental and CFD Comparative Case Studies of Aerodynaics of Race Car Wings, Underbodies with Wheels, and Motorcycle Flows; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Newbon, J.; Dominy, R.; Sims-Williams, D. CFD Investigation of the Effect of the Salient Flow Features in the Wake of a Generic Open-Wheel Race Car. SAE Int. J. Passeng. Cars—Mech. Syst. 2015, 8, 217–232. [Google Scholar] [CrossRef]
- Diasinos, S.; Barber, T.; Doig, G. Numerical analysis of the effect of the change in the ride height on the aerodynamic front wing–wheel interactions of a racing car. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 900–914. [Google Scholar] [CrossRef]
- Altinisik, A.; Kutukceken, E.; Umur, H. Experimental and Numerical Aerodynamic Analysis of a Passenger Car: Influence of the Blockage Ratio on Drag Coefficient. J. Fluids Eng. 2015, 137, 081104. [Google Scholar] [CrossRef]
- Jacuzzi, E.; Grandlund, K. Passive flow control for drag refuction in vehicle platoons. J. Wind Eng. Ind. Aerodyn. 2019, 189, 104–117. [Google Scholar] [CrossRef]
- Ljungskog, E.; Sebben, S.; Broniewicz, A. Inclusion of the physical wind tunnel in vehicle CFD simulations for improved prediction quality. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104055. [Google Scholar] [CrossRef]
- Simmonds, N.; Pitman, J.; Tsoutsanis, P.; Jenkins, K.; Gaylard, A.; Jansen, W. Complete Body Aerodynamic Study of three Vehicles; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Chode, K.K.; Viswanathan, H.; Chow, K.; Reese, H. Investigating the aerodynamic drag and noise characteristics of a standard squareback vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach. Phys. Fluids 2023, 35, 075148. [Google Scholar] [CrossRef]
- Choi, C.K.; Kwon, D.K. Wind tunnel blockage effects on aerodynamic behavior of bluff body. Wind Struct. 1998, 1, 351–364. [Google Scholar] [CrossRef]
- Almohammadi, K.M.; Ingham, D.B.; Ma, L.; Pourkashan, M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 2013, 58, 483–493. [Google Scholar] [CrossRef]
- Heide, J.; Karlsson, M.; Altimir, M. Numerical Analysis of Urea-SCR Sprays under Cross-Flow Conditions; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Soares, R.F.; de Souza, F.J. Influence of CFD Setup and Brief Analysis of Flow over a 3D Realistic Car Model; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,753,018 | 26,385,356 | ≈25.07 | 1.83998 | 0.52864 |
Medium | 15,023,893 | 47,932,793 | ≈10.75 | 1.83232 | 0.52121 |
Mid-Fine | 20,400,768 | 69,487,821 | ≈4.89 | 1.82796 | 0.51635 |
Fine | 25,130,644 | 90,042,577 | ≈1.85 | 1.82553 | 0.51408 |
Very Fine | 31,058,495 | 114,891,067 | ≈0.98 | 1.82522 | 0.51373 |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,977,923 | 26,951,057 | ≈26.32 | 1.79191 | 0.56634 |
Medium | 15,370,356 | 48,960,475 | ≈10.88 | 1.78177 | 0.55660 |
Mid-Fine | 20,871,291 | 70,977,640 | ≈5.12 | 1.77728 | 0.55171 |
Fine | 25,710,154 | 91,973,086 | ≈1.93 | 1.77555 | 0.55018 |
Very Fine | 31,774,703 | 117,354,332 | ≈1.05 | 1.77541 | 0.55011 |
Surface | Boundary Conditions | Details |
---|---|---|
Front Wing | No-slip Stationary wall | No-slip. No movement. |
Wheels | No-slip Rotational wall | No-slip. Angular velocity of 253.9682 rad/s. |
Inlet | Velocity inlet | 320 km/h airflow speed. Airflow normal to the surface. |
Turbulence Intensity | 5% for all simulations. | |
Outlet | Outlet pressure | Allows recirculation. |
Left Wall | Outlet pressure | Allows recirculation. |
Right Wall | Outlet pressure | Allows recirculation. |
Top Wall | Outlet pressure | Allows recirculation. |
Ground | No-slip Moving wall | No-slip. Translation speed of 320 km/h in the direction of the airflow. |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,761,892 | 26,396,027 | ≈25.02 | 1.48942 | 0.37425 |
Medium | 15,027,154 | 47,943,586 | ≈10.03 | 1.47944 | 0.36653 |
Mid-Fine | 20,405,851 | 69,498,722 | ≈4.68 | 1.47297 | 0.36284 |
Fine | 25,134,209 | 90,055,429 | ≈1.76 | 1.46858 | 0.36167 |
Very Fine | 31,063,557 | 114,905,047 | ≈0.88 | 1.46803 | 0.36121 |
Mesh | Nodes | Elements | Y+ | CDf | CD |
---|---|---|---|---|---|
Coarse | 9,985,740 | 26,967,488 | ≈29.38 | 1.23141 | 0.35123 |
Medium | 15,378,158 | 48,976,504 | ≈12.17 | 1.21982 | 0.34417 |
Mid-Fine | 20,879,506 | 70,993,298 | ≈5.49 | 1.21249 | 0.33985 |
Fine | 25,718,472 | 91,990,356 | ≈1.95 | 1.20891 | 0.33840 |
Very Fine | 31,783,664 | 117,371,285 | ≈1.13 | 1.20845 | 0.33797 |
Surface | Boundary Conditions | Details |
---|---|---|
Front Wing | No-slip Stationary wall | No-slip. No movement. |
Right Wheel | No-slip Rotational wall | No-slip. Angular velocity of 139.2857 rad/s. |
Left Wheel | No-slip Rotational wall | No-slip. Angular velocity of 146.4285 rad/s. |
Inlet 1 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Inlet 2 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Inlet 3 | Velocity inlet Turbulence Intensity | 180 km/h airflow speed. Airflow defined through its three-dimensional components. 5% for all simulations. |
Outlet 1 | Outlet pressure | Allows recirculation. |
Outlet 2 | Outlet pressure | Allows recirculation. |
Outlet 3 | Outlet pressure | Allows recirculation. |
Ground | No-slip Moving wall | No-slip. Translation speed of 180 km/h in the direction of the airflow. |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −3.04048 | −0.45304 | −0.00556 |
Right Wheel | −0.07296 | −0.50102 | −0.17995 |
Left Wheel | −0.07105 | −0.49773 | −0.17257 |
Total Model | −1.82551 | −0.51386 | 0.00862 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −3.07373 | −0.46290 | −0.01564 |
Right Wheel | −0.04558 | −0.57790 | 0.19485 |
Left Wheel | −0.04671 | −0.57898 | −0.20196 |
Total Model | −1.77591 | −0.55030 | −0.01712 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −2.14751 | −0.24532 | 0.43623 |
Right Wheel | −0.51008 | −0.50094 | 0.33449 |
Left Wheel | −0.32285 | −0.38213 | 0.18847 |
Total Model | −1.47032 | −0.36295 | 0.64698 |
Element | CDf | CD | CY |
---|---|---|---|
Front Wing | −1.78301 | −0.22854 | 0.28161 |
Right Wheel | −0.50093 | −0.48658 | 0.32534 |
Left Wheel | −0.27912 | −0.35755 | 0.18175 |
Total Model | −1.20996 | −0.33924 | 0.50888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laguna-Canales, A.S.; Urriolagoitia-Sosa, G.; Romero-Ángeles, B.; Martinez-Mondragon, M.; García-Laguna, M.A.; Yparrea-Arreola, R.I.; Mireles-Hernández, J.; Carrasco-Hernández, F.; Urriolagoitia-Luna, A.; Urriolagoitia-Calderón, G.M. Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids 2024, 9, 232. https://doi.org/10.3390/fluids9100232
Laguna-Canales AS, Urriolagoitia-Sosa G, Romero-Ángeles B, Martinez-Mondragon M, García-Laguna MA, Yparrea-Arreola RI, Mireles-Hernández J, Carrasco-Hernández F, Urriolagoitia-Luna A, Urriolagoitia-Calderón GM. Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids. 2024; 9(10):232. https://doi.org/10.3390/fluids9100232
Chicago/Turabian StyleLaguna-Canales, Aldo Saul, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Miguel Martinez-Mondragon, Miguel Angel García-Laguna, Reyner Iván Yparrea-Arreola, Jonatan Mireles-Hernández, Francisco Carrasco-Hernández, Alejandro Urriolagoitia-Luna, and Guillermo Manuel Urriolagoitia-Calderón. 2024. "Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions" Fluids 9, no. 10: 232. https://doi.org/10.3390/fluids9100232
APA StyleLaguna-Canales, A. S., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Martinez-Mondragon, M., García-Laguna, M. A., Yparrea-Arreola, R. I., Mireles-Hernández, J., Carrasco-Hernández, F., Urriolagoitia-Luna, A., & Urriolagoitia-Calderón, G. M. (2024). Numerical Evaluation of the Effectiveness of the Use of Endplates in Front Wings in Formula One Cars under Multiple Track Operating Conditions. Fluids, 9(10), 232. https://doi.org/10.3390/fluids9100232