Investigating the Morphology of a Free-Falling Jet with an Accurate Finite Element and Level Set Modeling
Abstract
:1. Introduction
2. Numerical Method
2.1. Conservative Level Set Method
2.2. Level Set Advection and Reinitialization
2.3. Governing Equations
2.4. Algorithm Scheme
3. Free Falling Jet Problem
4. Experiment
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habera, M.; Hron, J. Modelling of a free-surface ferrofluid flow. J. Magn. Magn. Mater. 2017, 431, 157–160. [Google Scholar] [CrossRef]
- Noh, W.F.; Woodward, P. SLIC (simple line interface calculation). In Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, Berlin, Germany, 28 June–2 July 1976; Twente University: Enschede, The Netherlands; Springer: Berlin/Heidelberg, Germany, 1976; pp. 330–340. [Google Scholar]
- Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science; Cambridge University Press: Cambridge, UK, 1999; Volume 3. [Google Scholar]
- Ding, H.; Xie, P.; Ingham, D.; Ma, L.; Pourkashanian, M. Flow behaviour of drop and jet modes of a laminar falling film on horizontal tubes. Int. J. Heat Mass Transf. 2018, 124, 929–942. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R.; Piechor, K. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 2004, 57, B15. [Google Scholar] [CrossRef]
- Scardovelli, R.; Zaleski, S. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 1999, 31, 567–603. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, Y.; Zhang, C.; Haidn, O.J.; Hu, X. Level-set based pre-processing techniques for particle methods. Comput. Phys. Commun. 2023, 289, 108744. [Google Scholar] [CrossRef]
- Ganesan, V.; Brenner, H. A diffuse interface model of two-phase flow in porous media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2000, 456, 731–803. [Google Scholar] [CrossRef]
- Unverdi, S.O.; Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 1992, 100, 25–37. [Google Scholar] [CrossRef]
- Villanueva, W.; Amberg, G. Some generic capillary-driven flows. Int. J. Multiph. Flow 2006, 32, 1072–1086. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, D.; Zohdi, T.I. Delta Voronoi smoothed particle hydrodynamics, δ-VSPH. J. Comput. Phys. 2020, 401, 109000. [Google Scholar] [CrossRef]
- Park, C.Y.; Zohdi, T.I. Semi-implicit operator splitting for the simulation of Herschel–Bulkley flows with smoothed particle hydrodynamics. Comput. Part. Mech. 2020, 7, 699–704. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Y.; Hu, X. A multi-resolution SPH framework: Application to multi-phase fluid-structure interactions. arXiv 2022, arXiv:2205.00707. [Google Scholar]
- Liu, C.; Li, B.; Liu, Q.; Hong, J.; Li, K. A novel implicit meshless particle method: NURBS-based particle hydrodynamics (NBPH). Comput. Methods Appl. Mech. Eng. 2023, 406, 115895. [Google Scholar] [CrossRef]
- Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S. An improved level set method for incompressible two-phase flows. Comput. Fluids 1998, 27, 663–680. [Google Scholar] [CrossRef]
- Sussman, M.; Smereka, P.; Osher, S. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 1994, 114, 146–159. [Google Scholar] [CrossRef]
- Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 2002, 183, 83–116. [Google Scholar] [CrossRef]
- Herrmann, M. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 2008, 227, 2674–2706. [Google Scholar] [CrossRef]
- Gibou, F.; Fedkiw, R.; Osher, S. A review of level-set methods and some recent applications. J. Comput. Phys. 2018, 353, 82–109. [Google Scholar] [CrossRef]
- Olsson, E.; Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 2005, 210, 225–246. [Google Scholar] [CrossRef]
- Olsson, E.; Kreiss, G.; Zahedi, S. A conservative level set method for two phase flow II. J. Comput. Phys. 2007, 225, 785–807. [Google Scholar] [CrossRef]
- Zhao, L.; Mao, J.; Bai, X.; Liu, X.; Li, T.; Williams, J. Finite element implementation of an improved conservative level set method for two-phase flow. Comput. Fluids 2014, 100, 138–154. [Google Scholar] [CrossRef]
- Martínez-Ferrer, P.J.; Qian, L.; Ma, Z.; Causon, D.M.; Mingham, C.G. An efficient finite-volume method to study the interaction of two-phase fluid flows with elastic structures. J. Fluids Struct. 2018, 83, 54–71. [Google Scholar] [CrossRef]
- Cardiff, P.; Demirdžić, I. Thirty years of the finite volume method for solid mechanics. Arch. Comput. Methods Eng. 2021, 28, 3721–3780. [Google Scholar]
- Liu, Y.; Shu, C.; Zhang, H.; Yang, L.; Lee, C. An efficient high-order least square-based finite difference-finite volume method for solution of compressible Navier-Stokes equations on unstructured grids. Comput. Fluids 2021, 222, 104926. [Google Scholar] [CrossRef]
- Chen, N.; Amirfazli, A. Numerical study of droplet impingement and spreading on a moving surface. Phys. Fluids 2023, 35, 093302. [Google Scholar] [CrossRef]
- Hansen, K.B.; Arzani, A.; Shadden, S.C. Finite element modeling of near-wall mass transport in cardiovascular flows. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3148. [Google Scholar] [CrossRef]
- Palzhanov, Y.; Zhiliakov, A.; Quaini, A.; Olshanskii, M. A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow. Comput. Methods Appl. Mech. Eng. 2021, 387, 114167. [Google Scholar] [CrossRef]
- Hashemi, M.R.; Ryzhakov, P.B.; Rossi, R. An enriched finite element/level-set method for simulating two-phase incompressible fluid flows with surface tension. Comput. Methods Appl. Mech. Eng. 2020, 370, 113277. [Google Scholar] [CrossRef]
- Papathanasiou, T.; Karperaki, A.; Theotokoglou, E.; Belibassakis, K. A higher order FEM for time-domain hydroelastic analysis of large floating bodies in an inhomogeneous shallow water environment. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140643. [Google Scholar] [CrossRef]
- Abali, B.E. Computational Reality; Advanced Structured Materials; Springer Nature: Singapore, 2017; Volume 55. [Google Scholar]
- Abali, B.E.; Reich, F.A. Verification of deforming polarized structure computation by using a closed-form solution. Contin. Mech. Thermodyn. 2020, 32, 693–708. [Google Scholar] [CrossRef]
- Popinet, S. Numerical models of surface tension. Annu. Rev. Fluid Mech. 2018, 50, 49–75. [Google Scholar] [CrossRef]
- Maarouf, S.; Bernardi, C.; Yakoubi, D. Characteristics/finite element analysis for two incompressible fluid flows with surface tension using level set method. Comput. Methods Appl. Mech. Eng. 2022, 394, 114843. [Google Scholar] [CrossRef]
- Khalloufi, M.; Mesri, Y.; Valette, R.; Massoni, E.; Hachem, E. High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension. Comput. Methods Appl. Mech. Eng. 2016, 307, 44–67. [Google Scholar] [CrossRef]
- Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Kleinheins, J.; Shardt, N.; El Haber, M.; Ferronato, C.; Nozière, B.; Peter, T.; Marcolli, C. Surface tension models for binary aqueous solutions: A review and intercomparison. Phys. Chem. Chem. Phys. 2023, 25, 11055–11074. [Google Scholar] [CrossRef] [PubMed]
- Kleinheins, J.; Marcolli, C.; Dutcher, C.S.; Shardt, N. A unified surface tension model for multi-component salt, organic, and surfactant solutions. Phys. Chem. Chem. Phys. 2024, 26, 17521–17538. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Hu, X.; Bishara, D. An adhesive Gurtin-Murdoch surface hydrodynamics theory of moving contact line and modeling of droplet wettability on soft substrates. J. Comput. Phys. 2022, 456, 111074. [Google Scholar] [CrossRef]
- Arnold, D.N.; Qin, J. Quadratic velocity/linear pressure Stokes elements. Adv. Comput. Methods Partial Differ. Equ. 1992, 7, 28–34. [Google Scholar]
- Eggels, J.G.; Unger, F.; Weiss, M.; Westerweel, J.; Adrian, R.J.; Friedrich, R.; Nieuwstadt, F.T. Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 1994, 268, 175–210. [Google Scholar] [CrossRef]
- Varghese, S.S.; Frankel, S.H.; Fischer, P.F. Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid Mech. 2007, 582, 253–280. [Google Scholar] [CrossRef]
- Elghobashi, S. Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 2019, 51, 217–244. [Google Scholar] [CrossRef]
- Naung, S.W.; Rahmati, M.; Farokhi, H. Direct numerical simulation of interaction between transient flow and blade structure in a modern low-pressure turbine. Int. J. Mech. Sci. 2021, 192, 106104. [Google Scholar] [CrossRef]
- Chorin, A.J. On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comput. 1969, 23, 341–353. [Google Scholar] [CrossRef]
- Bell, J.B.; Colella, P.; Glaz, H.M. A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 1989, 85, 257–283. [Google Scholar] [CrossRef]
- Brown, D.L.; Cortez, R.; Minion, M.L. Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 2001, 168, 464–499. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, H.Y.; Chu, E.K.W. Inheritance Properties of Projection Methods for Continuous-Time Algebraic Riccati Equations; Technical Report; National Center for Theoretical Sciences Mathematics Division: Taiwan, China, 2017. [Google Scholar]
- De Michele, C.; Capuano, F.; Coppola, G. Fast-Projection Methods for the Incompressible Navier–Stokes Equations. Fluids 2020, 5, 222. [Google Scholar] [CrossRef]
- Tezduyar, T.E. Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 1991, 28, 1–44. [Google Scholar]
- Franca, L.P.; Frey, S.L.; Hughes, T.J. Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 1992, 95, 253–276. [Google Scholar] [CrossRef]
- Gravemeier, V.; Wall, W.A.; Ramm, E. A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 2004, 193, 1323–1366. [Google Scholar] [CrossRef]
- Codina, R.; Soto, O. A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique. Int. J. Numer. Methods Fluids 2002, 40, 293–301. [Google Scholar] [CrossRef]
- Pacquaut, G.; Bruchon, J.; Moulin, N.; Drapier, S. Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes–Darcy flows. Int. J. Numer. Methods Fluids 2012, 69, 459–480. [Google Scholar] [CrossRef]
- Abali, B.E. An accurate finite element method for the numerical solution of isothermal and incompressible flow of viscous fluid. Fluids 2019, 4, 5. [Google Scholar] [CrossRef]
- Abali, B.E.; Savaş, O. Experimental validation of computational fluid dynamics for solving isothermal and incompressible viscous fluid flow. Appl. Sci. 2020, 2, 1500. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ivančić, F.; Chou, Y.J. Role of surface tension effect at the deformed free surface of chemotaxis coupling flow system: Weakly nonlinear study. Phys. Fluids 2023, 35, 091908. [Google Scholar] [CrossRef]
- Zhan, W.; Zhao, H.; Rao, X.; Liu, Y. Generalized finite difference method-based numerical modeling of oil–water two-phase flow in anisotropic porous media. Phys. Fluids 2023, 35, 103317. [Google Scholar] [CrossRef]
- Lin, S.; Gan, Z.; Yan, J.; Wagner, G.J. A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes. Comput. Methods Appl. Mech. Eng. 2020, 372, 113348. [Google Scholar] [CrossRef]
- Dettmer, W.; Perić, D. A computational framework for free surface fluid flows accounting for surface tension. Comput. Methods Appl. Mech. Eng. 2006, 195, 3038–3071. [Google Scholar] [CrossRef]
- ten Eikelder, M.; Akkerman, I. A novel diffuse-interface model and a fully-discrete maximum-principle-preserving energy-stable method for two-phase flow with surface tension and non-matching densities. Comput. Methods Appl. Mech. Eng. 2021, 379, 113751. [Google Scholar] [CrossRef]
- Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G. Modelling Merging and Fragmentation in Multiphase Flows with SURFER. J. Comput. Phys. 1994, 113, 134–147. [Google Scholar] [CrossRef]
- Zohdi, T.I. Finite Element Primer for Beginners; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Eggers, J.; Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 2008, 71, 036601. [Google Scholar] [CrossRef]
- Ma, Y.; Li, P.; Zhu, D.Z.; Khan, A. Air flow inside a vertical pipe induced by a free-falling water jet. J. Hydro-Environ. Res. 2022, 44, 23–34. [Google Scholar] [CrossRef]
- Kuznetsov, G.; Zhdanova, A.; Voitkov, I.; Strizhak, P. Disintegration of Free-falling Liquid Droplets, Jets, and Arrays in Air. Microgravity Sci. Technol. 2022, 34, 12. [Google Scholar] [CrossRef]
- Gao, J.; Rong, W.; Gao, P.; Wang, L.; Sun, L. A programmable 3D printing method for magnetically driven micro soft robots based on surface tension. J. Micromechan. Microeng. 2021, 31, 085006. [Google Scholar] [CrossRef]
- He, B.; Yang, S.; Qin, Z.; Wen, B.; Zhang, C. The roles of wettability and surface tension in droplet formation during inkjet printing. Sci. Rep. 2017, 7, 11841. [Google Scholar] [CrossRef] [PubMed]
- Krainer, S.; Smit, C.; Hirn, U. The effect of viscosity and surface tension on inkjet printed picoliter dots. Rsc Adv. 2019, 9, 31708–31719. [Google Scholar] [CrossRef] [PubMed]
Fluid | Viscosity (Pa·s) | Surface Tension (μN/mm) | Density (g/mm3) | Velocity (mm/s) | Re |
---|---|---|---|---|---|
Peanut oil | 0.061 | 34 | 0.91 | 500 | 59.67 |
Castor oil | 0.57 | 35.9 | 0.956 | 400 | 5.38 |
Glycerol (18 wt%) | 1.3 | 72.7 | 1.26 | 200 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, H.; Abali, B.E.; Müller, W.H. Investigating the Morphology of a Free-Falling Jet with an Accurate Finite Element and Level Set Modeling. Fluids 2024, 9, 264. https://doi.org/10.3390/fluids9110264
Liu Y, Yang H, Abali BE, Müller WH. Investigating the Morphology of a Free-Falling Jet with an Accurate Finite Element and Level Set Modeling. Fluids. 2024; 9(11):264. https://doi.org/10.3390/fluids9110264
Chicago/Turabian StyleLiu, Yiming, Hua Yang, Bilen Emek Abali, and Wolfgang H. Müller. 2024. "Investigating the Morphology of a Free-Falling Jet with an Accurate Finite Element and Level Set Modeling" Fluids 9, no. 11: 264. https://doi.org/10.3390/fluids9110264
APA StyleLiu, Y., Yang, H., Abali, B. E., & Müller, W. H. (2024). Investigating the Morphology of a Free-Falling Jet with an Accurate Finite Element and Level Set Modeling. Fluids, 9(11), 264. https://doi.org/10.3390/fluids9110264