Pollutant Dispersion Dynamics Under Horizontal Wind Shear Conditions: Insights from Bidimensional Traffic Flow Models
Abstract
:1. Introduction
2. Problem Formulation
2.1. Two-Dimensional Traffic Flow Model
2.2. Macroscopic Pollution Model
3. Numerical Method
4. Numerical Results and Discussion
4.1. Parameterization
4.2. Traffic Flow Model Validation
4.3. Numerical Results for Different Space/Time Wind Velocity Function
4.3.1. Stationary Wind
4.3.2. Gaussian Model
4.3.3. Time Dependence Wind Velocity Function
- Case 1: Linear increase in wind velocity magnitude (see Equation (13) for mathematical formulation).
- Case 2: Linear decrease in wind velocity magnitude (see Equation (14) for mathematical formulation).
- Case 3: “Sudden change” in wind velocity magnitude (see Equation (15) for mathematical formulation).
4.3.4. Time Evolution Pollutant Concentration
- for nonlinear growth: Although the nonlinear evolutions are similar, the shape of the evolution depends on the distance from the Peripherique. The evolution remains steady due to the laminar and unidirectional regularity of the wind and its low speed.
- for saturation: In this region, a plateau is observed where the concentration no longer changes, indicating a stationary pollutant distribution dynamic. As one moves further from the road traffic, the characteristic time decreases.
- for decrease: The last part of the graph reflects the fact that the pollutant exits the area with a characteristic time that strongly depends on the distance from the obstacle, particularly downstream of the congestion.
- for nonlinear growth: We observe the same trends as in Region I, which seems intuitive given that, during this time interval, the wind is steady and of low intensity.
- for rapid decrease: During the time interval associated with this region, there is a sudden change in wind speed amplitude. In terms of dynamic behavior, the response of the pollutant concentration is an almost instantaneous drop, indicating that the pollutant is quickly expelled from the area, as expected. However, after this immediate drop, three distinct time scales can be observed (except at the position farthest from the obstacle on the right), reflecting a ‘stepped’ decrease in pollutant concentration. This decline follows a nonlinear process.
- for increase: During this interval, the wind becomes laminar again, and the dynamics of the pollutant concentration increase up to a certain value. This characteristic growth time depends on the distance from the vertical relative to the Peripherique.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, T.; Sun, Y.; Shi, Y.; Ma, J.; Feng, C.; Chen, Z. Air pollution control policies and impacts: A review. Renew. Sustain. Energy Rev. 2024, 191, 114071. [Google Scholar] [CrossRef]
- Sun, D.J.; Wu, S.; Shen, S.; Xu, T. Simulation and assessment of traffic pollutant dispersion at an urban signalized intersection using multiple platforms. Atmos. Pollut. Res. 2021, 12, 101087. [Google Scholar] [CrossRef]
- Sun, D.J.; Zhang, Y. Influence of avenue trees on traffic pollutant dispersion in asymmetric street canyons: Numerical modeling with empirical analysis. Transp. Res. D Transp. Environ. 2018, 65, 784–795. [Google Scholar] [CrossRef]
- Jin, M.Y.; Zhang, L.Y.; Peng, Z.R.; He, H.D.; Kumar, P.; Gallagher, J. The impact of dynamic traffic and wind conditions on green infrastructure performance to improve local air quality. Sci. Total Environ. 2024, 917, 170211. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, S.B.; Woo, D.; Bae, G.N. Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmos. Pollut. Res. 2015, 6, 1024–1034. [Google Scholar] [CrossRef]
- Walcek, C.J. Effects of wind shear on pollution dispersion. Atmos. Environ. 2002, 36, 511–517. [Google Scholar] [CrossRef]
- Xiao, S.; Peng, C.; Yang, D. Large-eddy simulation of bubble plume in stratified crossflow. Phys. Rev. Fluids 2021, 6, 044613. [Google Scholar] [CrossRef]
- Yang, H.; Lu, C.; Hu, Y.; Chan, P.W.; Li, L.; Zhang, L. Effects of horizontal transport and vertical mixing on nocturnal ozone pollution in the Pearl River Delta. Atmosphere 2022, 13, 1318. [Google Scholar] [CrossRef]
- Draxler, R.R.; Taylor, A.D. Horizontal dispersion parameters for long-range transport modeling. J. Appl. Meteorol. Climatol. 1982, 21, 367–372. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, C.H.; Leung, D.Y.; Lam, K.M. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Sun, D.J.; Shi, X.; Zhang, Y.; Zhang, L. Spatiotemporal distribution of traffic emission based on wind tunnel experiment and computational fluid dynamics (CFD) simulation. J. Clean. Prod. 2021, 282, 124495. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Guo, J.; Papamichail, I.; Papageorgiou, M.; Zhang, L.; Hu, S.; Li, Y.; Sun, J. Macroscopic traffic flow modelling of large-scale freeway networks with field data verification: State-of-the-art review, benchmarking framework, and case studies using METANET. Transp. Res. C Emerg. Technol. 2022, 145, 103904. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, Z.; Yang, L.; Liu, Z. Recent developments in traffic flow modeling using macroscopic fundamental diagram. Transp. Rev. 2020, 40, 529–550. [Google Scholar] [CrossRef]
- Agrawal, S.; Kanagaraj, V.; Treiber, M. Two-dimensional LWR model for lane-free traffic. Phys. A Stat. Mech. Appl. 2023, 625, 128990. [Google Scholar] [CrossRef]
- Tumash, L.; de Wit, C.C.; Delle Monache, M.L. Equilibrium Manifolds in 2D Fluid Traffic Models. IFAC-PapersOnLine 2020, 53, 17077–17082. [Google Scholar] [CrossRef]
- Herty, M.; Fazekas, A.; Visconti, G.A. two-dimensional data-driven model for traffic flow on highways. arXiv 2017, arXiv:1706.07965. [Google Scholar] [CrossRef]
- Balzotti, C.; Göttlich, S. A two-dimensional multi-class traffic flow model. arXiv 2020, arXiv:2006.10131. [Google Scholar] [CrossRef]
- Vikram, D.; Mittal, S.; Chakroborty, P. Stabilized finite element computations with a two-dimensional continuum model for disorderly traffic flow. Comput. Fluids 2022, 232, 105205. [Google Scholar] [CrossRef]
- Della Rossa, F.; D’Angelo, C.; Quarteroni, A. A distributed model of traffic flows on extended regions. Netw. Heterog. Media. 2010, 5, 525–544. [Google Scholar] [CrossRef]
- Romero, L.M.; Benitez, F.G. Traffic flow continuum modeling by hypersingular boundary integral equations. Int. J. Numer. Methods Eng. 2010, 82, 47–63. [Google Scholar] [CrossRef]
- Zhang, H.M. Anisotropic property revisited–does it hold in multi-lane traffic? Transp. Res. B Methodol. 2003, 37, 561–577. [Google Scholar] [CrossRef]
- Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed.; Springer Series in Computational Mathematics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Newell, G.F. A Theory of Platoon Formation in Tunnel Traffic. Oper. Res. 1959, 7, 589–598. [Google Scholar] [CrossRef]
- Francklin, R.E. The structure of a traffic shock wave. Civ. Eng. Public Work. Rev. 1961, 56, 1186–1188. [Google Scholar]
- Mollier, S.; Delle Monache, M.L.; de Wit, C.C. Two-dimensional macroscopic model for large scale traffic networks. Transp. Res. B Methodol. 2019, 122, 309–326. [Google Scholar] [CrossRef]
- Bourlès, H. Fundamentals of Advanced Mathematics 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves; ISTE Press—Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-1-78548-249-6. [Google Scholar]
- Skiba, Y.N.; Davydova-Belitskaya, V. On the estimation of impact of vehicular emissions. Ecol. Model. 2003, 166, 169–184. [Google Scholar] [CrossRef]
- Zakarin, E.A.; Mirkarimova, B.M. GIS-based mathematical modeling of urban air pollution. Izv. Atmos. Ocean. Phys. 2000, 36, 334–342. [Google Scholar]
- Skiba, Y.N. Balanced and absolutely stable implicit schemes for the main and adjoint pollutant transport equations in limited. Rev. Int. Contam. Ambient. 1993, 9, 39–51. [Google Scholar]
- Skiba, Y.N.; Adem, J. A balanced and absolutely stable numerical thermodynamic model for closed and open oceanic basins. Rev. Int. Contam. Ambient. 1995, 34, 385–393. [Google Scholar] [CrossRef]
- Codina, R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 1998, 156, 185–210. [Google Scholar] [CrossRef]
- Douglas, J.; Russel, T.F. Numerical Methods for Convection-Dominated Diffusion Problems Based on Combining the Method of Characteristics with Finite Element or Finite Difference Procedures. SIAM J. Numer. Anal. 1982, 19, 871–885. [Google Scholar] [CrossRef]
- Pironneau, O.; Tabata, M. Stability and convergence of a Galerkin-charasteristics finite element scheme of lumped mass type. Int. J. Numer. Methods Fluids 2000, 64, 1240–1253. [Google Scholar] [CrossRef]
- Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E. Numerical convergence for a sewage disposal problem. Appl. Math. Model. 2001, 25, 1015–1024. [Google Scholar] [CrossRef]
- Alvarez-Vázquez, L.J.; García-Chan, N.; Martínez, A.; Vázquez-Méndez, M.E. Numerical simulation of air pollution due to traffic flow in urban networks. J. Comput. Appl. Math. 2017, 326, 44–61. [Google Scholar] [CrossRef]
- Borouchaki, H.; George, P.L. Delauney Triangulation and Meshing: Application to Finite Elements; Hermes: Paris, France, 1998. [Google Scholar]
- Chaari, A.; Mouhali, W.; Sellila, N.; Louaked, M.; Mechkour, H. Numerical Simulation of Pollutant Concentration Patterns of a Two-Dimensional Congestion Traffic. Comput. Math. Appl. 2024. [Google Scholar] [CrossRef]
- Hecht, F. New development in FreeFem++. J. Numer. Math. 2012, 20, 251–265. [Google Scholar] [CrossRef]
- Hobbs, P.V. Introduction to Atmospheric Chemistry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sportisse, B. Fundamentals in Air Pollution: From Processes to Modelling; Springer: London, UK; New York, NY, USA, 2010. [Google Scholar]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaari, A.; Mouhali, W.; Sellila, N.; Louaked, M.; Mechkour, H. Pollutant Dispersion Dynamics Under Horizontal Wind Shear Conditions: Insights from Bidimensional Traffic Flow Models. Fluids 2024, 9, 265. https://doi.org/10.3390/fluids9110265
Chaari A, Mouhali W, Sellila N, Louaked M, Mechkour H. Pollutant Dispersion Dynamics Under Horizontal Wind Shear Conditions: Insights from Bidimensional Traffic Flow Models. Fluids. 2024; 9(11):265. https://doi.org/10.3390/fluids9110265
Chicago/Turabian StyleChaari, Anis, Waleed Mouhali, Nacer Sellila, Mohammed Louaked, and Houari Mechkour. 2024. "Pollutant Dispersion Dynamics Under Horizontal Wind Shear Conditions: Insights from Bidimensional Traffic Flow Models" Fluids 9, no. 11: 265. https://doi.org/10.3390/fluids9110265
APA StyleChaari, A., Mouhali, W., Sellila, N., Louaked, M., & Mechkour, H. (2024). Pollutant Dispersion Dynamics Under Horizontal Wind Shear Conditions: Insights from Bidimensional Traffic Flow Models. Fluids, 9(11), 265. https://doi.org/10.3390/fluids9110265