Gradient-Based Aero-Stealth Optimization of a Simplified Aircraft
Abstract
:1. Introduction
1.1. Gradient-Based Method
1.2. Aero-Stealth Optimization
1.3. Contribution
2. Methodology
2.1. The Physical Optics Approximation
2.2. Automatic Differentiation of Physical Optics
2.3. The Aerodynamic Solver
2.4. Adjoint Approach for CFD
2.4.1. Gradient with Respect to Aerodynamic Variables
2.4.2. Gradient with Respect to Geometric Variables
3. Validation
3.1. Validation of the COPOLA Code
3.2. Validation of the Aerodynamic Tool
4. Baseline Description
4.1. The CAD Modeler
4.2. Aerodynamic Analysis of the Baseline
4.3. Stealth Analysis of the Baseline
4.4. Optimization Parameters
5. Cost and Constraints
5.1. Aerodynamic Criterion
5.2. Stealth Criterion
5.3. Constraints
6. Sensitivity Validation
6.1. RCS with Respect to Geometric Variables
6.2. with Respect to Geometric and Aerodynamic Variables
7. Optimization Results
7.1. Aerodynamic Optimization
7.2. Stealth Optimization
7.3. Pareto Optimality
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Automatic Differentiation |
AETHER | In-house CFD solver |
CAD | Computer-Assisted Design |
CFD | Computational Fluid Dynamics |
COPOLA | In-house differentiated PO and PTD solver |
GANIMEDE | In-house CAD modeler |
GFA | Generic Fighter Aircraft (baseline geometry) |
PO | Physical Optics |
PTD | Physical Theory of Diffraction |
RCS | Radar Cross-Section |
TAPENADE | Automatic Differentiation tool developed by INRIA |
DSM | Design Structure Matrix |
References
- Knott, E.F.; Schaeffer, J.F.; Tulley, M.T. Radar Cross Section; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Aliaga, C.; Kopp, M.; Salui, K.B.; Mahapatra, D.; Sardesai, A. Aerodynamic and stealth studies of canard-wing Configurations at Transonic Speeds using Ansys Fluent & Ansys HFSS SBR+. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 3322. [Google Scholar]
- Lee, D.; Gonzalez, L.F.; Srinivas, K.; Auld, D.; Periaux, J. Multi-objective/multidisciplinary design optimisation of blended wing body UAV via advanced evolutionary algorithms. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8 January 2007–11 January 2007; p. 36. [Google Scholar]
- Wu, D.; Long, T.; Li, Y.; Jiang, M.; Huang, B. Aero-structure-stealth coupled optimization for high aspect ratio wing using adaptive metamodeling method. In Proceedings of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, USA, 16–20 June 2014; p. 2304. [Google Scholar]
- Jiang, X.; Zhao, Q.; Zhao, G.; Meng, C. Numerical Optimization on Aerodynamic/Stealth Characteristics of Airfoil Based on CFD/CEM Coupling Method. Trans. Nanjing Univ. Aeronaut. Astronaut. 2016, 33, 274–284. [Google Scholar]
- Parr, J.; Holden, C.M.; Forrester, A.I.; Keane, A.J. Review of efficient surrogate infill sampling criteria with constraint handling. In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, 6–10 September 2011. [Google Scholar]
- Lyu, Z.; Xu, Z.; Martins, J. Benchmarking optimization algorithms for wing aerodynamic design optimization. In Proceedings of the 8th International Conference on Computational Fluid Dynamics, Chengdu, China, 11–13 November 2014; Citeseer: Princeton, NJ, USA, 2014; Volume 11, p. 585. [Google Scholar]
- Martin, L. Conception Aérodynamique Robuste. Ph.D. Thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France, 2010. Available online: https://core.ac.uk/download/pdf/12095692.pdf (accessed on 29 July 2024).
- Hascoët, L.; Pascual, V. The Tapenade Automatic Differentiation tool: Principles, Model, and Specification. ACM Trans. Math. Softw. 2013, 39, 1–43. Available online: https://gitlab.inria.fr/tapenade/tapenade (accessed on 29 July 2024). [CrossRef]
- Lyu, Z.; Martins, J.R. Aerodynamic design optimization studies of a blended-wing-body aircraft. J. Aircr. 2014, 51, 1604–1617. [Google Scholar] [CrossRef]
- Lyu, Z.; Kenway, G.K.; Martins, J.R. Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA J. 2015, 53, 968–985. [Google Scholar] [CrossRef]
- Bons, N.P.; He, X.; Mader, C.A.; Martins, J.R. Multimodality in aerodynamic wing design optimization. AIAA J. 2019, 57, 1004–1018. [Google Scholar] [CrossRef]
- Garnier, E.; Langlet, S.; Klotz, P.; Cadillon, J.; Simon, J.; Castelli, J.C.; Levadoux, D. Surrogate-based conception for aerodynamic/stealth compromise. In Proceedings of the AVT-324 Specialists’ Meeting on Multidisciplinary Design Approaches and Performance Assessment of Future Combat Aircraft, virtuel, Italy, 28–30 September 2020. [Google Scholar]
- Guerra, J. Optimisation Multi-Objectif Sous Incertitudes de Phénomènes de Thermique Transitoire. Ph.D. Thesis, Institut Superieur de L’aeronautique et de L’espace (ISAE), Toulouse, France, 2016. [Google Scholar]
- Liu, Z.; Song, W.; Han, Z.; Wang, Y. Multifidelity Aerodynamic/Stealth Design Optimization Method for Flying Wing Aircraft. In Proceedings of the 32th Congress of the International Council of the Aeronautical Sciences, ICAS, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Zhou, Z.; Huang, J. Quantitative weight and two-particle search algorithm to optimize aero-stealth performance of a backward inclined vertical tail. Aerospace 2023, 10, 345. [Google Scholar] [CrossRef]
- Taj, Z.U.D.; Bilal, A.; Awais, M.; Salamat, S.; Abbas, M.; Maqsood, A. Design exploration and optimization of aerodynamics and radar cross section for a fighter aircraft. Aerosp. Sci. Technol. 2023, 133, 108114. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, J.; Li, F.; Yan, C. Integrated design optimization of aerodynamic and stealthy performance for flying wing aircraft. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, 15–17 March 2017; Volume 2, pp. 15–17. [Google Scholar]
- Li, M.; Bai, J.; Li, L.; Meng, X.; Liu, Q.; Chen, B. A gradient-based aero-stealth optimization design method for flying wing aircraft. Aerosp. Sci. Technol. 2019, 92, 156–169. [Google Scholar] [CrossRef]
- Kleinveld, S.; Rogé, G.; Daumas, L.; Dinh, Q. Differentiated parametric CAD used within the context of automatic aerodynamic design optimization. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canada, 10–12 September 2008; p. 5952. [Google Scholar]
- Chalot, F. Industrial Aerodynamics. In Encyclopedia of Computational Mechanics; Stein, E., de Borst, R., Hughes, T.J.R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; Volume 3: Fluids, Chapter 12. [Google Scholar]
- Barclay, A. SQP Methods for Large-Scale Optimization; University of California: San Diego, CA, USA, 1999. [Google Scholar]
- Laval, D. Application de Méthodes Asymptotiques à la Simulation de la Diffraction électromagnétique par un Corps Régulier. Ph.D. Thesis, Université Sciences et Technologies-Bordeaux I, Bordeaux, France, 2006. Available online: https://theses.hal.science/tel-00197165/document (accessed on 29 July 2024).
- Stratton, J.A.; Chu, L. Diffraction theory of electromagnetic waves. Phys. Rev. 1939, 56, 99. [Google Scholar] [CrossRef]
- Michaeli, A. Elimination of infinities in equivalent edge currents, Part I: Fringe current components. IEEE Trans. Antennas Propag. 1986, 34, 912–918. [Google Scholar] [CrossRef]
- Chalot, F.; Johan, Z.; Mallet, M.; Billard, F.; Martin, L.; Barré, S. Extension of methods based on the stabilized finite element formulation for the solution of the Navier–Stokes equations and application to aerodynamic design. Comput. Methods Appl. Mech. Eng. 2023, 417, 116425. [Google Scholar] [CrossRef]
- Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 2009, 62, 040802. [Google Scholar] [CrossRef]
- Spalart, P.R.; Allmaras, S.R. One-equation turbulence model for aerodynamic flows. La Rech. Aerosp. 1994, 1, 5–21. [Google Scholar]
- Martin, L.; Roge, G. Calcul de la sensibilité d’ordre deux d’une observation aérodynamique. In Proceedings of the ESAIM: Proceedings; EDP Sciences: Les Ulis, France, 2009; Volume 27, pp. 138–155. [Google Scholar]
- Poggio, A.J.; Miller, E.K. Integral Equation Solutions of Three-Dimensional Scattering Problems; MB Assoc.: Winnipeg, MB, Canada, 1970; Chapter 4; pp. 195–264. [Google Scholar]
- Carayol, Q. Développement et Analyse D’une Méthode Multipôle Multiniveau Pour L’électromagnétisme. Ph.D. Thesis, Université Paris 6, Paris, France, 2002. Available online: https://theses.fr/2002PA066485 (accessed on 19 May 2024).
- Chalot, F.; Mallet, M.; Ravachol, M. A comprehensive finite element Navier-Stokes solver for low-and high-speed aircraft design. In Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 1994; p. 814. [Google Scholar]
- Jenn, D. Radar and Laser cross Section Engineering; American Institute of Aeronautics and Astronautics, Inc.: Reno, NV, USA, 2005. [Google Scholar]
- Désidéri, J.A. MGDA Variants for Multi-Objective Optimization; Institut National de Recherche en Informatique et en Automatique: Sophia-Antipolis, France, 2012. [Google Scholar]
Design Variable | Unit | Section | Index | Step Size | Min | Max | Baseline | Stealth-Optimal Shape | Aero-Optimal Shape |
---|---|---|---|---|---|---|---|---|---|
Sweep angle | 2 | 1 | 0.05 | 28 | 58 | 48 | 30 | 58 | |
4 | 2 | 0.05 | −10 | 10 | 0 | 0 | 10 | ||
Chord length | mm | 2 | 3 | 5991 | 7863 | 7489 | 7059 | 7863 | |
4 | 4 | 2643 | 4845 | 4405 | 1211 | 4845 | |||
6 | 5 | 943 | 1238 | 1179 | 1123 | 1238 | |||
Span | mm | 2–6 | 6 | 4864 | 6675 | 6230 | 6674 | 5737 | |
Twist angle | 2 | 7 | 0.05 | 0 | 2 | 0 | −0.5 | −0.3 | |
3 | 8 | 0.05 | −2 | 2 | 0 | −0.8 | −0.6 | ||
5 | 9 | 0.05 | −2 | 2 | 0 | −0.6 | −1.8 | ||
6 | 10 | 0.05 | −2 | 2 | 0 | −0.8 | −1.9 | ||
Leading edge camber | % | 3 | 11 | −1 | 1 | 0 | −1 | −0.69 | |
chord | 5 | 12 | −1 | 1 | 0 | 0 | 0.64 | ||
length | 6 | 13 | −1 | 1 | 0 | 1 | 0.63 | ||
AoA | – | 14 | 0.01 | 1 | 3 | 2 | 2.3 | 2.7 |
w | N Cycle | |||||
---|---|---|---|---|---|---|
1.0 | 346.97 | 68.6 | 41 | |||
0.995 | 352.16 | 68.6 | 63 | |||
0.99 | 354.34 | 68.6 | 62 | |||
0.95 | 365.58 | 68.6 | 40 | |||
0.9 | 367.49 | 68.6 | 59 | |||
0.8 | 372.88 | 68.6 | 47 | |||
0.75 | 380.85 | 68.6 | 69 | |||
0.52 | 381.72 | 68.6 | 65 | |||
0.51 | 426.99 | 68.6 | 91 | |||
0.5 | 427.22 | 68.6 | 98 | |||
0.0 | 432.54 | 68.6 | 96 | |||
baseline | 387.46 | 68.6 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoulon, C.; Roge, G.; Pironneau, O. Gradient-Based Aero-Stealth Optimization of a Simplified Aircraft. Fluids 2024, 9, 174. https://doi.org/10.3390/fluids9080174
Thoulon C, Roge G, Pironneau O. Gradient-Based Aero-Stealth Optimization of a Simplified Aircraft. Fluids. 2024; 9(8):174. https://doi.org/10.3390/fluids9080174
Chicago/Turabian StyleThoulon, Charles, Gilbert Roge, and Olivier Pironneau. 2024. "Gradient-Based Aero-Stealth Optimization of a Simplified Aircraft" Fluids 9, no. 8: 174. https://doi.org/10.3390/fluids9080174
APA StyleThoulon, C., Roge, G., & Pironneau, O. (2024). Gradient-Based Aero-Stealth Optimization of a Simplified Aircraft. Fluids, 9(8), 174. https://doi.org/10.3390/fluids9080174