Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives
Abstract
:1. Introduction
2. LES as a Full-Order Model
2.1. Nonlinear Spatial Filtering for LES
- -
- Evolve: Find intermediate variable such thatFor this step, one could adopt the same space discretization technique used for (10) and, hence, the same solver.
- -
- -
- Relax: Set
2.1.1. The EFR Method for the Incompressible Navier–Stokes Equations
- -
- Evolve: find intermediate velocity and pressure such that
2.1.2. The EFR Method for the Weakly Compressible Euler Equations
- -
- Evolve: find density , density fluctuation , and intermediate variables , , , and such that
- -
- Filter: find filtered variables and such that
- -
- Relax: find end-of-step , , , and such that
2.1.3. Indicator Function
Physical Phenomenology-Based Indicator Functions
Mathematics-Based Indicator Functions
2.2. Machine Learning for LES
3. Applications of LES for FOM
3.1. Incompressible Flows
3.1.1. Computational Hemodynamics in Type B Aortic Dissections
Geometry
Boundary Conditions and Backflows
- Inflow conditions. The available data may generally refer to the flow rate or to the velocity (as a function of time) at one point of the inflow. While this is clearly not enough as a boundary condition, a popular and practical approach consists of assuming a velocity profile constructed around the available data. For instance, one can assume a parabolic profile (corresponding to the well-known Poiseuille solution) or a Womersley profile (corresponding to the time-dependent Womersley solution) [115] that fit the available flow rate or pointwise velocity. This clearly introduces a bias in the solution since the choice of the profile—even if educated—is arbitrary. To mitigate this aspect, an artificial extension of the inflow tract is added to the computational domain, called flow extension. An analysis of the error introduced by this approach can be found in [116]. More sophisticated and mathematically sound approaches were introduced with the idea of identifying the best profile through an optimization approach (see [116,117,118,119,120]), yet they require an additional computational cost (and nonstandard solvers)). In the simulation considered in our work on AoD [8,121], we assumed flow rate data provided by the literature, with flow extensions at the inlet (the ascending aorta) and the selection of a constant velocity profile. An analysis of the impact of idealized velocity profiles in AoD simulations can be found in [122].
- Outflow Conditions. For outflow conditions on the portion of the domain denoted by , a common approach is to combine the 3D model based on the incompressible Navier–Stokes Equations (4) and (5) with surrogate—dimensionally reduced—models representing the downstream circulations, in what has been called the geometrically multiscale approach [123,124,125,126]. It is important to stress that in this particular case of AoD, we may have some outflow sections referring to collateral vessels like the renal or the mesenteric arteries where not only do we lack patient-specific data but also it is hard to find data in the literature. Yet, the inclusion of the renal flow is critical for a reliable assessment of the hemodynamics in an AoD. A popular approach, in this case, is to resort to the introduction of a lumped parameter model called three-element Windkessel (Windkessel was a device used by firefighters to pump water from a reservoir, converting a periodic action into a quasi-steady flow, which is exactly what happens in the peripheral circulation, where the pulsatile aortic flow is eventually converted into a steady flow in the capillaries [127]), representing the downstream circulation at each outflow boundary (see, e.g., [127]). This approach leads to the prescription of a traction condition of the form
EFR in Action
- Implicit, i.e., we actually evaluate so that we resort to Robin boundary conditions similar to the ones discussed in Remark 1;
- Explicit, i.e., we use a time extrapolation of the velocity consistent with the time-discretization accuracy. For a first-order time advancing, for instance, one has , leading to classical traction (Neumann) conditions.
Filter Radius and Relaxation Parameter
Results
Sensitivity Analysis for the Filtering Radius
- The geometry is by far the most important factor in the results: an accurate geometrical reconstruction of the region of interest is critical for any biomedical analysis. See Figure 8, rightmost panels.
- The impact of the radius on the TAWSS and the OSI is minimal. See Figure 8, leftmost and center panels. This means that the selection of the radius with the empirical rules used in our simulations is not expected to have a major impact on the clinical conclusions of the computational analysis.
3.1.2. Open Problems
3.2. Compressible Flows
Open Problems
4. LES for Reduced-Order Models
4.1. LES-ROMs
4.1.1. ROM Filters and Approximate Deconvolution
ROM Differential Filter
ROM Higher-Order Algebraic Filter
ROM Projection
ROM Filter Radius
Approximate Deconvolution
4.1.2. EFR-ROM
- -
- Evolve: find such that
- -
- Filter: find filtered variable such that
- -
- Relax: set
4.1.3. Leray ROM, Approximate Deconvolution Leray ROM, and Time-Relaxation ROM
Leray ROM
Approximate Deconvolution Leray ROM
Time-Relaxation ROM
4.1.4. Other LES-ROMs
4.2. LES-ROM Consistency
- FOM-ROM consistent, i.e., the ROM uses the same computational model and the same numerical discretization as the FOM (see [206] Definition 1.1).
- FOM-ROM inconsistent, i.e., the ROM uses a computational and/or numerical discretization that are different from those used by the FOM.
4.3. LES-ROM Numerical Analysis
5. Applications of LES for ROM
5.1. Incompressible Flows
5.1.1. Flow Past a Cylinder
5.1.2. T-Junction
5.1.3. Hemodynamics Applications
5.1.4. Wind Energy Applications
5.2. Compressible Flows
6. Concluding Remarks and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 1941, 30, 299–303. [Google Scholar]
- Kolmogorov, A.N. Dissipation of energy in isotropic turbulence. Dokl. Akad. Nauk. SSSR 1941, 32, 19–21. [Google Scholar]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef]
- Sagaut, P. Large Eddy Simulation for Incompressible Flows, 3rd ed.; Scientific Computation; Springer: Berlin/Heidelberg, Germany, 2006; p. xxx+556. [Google Scholar]
- Berselli, L.C.; Iliescu, T.; Layton, W.J. Mathematics of Large Eddy Simulation of Turbulent Flows; Scientific Computation; Springer: Berlin/Heidelberg, Germany, 2006; p. xviii+348. [Google Scholar]
- Layton, W.J.; Rebholz, L.G. Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2042. [Google Scholar]
- Delorme, Y.; Anupindi, K.; Kerlo, A.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S. Large eddy simulation of powered Fontan hemodynamics. J. Biomech. 2013, 46, 408–422. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Piccinelli, M.; Leshnower, B.G.; Lefieux, A.; Taylor, W.R.; Veneziani, A. Coupled morphological–hemodynamic computational analysis of type B aortic dissection: A longitudinal study. Ann. Biomed. Eng. 2018, 46, 927–939. [Google Scholar] [CrossRef]
- Manchester, E.L.; Pirola, S.; Salmasi, M.Y.; O’Regan, D.P.; Athanasiou, T.; Xu, X.Y. Analysis of turbulence effects in a patient-specific aorta with aortic valve stenosis. Cardiovasc. Eng. Technol. 2021, 12, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, P.M.; Mametjanov, A.; Tang, Q.; Van Roekel, L.P.; Golaz, J.C.; Lin, W.; Bader, D.C.; Keen, N.D.; Feng, Y.; Jacob, R.; et al. The DOE E3SM coupled model version 1: Description and results at high resolution. J. Adv. Model. Earth Syst. 2019, 11, 4095–4146. [Google Scholar] [CrossRef]
- Terai, C.; Caldwell, P.; Klein, S.; Tang, Q.; Branstetter, M. The atmospheric hydrologic cycle in the ACME v0.3 model. Clim. Dyn. 2018, 50, 3251–3279. [Google Scholar] [CrossRef]
- Wehner, M.; Reed, K.; Li, F.; Prabhat; Bacmeister, J.; Chen, C.T.; Paciorek, C.; Gleckler, P.J.; Sperber, K.R.; Collins, W.D.; et al. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 2014, 6, 980–997. [Google Scholar] [CrossRef]
- Bacmeister, J.; Wehner, M.; Neale, R.; Gettelman, A.; Hannay, C.; Lauritzen, P.; Caron, J.M.; Truesdale, J.E. Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Clim. 2014, 27, 3073–3099. [Google Scholar] [CrossRef]
- Delworth, T.; Rosati, A.; Anderson, W.; Adcroft, A.J.; Balaji, V.; Benson, R.; Dixon, K.; Griffies, S.M.; Lee, H.C.; Pacanowski, R.C.; et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 2012, 25, 2755–2781. [Google Scholar] [CrossRef]
- Love, B.; Matthews, A.; Lister, G. The diurnal cycle of precipitation over the maritime continent in a high-resolution atmospheric model. Quaterly J. R. Meteorol. Soc. 2011, 137, 934–947. [Google Scholar] [CrossRef]
- Atlas, R.; Reale, O.; Shen, B.W.; Lin, S.J.; Chern, J.D.; Putman, W.; Lee, T.; Yeh, K.S.; Bosilovich, M.; Radakovich, J. Hurricane forecasting with the high-resolution NASA finite volume general circulation model. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Iorio, J.; Duffy, P.; Govindasamy, B.; Thompson, S.; Khairoutdinov, M.; Randall, D. Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim. Dyn. 2004, 23, 243–258. [Google Scholar] [CrossRef]
- Duffy, P.; Govindasamy, B.; Iorio, J.; Milanovich, J.; Sperber, K.; Taylor, K.; Wehner, M.F.; Thompson, S.L. High-resolution simulations of global climate, Part 1: Present climate. Clim. Dyn. 2003, 21, 371–390. [Google Scholar] [CrossRef]
- Pope, V.; Stratton, R. The processes governing horizontal resolution sensitivity in a climate model. Clim. Dyn. 2002, 19, 211–236. [Google Scholar]
- Leonard, A. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. In Turbulent Diffusion in Environmental Pollution; Frenkiel, F., Munn, R., Eds.; Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 18, pp. 237–248. [Google Scholar] [CrossRef]
- Germano, M. Turbulence: The filtering approach. J. Fluid Mech. 1992, 238, 325–336. [Google Scholar] [CrossRef]
- Moser, R.D.; Haering, S.W.; Yalla, G.R. Statistical Properties of Subgrid-Scale Turbulence Models. Annu. Rev. Fluid Mech. 2021, 53, 255–286. [Google Scholar] [CrossRef]
- Beck, A.; Flad, D.; Munz, C.D. Deep neural networks for data-driven LES closure models. J. Comput. Phys. 2019, 398, 108910. [Google Scholar] [CrossRef]
- Sirignano, J.; MacArt, J.F.; Freund, J.B. DPM: A deep learning PDE augmentation method with application to large-eddy simulation. J. Comput. Phys. 2020, 423, 109811. [Google Scholar] [CrossRef]
- Xie, C.; Wang, J.; E, W. Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence. Phys. Rev. Fluids 2020, 5, 054606. [Google Scholar] [CrossRef]
- Duraisamy, K. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids 2021, 6, 050504. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Di Leoni, P.C.; Zaki, T.A.; Karniadakis, G.; Meneveau, C. Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 2021, 914, A6. [Google Scholar] [CrossRef]
- John, V. Large Eddy Simulation of Turbulent Incompressible Flows. In Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2004; Volume 34, p. xii+261. [Google Scholar]
- Rebollo, T.C.; Lewandowski, R. Mathematical and Numerical Foundations of Turbulence Models and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Tennekes, H.; Lumley, J. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations: I. The basic experiement. Mon. Wea. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Abgrall, R. Toward the Ultimate Conservative Scheme: Following the Quest. J. Comput. Phys. 2001, 167, 277–315. [Google Scholar] [CrossRef]
- Prandtl, L. Turbulent Flow. In Lecture Delivered before the International Congress for Applied Mechanics; US Department of Commerce: Springfield, VA, USA, 1926. Available online: https://ntrs.nasa.gov/api/citations/19930090799/downloads/19930090799.pdf (accessed on 28 June 2024).
- Kloeckner, A.; Warburton, T.; Hesthaven, J.S. Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method. Math. Model. Nat. Phenom. 2011, 6, 57–83. [Google Scholar] [CrossRef]
- Rispoli, F.; Saavedra, R. A stabilized finite element method based on SGS models for compressible flows. Comp. Meth. Appl. Mech. Eng. 2006, 196, 652–664. [Google Scholar] [CrossRef]
- Persson, P.O.; Peraire, J. Sub-cell shock capturing for discontinuous Galerkin methods. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 112. [Google Scholar]
- Guermond, J.L.; Pasquetti, R.; Popov, B. Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 2011, 230, 4248–4267. [Google Scholar] [CrossRef]
- Guermond, J.L.; Pasquetti, R. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Ser. I 2008, 346, 801–806. [Google Scholar] [CrossRef]
- Guermond, J.L.; Popov, B. Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 2014, 74, 284–305. [Google Scholar] [CrossRef]
- Kurganov, A.; Liu, Y. New adaptive artificial viscosity method for hyperbolic systems of conservation laws. J. Comput. Phys. 2012, 231, 8114–8132. [Google Scholar] [CrossRef]
- Marras, S.; Nazarov, M.; Giraldo, F.X. Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES. J. Comput. Phys. 2015, 301, 77–101. [Google Scholar] [CrossRef]
- Wang, Z.; Triantafyllou, M.S.; Constantinides, Y.; Karniadakis, G.E. An entropy-viscosity large eddy simulation study of turbulent flow in a flexible pipe. J. Fluid Mech. 2019, 859, 691–730. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Calo, V.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G. Variational Multiscale Residual-based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows. Comput. Methods Appl. Mech. Eng. 2007, 197, 173–201. [Google Scholar] [CrossRef]
- Codina, R. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 2002, 191, 4295–4321. [Google Scholar] [CrossRef]
- Codina, R.; Badia, S.; Baiges, J.; Principe, J. Variational Multiscale Methods in Computational Fluid Dynamics. In Encyclopedia of Computational Mechanics, 2nd ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2017; pp. 1–28. [Google Scholar]
- Hughes, T.J.R.; Feijóo, G.; Mazzei, L.; Quincy, J. The variational multiscale method—A paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 1998, 166, 3–24. [Google Scholar] [CrossRef]
- Guermond, J.L.; Pasquetti, R.; Popov, B. From suitable weak solutions to entropy viscosity. J. Sci. Comput. 2011, 49, 35–50. [Google Scholar] [CrossRef]
- Olshanskii, M.; Xiong, X. A connection between filter stabilization and eddy viscosity models. Numer. Methods Partial. Differ. Equations 2013, 29, 2061–2080. [Google Scholar] [CrossRef]
- Clinco, N.; Girfoglio, M.; Quaini, A.; Rozza, G. Filter stabilization for the mildly compressible Euler equations with application to atmosphere dynamics simulations. Comput. Fluids 2023, 266, 106057. [Google Scholar] [CrossRef]
- Boyd, J.P. Two Comments on Filtering (Artificial Viscosity) for Chebyshev and Legendre Spectral and Spectral Element Methods: Preserving Boundary Conditions and Interpretation of the Filter as a Diffusion. J. Comput. Phys. 1998, 143, 283–288. [Google Scholar] [CrossRef]
- Fischer, P.; Mullen, J. Filter-based stabilization of spectral element methods. Comptes Rendus De L’académie Des Sci.-Ser. I-Math. 2001, 332, 265–270. [Google Scholar] [CrossRef]
- Mullen, J.S.; Fischer, P.F. Filtering techniques for complex geometry fluid flows. Commun. Numer. Meth. Eng. 1999, 15, 9–18. [Google Scholar] [CrossRef]
- Mathew, J.; Lechner, R.; Foysi, H.; Sesterhenn, J.; Friedrich, R. An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 2003, 15, 2279–2289. [Google Scholar] [CrossRef]
- Visbal, M.; Rizzetta, D. Large eddy simulation on curvilinear grids using compact differencing and filtering schemes. J. Fluids Eng. 2002, 124, 836–847. [Google Scholar] [CrossRef]
- Garnier, E.; Adams, N.; Sagaut, P. Large Eddy Simulation for Compressible Flows; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Girfoglio, M.; Quaini, A.; Rozza, G. A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization. Comput. Fluids 2019, 187, 27–45. [Google Scholar] [CrossRef]
- Bertagna, L.; Quaini, A.; Veneziani, A. Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int. J. Num. Meth. Fluids 2016, 81, 463–488. [Google Scholar] [CrossRef]
- Bowers, A.L.; Rebholz, L.G.; Takhirov, A.; Trenchea, C. Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering. Int. J. Numer. Methods Fluids 2012, 70, 805–828. [Google Scholar] [CrossRef]
- Bowers, A.; Rebholz, L. Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comput. Methods Appl. Mech. Eng. 2013, 258, 1–12. [Google Scholar] [CrossRef]
- Layton, W.; Rebholz, L.G.; Trenchea, C. Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J. Math. Fluid Mech. 2012, 14, 325–354. [Google Scholar] [CrossRef]
- Layton, W.; Röhe, L.; Tran, H. Explicitly uncoupled VMS stabilization of fluid flow. Comput. Methods Appl. Mech. Eng. 2011, 200, 3183–3199. [Google Scholar] [CrossRef]
- Viguerie, A.; Veneziani, A. Deconvolution-based stabilization of the incompressible Navier–Stokes equations. J. Comput. Phys. 2019, 391, 226–242. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
- Girfoglio, M.; Quaini, A.; Rozza, G. A novel Large Eddy Simulation model for the Quasi-Geostrophic equations in a Finite Volume setting. J. Comput. Appl. Math. 2023, 418, 114656. [Google Scholar] [CrossRef]
- Besabe, L.; Girfoglio, M.; Quaini, A.; Rozza, G. Linear and nonlinear filtering for a two-layer quasi-geostrophic ocean model. arXiv 2024, arXiv:2404.11718. [Google Scholar]
- Quarteroni, A.; Valli, A. Domain Decomposition Methods for Partial Differential Equations; Oxford Science Publications: Oxford, UK, 1999. [Google Scholar]
- Deparis, S.; Fernandez, M.A.; Formaggia, L. Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. ESAIM Math. Model. Numer. Anal. 2003, 37, 601–616. [Google Scholar] [CrossRef]
- Ervin, V.; Layton, W.; Neda, M. Numerical Analysis of Filter-Based Stabilization for Evolution Equations. SIAM J. Numer. Anal. 2012, 50, 2307–2335. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. A POD-Galerkin reduced order model for a LES filtering approach. J. Comput. Phys. 2021, 436, 110260. [Google Scholar] [CrossRef]
- Leray, J. Sur le mouvement d‘un fluide visqueux emplissant l’espace. Acta Math. 1934, 63, 193–248. [Google Scholar] [CrossRef]
- Geurts, B.J.; Holm, D.D. Regularization modeling for large-eddy simulation. Phys. Fluids 2003, 15, L13–L16. [Google Scholar] [CrossRef]
- Guermond, J.L.; Oden, J.T.; Prudhomme, S. Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 2004, 6, 194–248. [Google Scholar] [CrossRef]
- Foiaş, C.; Holm, D.; Titi, E. The Navier-Stokes-alpha model of fluid turbulence. Phys. D 2001, 152/153, 505–519. [Google Scholar] [CrossRef]
- Chehab, J.P. Damping, Stabilization and Numerical Filtering for the Modeling and the Simulation of time dependent PDEs. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 2693–2728. [Google Scholar] [CrossRef]
- Hesthaven, J.S.; Warburton, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Holm, D.D. Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics. Phys. D Nonlinear Phenom. 2002, 170, 253–286. [Google Scholar] [CrossRef]
- Secchi, P. An alpha model for compressible fluids. Discrete Contin. Dyn. Syst. S. 2008, 3, 351–359. [Google Scholar] [CrossRef]
- Giraldo, F.X.; Restelli, M. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys. 2008, 227, 3849–3877. [Google Scholar] [CrossRef]
- Marras, S.; Moragues, M.; Vázquez, M.; Jorba, O.; Houzeaux, G. A Variational Multiscale Stabilized Finite Element Method for the Solution of the Euler Equations of Nonhydrostatic Stratified Flows. J. Comput. Phys. 2013, 236, 380–407. [Google Scholar] [CrossRef]
- Marras, S.; Kelly, J.; Moragues, M.; Müller, A.; Kopera, M.; Vázquez, M.; Giraldo, F.; Houzeaux, G.; Jorba, O. A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin. Arch. Comput. Methods Eng. 2016, 23, 673–722. [Google Scholar] [CrossRef]
- Marchuk, G.I. Numerical Methods in Weather Prediction; Academic Press: Cambridge, MA, USA, 1974; pp. 1–277. [Google Scholar]
- Borggaard, J.; Iliescu, T.; Roop, J.P. A bounded artificial viscosity large eddy simulation model. SIAM J. Num. Anal. 2009, 47, 622–645. [Google Scholar] [CrossRef]
- Hunt, J.; Wray, A.; Moin, P. Eddies Stream and Convergence Zones in Turbulent Flows; Technical Report CTR-S88, CTR Report; NASA: Washington, DC, USA, 1988.
- Vreman, A. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 2004, 16, 3670–3681. [Google Scholar] [CrossRef]
- Stolz, S.; Adams, N. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 1999, 11, 1699–1701. [Google Scholar] [CrossRef]
- Stolz, S.; Adams, N.; Kleiser, L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 2001, 13, 997–1015. [Google Scholar] [CrossRef]
- Dunca, A.; Epshteyn, Y. On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal. 2005, 37, 1890–1902. [Google Scholar] [CrossRef]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 2016, 807, 155–166. [Google Scholar] [CrossRef]
- Beck, A.; Kurz, M. A perspective on machine learning methods in turbulence modeling. GAMM-Mitteilungen 2021, 44, e202100002. [Google Scholar] [CrossRef]
- Sirignano, J.; MacArt, J.F. Deep learning closure models for large-eddy simulation of flows around bluff bodies. J. Fluid Mech. 2023, 966, A26. [Google Scholar] [CrossRef]
- Schmelzer, M.; Dwight, R.P.; Cinnella, P. Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul. Combust. 2020, 104, 579–603. [Google Scholar] [CrossRef]
- Reissmann, M.; Hasslberger, J.; Sandberg, R.D.; Klein, M. Application of gene expression programming to a-posteriori LES modeling of a Taylor Green vortex. J. Comput. Phys. 2021, 424, 109859. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y. Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach. Phys. Rev. Fluids 2023, 8, 084604. [Google Scholar] [CrossRef]
- Ren, P.; Erichson, N.B.; Subramanian, S.; San, O.; Lukic, Z.; Mahoney, M.W. SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning. arXiv 2023, arXiv:2306.14070. [Google Scholar]
- Maulik, R.; San, O.; Jacob, J.D.; Crick, C. Sub-grid scale model classification and blending through deep learning. J. Fluid Mech. 2019, 870, 784–812. [Google Scholar] [CrossRef]
- Maulik, R.; San, O.; Jacob, J.D. Spatiotemporally dynamic implicit large eddy simulation using machine learning classifiers. Phys. Nonlinear Phenom. 2020, 406, 132409. [Google Scholar] [CrossRef]
- Kim, B.; Azevedo, V.C.; Thuerey, N.; Kim, T.; Gross, M.; Solenthaler, B. Deep fluids: A generative network for parameterized fluid simulations. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2019; Volume 38, pp. 59–70. [Google Scholar]
- Kontolati, K.; Goswami, S.; Karniadakis, G.E.; Shields, M.D. Learning in latent spaces improves the predictive accuracy of deep neural operators. arXiv 2023, arXiv:2304.07599. [Google Scholar]
- Du, P.; Parikh, M.H.; Fan, X.; Liu, X.Y.; Wang, J.X. CoNFiLD: Conditional Neural Field Latent Diffusion Model Generating Spatiotemporal Turbulence. arXiv 2024, arXiv:2403.05940. [Google Scholar]
- Lozano-Durán, A.; Bae, H.J. Machine learning building-block-flow wall model for large-eddy simulation. J. Fluid Mech. 2023, 963, A35. [Google Scholar] [CrossRef]
- Vadrot, A.; Yang, X.I.; Abkar, M. Survey of machine-learning wall models for large-eddy simulation. Phys. Rev. Fluids 2023, 8, 064603. [Google Scholar] [CrossRef]
- Veneziani, A.; Vergara, C. Inverse problems in cardiovascular mathematics: Toward patient-specific data assimilation and optimization. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Fonte, T.A.; Min, J.K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis. J. Am. Coll. Cardiol. 2013, 61, 2233–2241. [Google Scholar] [CrossRef]
- Taylor, C.A.; Petersen, K.; Xiao, N.; Sinclair, M.; Bai, Y.; Lynch, S.R.; UpdePac, A.; Schaap, M. Patient-specific modeling of blood flow in the coronary arteries. Comput. Methods Appl. Mech. Eng. 2023, 417, 116414. [Google Scholar] [CrossRef]
- Weiss, G.; Wolner, I.; Folkmann, S.; Sodeck, G.; Schmidli, J.; Grabenwöger, M.; Carrel, T.; Czerny, M. The location of the primary entry tear in acute type B aortic dissection affects early outcome. Eur. J.-Cardio-Thorac. Surg. 2012, 42, 571–576. [Google Scholar] [CrossRef]
- Izzo, R.; Steinman, D.; Manini, S.; Antiga, L. The vascular modeling toolkit: A python library for the analysis of tubular structures in medical images. J. Open Source Softw. 2018, 3, 745. [Google Scholar] [CrossRef]
- Xu, H. Efficient Modeling of the Incompressible Flow with Moderate Large Reynolds Numbers Using a Deconvolution-Based Leray Model: Analysis, Uncertainty Quantification and Application in Aortic Dissections. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2020. [Google Scholar]
- Bäumler, K.; Vedula, V.; Sailer, A.M.; Seo, J.; Chiu, P.; Mistelbauer, G.; Chan, F.P.; Fischbein, M.P.; Marsden, A.L.; Fleischmann, D. Fluid–structure interaction simulations of patient-specific aortic dissection. Biomech. Model. Mechanobiol. 2020, 19, 1607–1628. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Bäumler, K.; Loecher, M.; Cork, T.E.; Marsden, A.L.; Ennis, D.B.; Fleischmann, D. Hemodynamic effects of entry and exit tear size in aortic dissection evaluated with in vitro magnetic resonance imaging and fluid–structure interaction simulation. Sci. Rep. 2023, 13, 22557. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. Fluid-structure interaction simulations with a LES filtering approach in solids4Foam. Commun. Appl. Ind. Math. 2022, 13, 13–28. [Google Scholar] [CrossRef]
- Heywood, J.G.; Rannacher, R.; Turek, S. Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 1996, 22, 325–352. [Google Scholar] [CrossRef]
- Womersley, J.R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 1955, 127, 553. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, A.; Vergara, C. An approximate method for solving incompressible Navier–Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 2007, 196, 1685–1700. [Google Scholar] [CrossRef]
- Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A. Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 2002, 40, 376–401. [Google Scholar] [CrossRef]
- Veneziani, A.; Vergara, C. Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Methods Fluids 2005, 47, 803–816. [Google Scholar] [CrossRef]
- Formaggia, L.; Veneziani, A.; Vergara, C. A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 2008, 46, 2769–2794. [Google Scholar] [CrossRef]
- Formaggia, L.; Veneziani, A.; Vergara, C. Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods. Comput. Methods Appl. Mech. Eng. 2010, 199, 677–688. [Google Scholar] [CrossRef]
- Xu, H.; Baroli, D.; Di Massimo, F.; Quaini, A.; Veneziani, A. Backflow stabilization by deconvolution-based large eddy simulation modeling. J. Comput. Phys. 2020, 404, 109103. [Google Scholar] [CrossRef]
- Armour, C.H.; Guo, B.; Pirola, S.; Saitta, S.; Liu, Y.; Dong, Z.; Xu, X.Y. The influence of inlet velocity profile on predicted flow in type B aortic dissection. Biomech. Model. Mechanobiol. 2021, 20, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A. Multiscale modelling of the circulatory system: A preliminary analysis. Comput. Vis. Sci. 1999, 2, 75–83. [Google Scholar] [CrossRef]
- Vignon-Clementel, I.E.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 2006, 195, 3776–3796. [Google Scholar] [CrossRef]
- Formaggia, L.; Quarteroni, A.; Veneziani, A. Multiscale models of the vascular system. Cardiovasc. Math. Model. Simul. Circ. Syst. 2009, 395–446. [Google Scholar]
- Quarteroni, A.; Veneziani, A.; Vergara, C. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 2016, 302, 193–252. [Google Scholar] [CrossRef]
- Peiró, J.; Veneziani, A. Reduced models of the cardiovascular system. In Cardiovascular Mathematics: Modeling and sImulation of the Circulatory System; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–394. [Google Scholar]
- Romarowski, R.M.; Lefieux, A.; Morganti, S.; Veneziani, A.; Auricchio, F. Patient-specific CFD modelling in the thoracic aorta with PC-MRI–based boundary conditions: A least-square three-element Windkessel approach. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3134. [Google Scholar] [CrossRef] [PubMed]
- Pirola, S.; Guo, B.; Menichini, C.; Saitta, S.; Fu, W.; Dong, Z.; Xu, X.Y. 4-D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection. IEEE Trans. Biomed. Eng. 2019, 66, 3411–3419. [Google Scholar] [CrossRef]
- Bertoglio, C.; Caiazzo, A.; Bazilevs, Y.; Braack, M.; Esmaily, M.; Gravemeier, V.; L. Marsden, A.; Pironneau, O.; Vignon-Clementel, I.; Wall, W. Benchmark problems for numerical treatment of backflow at open boundaries. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e2918. [Google Scholar] [CrossRef]
- Bruneau, C.H.; Fabrie, P. Effective downstream boundary conditions for incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 1994, 19, 693–705. [Google Scholar] [CrossRef]
- Bruneau, C.H.; Fabrie, P. New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result. ESAIM: Math. Model. Numer. Anal. 1996, 30, 815–840. [Google Scholar] [CrossRef]
- Arbia, G.; Vignon-Clementel, I.; Hsia, T.Y.; Gerbeau, J.F.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Modified Navier–Stokes equations for the outflow boundary conditions in hemodynamics. Eur. J.-Mech.-B/Fluids 2016, 60, 175–188. [Google Scholar] [CrossRef]
- Bertoglio, C.; Caiazzo, A. A tangential regularization method for backflow stabilization in hemodynamics. J. Comput. Phys. 2014, 261, 162–171. [Google Scholar] [CrossRef]
- Bertoglio, C.; Caiazzo, A. A Stokes-residual backflow stabilization method applied to physiological flows. J. Comput. Phys. 2016, 313, 260–278. [Google Scholar] [CrossRef]
- Nichols, W.W.; O’Rourke, M.; Edelman, E.R.; Vlachopoulos, C. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Chen, D.; Müller-Eschner, M.; von Tengg-Kobligk, H.; Barber, D.; Böckler, D.; Hose, R.; Ventikos, Y. A patient-specific study of type-B aortic dissection: Evaluation of true-false lumen blood exchange. Biomed. Eng. Online 2013, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Fatma, K.; Carine, G.C.; Marine, G.; Philippe, P.; Valérie, D. Numerical modeling of residual type B aortic dissection: Longitudinal analysis of favorable and unfavorable evolution. Med. Biol. Eng. Comput. 2022, 60, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, L.; Deparis, S.; Formaggia, L.; Forti, D.; Veneziani, A. The LifeV library: Engineering mathematics beyond the proof of concept. arXiv 2017, arXiv:1710.06596. [Google Scholar]
- Yang, J.; Piccinelli, M.; Leshnower, B.; Veneziani, A. Predicting The Evolution Of Type-b Aortic Dissection: Combining Computational Hemodynamics And Data Analysis. In Proceedings of the 8th International Conference on Computational and Mathematical Biomedical Engineering—CMBE2024, Arlington, VA, USA, 24–26 June 2024. [Google Scholar]
- Bertagna, L.; Quaini, A.; Rebholz, L.G.; Veneziani, A. On the sensitivity to the filtering radius in Leray models of incompressible flow. In Contributions to Partial Differential Equations and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 111–130. [Google Scholar]
- Xu, H.; Baroli, D.; Veneziani, A. Global sensitivity analysis for patient-specific aortic simulations: The role of geometry, boundary condition and large Eddy simulation modeling parameters. J. Biomech. Eng. 2021, 143, 021012. [Google Scholar] [CrossRef]
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Crestaux, T.; Le Maıtre, O.; Martinez, J.M. Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 2009, 94, 1161–1172. [Google Scholar] [CrossRef]
- D’Elia, M.; Mirabella, L.; Passerini, T.; Perego, M.; Piccinelli, M.; Vergara, C.; Veneziani, A. Applications of variational data assimilation in computational hemodynamics. Model. Physiol. Flows 2012, 363–394. [Google Scholar]
- D’Elia, M.; Perego, M.; Veneziani, A. A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics. J. Sci. Comput. 2012, 52, 340–359. [Google Scholar] [CrossRef]
- D’Elia, M.; Veneziani, A. Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem. ESAIM Math. Model. Numer. Anal. 2013, 47, 1037–1057. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Ahmad, N.N.; Lindeman, J. Euler solutions using flux-based wave decomposition. Int. J. Numer. Meth. Fluids 2007, 54, 47–72. [Google Scholar] [CrossRef]
- Feng, Y.; Miranda-Fuentes, J.; Jacob, J.; Sagaut, P. Hybrid lattice Boltzmann model for atmospheric flows under anelastic approximation. Phys. Fluids 2021, 33, 036607. [Google Scholar] [CrossRef]
- Carpenter, R.; Droegemeier, K.; Woodward, P.; Hane, C. Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev. 1990, 118, 586–612. [Google Scholar] [CrossRef]
- Straka, J.; Wilhelmson, R.; Wicker, L.; Anderson, J.; Droegemeier, K. Numerical solution of a nonlinear density current: A benchmark solution and comparisons. Int. J. Num. Meth. Fluids 1993, 17, 1–22. [Google Scholar] [CrossRef]
- Özgökmen, T.; Iliescu, T.; Fischer, P.; Srinivasan, A.; Duan, J. Large Eddy Simulation of Stratified Mixing in Two-Dimensional Dam-Break Problem in a Rectangular Enclosed Domain. Ocean. Model. 2007, 16, 106–140. [Google Scholar] [CrossRef]
- Özgökmen, T.; Iliescu, T.; Fischer, P. Large Eddy Simulation of Stratified Mixing in a Three-Dimensional Lock-Exchange System. Ocean. Model. 2009, 26, 134–155. [Google Scholar] [CrossRef]
- Özgökmen, T.; Iliescu, T.; Fischer, P. Reynolds number dependence of mixing in a lock-exchange system from direct numerical and large eddy simulations. Ocean. Model. 2009, 30, 190–206. [Google Scholar] [CrossRef]
- Ahmad, N.N. High-Resolution Wave Propagation Method for Stratified Flows. In Proceedings of the AIAA Aviation Forum, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. Validation of an OpenFOAM®-based solver for the Euler equations with benchmarks for mesoscale atmospheric modeling. AIP Adv. 2023, 13, 055024. [Google Scholar] [CrossRef]
- Benner, P.; Schilders, W.; Grivet-Talocia, S.; Quarteroni, A.; Rozza, G.; Miguel Silveira, L. Model Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Benner, P.; Schilders, W.; Grivet-Talocia, S.; Quarteroni, A.; Rozza, G.; Miguel Silveira, L. Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Benner, P.; Schilders, W.; Grivet-Talocia, S.; Quarteroni, A.; Rozza, G.; Miguel Silveira, L. Model Order Reduction: Volume 3: Applications; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2016; Volume 590. [Google Scholar]
- Malik, M.H. Reduced Order Modeling for Smart Grids’ Simulation and Optimization. Ph.D. Thesis, École Centrale de Nantes. Universitat Politécnica de Catalunya, Barcelona, Spain, 2017. [Google Scholar]
- Rozza, G.; Huynh, D.B.P.; Patera, A.T. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 2008, 15, 229–275. [Google Scholar] [CrossRef]
- Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations: An Introduction; Springer: Berlin/Heidelberg, Germany, 2015; Volume 92. [Google Scholar]
- Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Meth. Appl. Mech. Eng. 2012, 237–240, 10–26. [Google Scholar] [CrossRef]
- Aubry, N.; Holmes, P.; Lumley, J.L.; Stone, E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 1988, 192, 115–173. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Pawar, S.; San, O.; Rasheed, A.; Iliescu, T.; Noack, B.R. On closures for reduced order models—A spectrum of first-principle to machine-learned avenues. Phys. Fluids 2021, 33, 091301. [Google Scholar] [CrossRef]
- Carlberg, K.; Bou-Mosleh, C.; Farhat, C. Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Num. Meth. Eng. 2011, 86, 155–181. [Google Scholar] [CrossRef]
- Grimberg, S.; Farhat, C.; Youkilis, N. On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows. J. Comput. Phys. 2020, 419, 109681. [Google Scholar] [CrossRef]
- Baiges, J.; Codina, R.; Idelsohn, S. Explicit Reduced Order Models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids 2013, 72, 1219–1243. [Google Scholar] [CrossRef]
- Reyes, R.; Codina, R. Projection-based reduced order models for flow problems: A variational multiscale approach. Comput. Methods Appl. Mech. Eng. 2020, 363, 112844. [Google Scholar] [CrossRef]
- Parish, E.J.; Wentland, C.; Duraisamy, K. The adjoint Petrov–Galerkin method for non-linear model reduction. Comput. Meth. Appl. Mech. Eng. 2020, 365, 112991. [Google Scholar] [CrossRef]
- Wells, D.; Wang, Z.; Xie, X.; Iliescu, T. An evolve-then-filter regularized reduced order model for convection-dominated flows. Int. J. Num. Meth. Fluids 2017, 84, 598–615. [Google Scholar] [CrossRef]
- Gunzburger, M.; Iliescu, T.; Mohebujjaman, M.; Schneier, M. An evolve-filter-relax stabilized reduced order stochastic collocation method for the time-dependent Navier-Stokes equations. SIAM-ASA J. Uncertain. 2019, 7, 1162–1184. [Google Scholar] [CrossRef]
- Sabetghadam, F.; Jafarpour, A. α regularization of the POD-Galerkin dynamical systems of the Kuramoto–Sivashinsky equation. Appl. Math. Comput. 2012, 218, 6012–6026. [Google Scholar] [CrossRef]
- Wells, D. Stabilization of POD-ROMs. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2015. Available online: http://vtechworks.lib.vt.edu/bitstream/handle/10919/52960/Wells_DR_D_2015.pdf?sequence=1&isAllowed=y (accessed on 28 June 2024).
- Germano, M. Differential filters of elliptic type. Phys. Fluids 1986, 29, 1757–1758. [Google Scholar] [CrossRef]
- Strazzullo, M.; Girfoglio, M.; Ballarin, F.; Iliescu, T.; Rozza, G. Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows. Int. J. Numer. Methods Eng. 2022, 123, 3148–3178. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. A linear filter regularization for POD-based reduced-order models of the quasi-geostrophic equations. C. R. Mech. 2023, 351, 1–21. [Google Scholar] [CrossRef]
- Tsai, P.H.; Fischer, P.; Iliescu, T. A Time-Relaxation Reduced Order Model for the Turbulent Channel Flow. arXiv 2023, arXiv:2312.13272. [Google Scholar]
- Mou, C.; Merzari, E.; San, O.; Iliescu, T. An energy-based lengthscale for reduced order models of turbulent flows. Nucl. Eng. Des. 2023, 412, 112454. [Google Scholar] [CrossRef]
- Holmes, P.; Lumley, J.L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Aradag, S.; Siegel, S.; Seidel, J.; Cohen, K.; McLaughlin, T. Filtered POD-based low-dimensional modeling of the 3D turbulent flow behind a circular cylinder. Int. J. Num. Meth. Fluids 2011, 66, 1–16. [Google Scholar] [CrossRef]
- Farcas, I.; Munipalli, R.; Willcox, K.E. On filtering in non-intrusive data-driven reduced-order modeling. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 3487. [Google Scholar]
- Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging; Institute of Physics Publishing: Bristol, UK, 1998; p. xii+351. [Google Scholar]
- Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms. Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; Volume 7. [Google Scholar]
- Xie, X.; Wells, D.; Wang, Z.; Iliescu, T. Approximate Deconvolution Reduced Order Modeling. Comput. Methods Appl. Mech. Eng. 2017, 313, 512–534. [Google Scholar] [CrossRef]
- Sanfilippo, A.; Moore, I.R.; Ballarin, F.; Iliescu, T. Approximate deconvolution Leray reduced order model. Finite Elem. Anal. Des. 2023, 226, 104021. [Google Scholar] [CrossRef]
- Cordier, L.; Abou El Majd, B.; Favier, J. Calibration of POD reduced-order models using Tikhonov regularization. Int. J. Num. Meth. Fluids 2010, 63, 269–296. [Google Scholar] [CrossRef]
- Wang, Y.; Navon, I.M.; Wang, X.; Cheng, Y. 2D Burgers equation with large Reynolds number using POD/DEIM and calibration. Int. J. Num. Meth. Fluids 2016, 82, 909–931. [Google Scholar] [CrossRef]
- Weller, J.; Lombardi, E.; Iollo, A. Robust model identification of actuated vortex wakes. Phys. D 2009, 238, 416–427. [Google Scholar] [CrossRef]
- Strazzullo, M.; Ballarin, F.; Iliescu, T.; Canuto, C. New Feedback Control and Adaptive Evolve-Filter-Relax Regularization for the Navier-Stokes Equations in the Convection-Dominated Regime. arXiv 2023, arXiv:2307.00675. [Google Scholar]
- Xie, X.; Wells, D.; Wang, Z.; Iliescu, T. Numerical Analysis of the Leray Reduced Order Model. J. Comput. Appl. Math. 2018, 328, 12–29. [Google Scholar] [CrossRef]
- Gunzburger, M.; Iliescu, T.; Schneier, M. A Leray regularized ensemble-proper orthogonal decomposition method for parameterized convection-dominated flows. IMA J. Numer. Anal. 2020, 40, 886–913. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. A hybrid projection/data-driven reduced order model for the Navier-Stokes equations with nonlinear filtering stabilization. J. Comput. Phys. 2023, 486, 112127. [Google Scholar] [CrossRef]
- Kaneko, K.; Tsai, P.H.; Fischer, P. Towards model order reduction for fluid-thermal analysis. Nucl. Eng. Des. 2020, 370, 110866. [Google Scholar] [CrossRef]
- Tsai, P.H.; Fischer, P. Parametric model-order-reduction development for unsteady convection. Front. Phys. 2022, 10, 903169. [Google Scholar] [CrossRef]
- Tsai, P.H. Parametric Model Order Reduction Development for Navier-Stokes Equations from 2D Chaotic to 3D Turbulent Flow Problems. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2023. [Google Scholar]
- Sanderse, B.; Stinis, P.; Maulik, R.; Ahmed, S.E. Scientific machine learning for closure models in multiscale problems: A review. arXiv 2024, arXiv:2403.02913. [Google Scholar]
- Hughes, T.J.R. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 1995, 127, 387–401. [Google Scholar] [CrossRef]
- Hughes, T.J.R.; Mazzei, L.; Oberai, A.; Wray, A. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids 2001, 13, 505–512. [Google Scholar] [CrossRef]
- Codina, R.; Reyes, R.; Baiges, J. A posteriori error estimates in a finite element VMS-based reduced order model for the incompressible Navier-Stokes equations. Mech. Res. Commun. 2021, 112, 103599. [Google Scholar] [CrossRef]
- Mou, C.; Koc, B.; San, O.; Rebholz, L.G.; Iliescu, T. Data-Driven Variational Multiscale Reduced Order Models. Comput. Methods Appl. Mech. Eng. 2021, 373, 113470. [Google Scholar] [CrossRef]
- Ingimarson, S.; Rebholz, L.G.; Iliescu, T. Full and Reduced Order Model Consistency of the Nonlinearity Discretization in Incompressible Flows. Comput. Meth. Appl. Mech. Eng. 2022, 401, 115620. [Google Scholar] [CrossRef]
- Giere, S.; Iliescu, T.; John, V.; Wells, D. SUPG Reduced Order Models for Convection-Dominated Convection-Diffusion-Reaction Equations. Comput. Methods Appl. Mech. Eng. 2015, 289, 454–474. [Google Scholar] [CrossRef]
- Zoccolan, F.; Strazzullo, M.; Rozza, G. Stabilized weighted reduced order methods for parametrized advection-dominated optimal control problems governed by partial differential equations with random inputs. arXiv 2023, arXiv:2301.01975. [Google Scholar]
- Zoccolan, F.; Strazzullo, M.; Rozza, G. A streamline upwind Petrov-Galerkin reduced order method for advection-dominated partial differential equations under optimal control. Comput. Methods Appl. Math. 2024. [Google Scholar] [CrossRef]
- Pacciarini, P.; Rozza, G. Stabilized reduced basis method for parametrized advection–diffusion PDEs. Comput. Meth. Appl. Mech. Eng. 2014, 274, 1–18. [Google Scholar] [CrossRef]
- Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, 2nd ed.; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 24. [Google Scholar]
- Borggaard, J.; Iliescu, T.; Wang, Z. Artificial Viscosity Proper Orthogonal Decomposition. Math. Comput. Modelling 2011, 53, 269–279. [Google Scholar] [CrossRef]
- Iliescu, T.; Wang, Z. Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations. Math. Comput. 2013, 82, 1357–1378. [Google Scholar] [CrossRef]
- Iliescu, T.; Wang, Z. Variational Multiscale Proper Orthogonal Decomposition: Navier-Stokes Equations. Num. Meth. P.D.E.s 2014, 30, 641–663. [Google Scholar] [CrossRef]
- Ballarin, F.; Rebollo, T.C.; Ávila, E.D.; Mármol, M.G.; Rozza, G. Certified reduced basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height. Comput. Math. Appl. 2020, 80, 973–989. [Google Scholar] [CrossRef]
- Rebollo, T.C.; Ávila, E.D.; Mármol, M.G.; Ballarin, F.; Rozza, G. On a certified Smagorinsky reduced basis turbulence model. SIAM J. Numer. Anal. 2017, 55, 3047–3067. [Google Scholar] [CrossRef]
- Azaïez, M.; Rebollo, T.C.; Rubino, S. A cure for instabilities due to advection-dominance in POD solution to advection-diffusion-reaction equations. J. Comput. Phys. 2021, 425, 109916. [Google Scholar] [CrossRef]
- John, V.; Moreau, B.; Novo, J. Error analysis of a SUPG-stabilized POD-ROM method for convection-diffusion-reaction equations. Comput. Math. Appl. 2022, 122, 48–60. [Google Scholar] [CrossRef]
- Xie, X.; Mohebujjaman, M.; Rebholz, L.G.; Iliescu, T. Data-Driven Filtered Reduced Order Modeling of Fluid Flows. SIAM J. Sci. Comput. 2018, 40, B834–B857. [Google Scholar] [CrossRef]
- Ivagnes, A.; Stabile, G.; Mola, A.; Iliescu, T.; Rozza, G. Pressure data-driven variational multiscale reduced order models. J. Comput. Phys. 2023, 476, 111904. [Google Scholar] [CrossRef]
- Ivagnes, A.; Stabile, G.; Mola, A.; Iliescu, T.; Rozza, G. Hybrid data-driven closure strategies for reduced order modeling. Appl. Math. Comput. 2023, 448, 127920. [Google Scholar] [CrossRef]
- Koc, B.; Mohebujjaman, M.; Mou, C.; Iliescu, T. Commutation error in reduced order modeling of fluid flows. Adv. Comput. Math. 2019, 45, 2587–2621. [Google Scholar] [CrossRef]
- Mohebujjaman, M.; Rebholz, L.G.; Iliescu, T. Physically-constrained data-driven correction for reduced order modeling of fluid flows. Int. J. Num. Meth. Fluids 2019, 89, 103–122. [Google Scholar] [CrossRef]
- Mou, C.; Liu, H.; Wells, D.R.; Iliescu, T. Data-Driven Correction Reduced Order Models for the Quasi-Geostrophic Equations: A Numerical Investigation. Int. J. Comput. Fluid Dyn. 2020, 34, 147–159. [Google Scholar] [CrossRef]
- Xie, X.; Webster, C.; Iliescu, T. Closure Learning for Nonlinear Model Reduction Using Deep Residual Neural Network. Fluids 2020, 5, 39. [Google Scholar] [CrossRef]
- Ahmed, S.E.; San, O.; Rasheed, A.; Iliescu, T.; Veneziani, A. Physics guided machine learning for variational multiscale reduced order modeling. SIAM J. Sci. Comput. 2023, 45, B283–B313. [Google Scholar] [CrossRef]
- Koc, B.; Mou, C.; Liu, H.; Wang, Z.; Rozza, G.; Iliescu, T. Verifiability of the Data-Driven Variational Multiscale Reduced Order Model. J. Sci. Comput. 2022, 93, 1–26. [Google Scholar] [CrossRef]
- Turek, S.; Schäfer, M. Benchmark computations of laminar flow around cylinder. In Flow Simulation with High-Performance Computers II; Hirschel, E., Ed.; Notes on Numerical Fluid Mechanics; Vieweg: Decatur, IL, USA, 1996; Volume 52. [Google Scholar]
- John, V. Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 2004, 44, 777–788. [Google Scholar] [CrossRef]
- John, V. On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int. J. Numer. Methods Fluids 2006, 50, 845–862. [Google Scholar] [CrossRef]
- Bayraktar, E.; Mierka, O.; Turek, S. Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. Int. J. Comput. Sci. Eng. 2012, 7, 253–266. [Google Scholar] [CrossRef]
- Girfoglio, M.; Quaini, A.; Rozza, G. Pressure stabilization strategies for a LES filtering Reduced Order Model. Fluids 2021, 6, 302. [Google Scholar] [CrossRef]
- Xie, X.; Bao, F.; Webster, C. Evolve Filter Stabilization Reduced-Order Model for Stochastic Burgers Equation. Fluids 2018, 3, 84. [Google Scholar] [CrossRef]
- Stabile, G.; Rozza, G. Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier‚ÄìStokes equations. Comput. Fluids 2018, 173, 273–284. [Google Scholar] [CrossRef]
- Akhtar, I.; Nayfeh, A.H.; Ribbens, C.J. On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comp. Fluid Dyn. 2009, 23, 213–237. [Google Scholar] [CrossRef]
- Lazzaro, D.; Montefusco, L. Radial Basis Functions for the Multivariate Interpolation of Large Scattered Data Sets. J. Comput. Appl. Math. 2002, 140, 521–536. [Google Scholar] [CrossRef]
- Barrault, M.; Nguyen, N.C.; Maday, Y.; Patera, A.T. An “Empirical Interpolation” Method: Application to Efficient Reduced-Basis Discretization of Partial Differential Equations. Comptes Rendus Math. 2004, 339, 667–672. [Google Scholar] [CrossRef]
- Chaturantabut, S.; Sorensen, D. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM J. Sci. Comput. 2010, 32, 2737–2764. [Google Scholar] [CrossRef]
- Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G. POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations. Comput. Methods Appl. Mech. Eng. 2016, 311, 151–179. [Google Scholar] [CrossRef]
- Hijazi, S.; Stabile, G.; Mola, A.; Rozza, G. Data-Driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. 2020, 416, 109513. [Google Scholar] [CrossRef]
- Obabko, A.V.; Fischer, P.F.; Tautges, T.J.; Karabasov, S.; Goloviznin, V.M.; Zaytsev, M.A.; Chudanov, V.V.; Pervichko, V.A.; Aksenova, A.E. CFD Validation in OECD/NEA T-Junction Benchmark; Technical Report; Argonne National Lab. (ANL): Argonne, IL, USA, 2011. [Google Scholar]
- de Leval, M.R.; Kilner, P.; Gewillig, M.; Bull, C.; McGoon, D.C. Total cavopulmonary connection: A logical alternative to atriopulmonary connection for complex Fontan operations: Experimental studies and early clinical experience. J. Thorac. Cardiovasc. Surg. 1988, 96, 682–695. [Google Scholar] [CrossRef]
- Sharma, S.; Goudy, S.; Walker, P.; Panchal, S.; Ensley, A.; Kanter, K.; Tam, V.; Fyfe, D.; Yoganathan, A. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J. Am. Coll. Cardiol. 1996, 27, 1264–1269. [Google Scholar] [CrossRef]
- Migliavacca, F.; Kilner, P.J.; Pennati, G.; Dubini, G.; Pietrabissa, R.; Fumero, R.; de Leval, M.R. Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans. Biomed. Eng. 1999, 46, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Ensley, A.E.; Lynch, P.; Chatzimavroudis, G.P.; Lucas, C.; Sharma, S.; Yoganathan, A.P. Toward designing the optimal total cavopulmonary connection: An in vitro study. Ann. Thorac. Surg. 1999, 68, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Dubini, G.; Migliavacca, F.; Pennati, G.; De Leval, M.R.; Bove, E.L. Ten years of modelling to achieve haemodynamic optimisation of the total cavopulmonary connection. Cardiol Young 2004, 14, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Hsia, T.Y.; Figliola, R.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators; Bove, E.; Dorfman, A.; Taylor, A.; Giardini, A.; Khambadkone, S.; Schievano, S.; Hsia, T.Y.; et al. Multiscale modelling of single-ventricle hearts for clinical decision support: A Leducq Transatlantic Network of Excellence. Eur. J.-Cardio-Thorac. Surg. 2016, 49, 365–368. [Google Scholar] [CrossRef]
- Schiavazzi, D.E.; Kung, E.O.; Marsden, A.L.; Baker, C.; Pennati, G.; Hsia, T.Y.; Hlavacek, A.; Dorfman, A.L.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: A patient-specific multiscale modeling study. J. Thorac. Cardiovasc. Surg. 2015, 149, 689–696. [Google Scholar] [CrossRef]
- Pekkan, K.; Kitajima, H.D.; De Zelicourt, D.; Forbess, J.M.; Parks, W.J.; Fogel, M.A.; Sharma, S.; Kanter, K.R.; Frakes, D.; Yoganathan, A.P. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: Angioplasty and fenestration in vitro. Circulation 2005, 112, 3264–3271. [Google Scholar] [CrossRef]
- Tang, E.; Restrepo, M.; Haggerty, C.M.; Mirabella, L.; Bethel, J.; Whitehead, K.K.; Fogel, M.A.; Yoganathan, A.P. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc. Imaging 2014, 7, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Khiabani, R.H.; Restrepo, M.; Tang, E.; De Zélicourt, D.; Sotiropoulos, F.; Fogel, M.; Yoganathan, A.P. Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection. J. Biomech. 2012, 45, 2376–2381. [Google Scholar] [CrossRef] [PubMed]
- Dasi, L.P.; KrishnankuttyRema, R.; Kitajima, H.D.; Pekkan, K.; Sundareswaran, K.S.; Fogel, M.; Sharma, S.; Whitehead, K.; Kanter, K.; Yoganathan, A.P. Fontan hemodynamics: Importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 2009, 137, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Rodefeld, M.D.; Boyd, J.H.; Myers, C.D.; LaLone, B.J.; Bezruczko, A.J.; Potter, A.W.; Brown, J.W. Cavopulmonary assist: Circulatory support for the univentricular Fontan circulation. Ann. Thorac. Surg. 2003, 76, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Sarfare, S.; Ali, M.S.; Palazzolo, A.; Rodefeld, M.; Conover, T.; Figliola, R.; Giridharan, G.; Wampler, R.; Bennett, E.; Ivashchenko, A. Computational Fluid Dynamics Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device. J. Biomech. Eng. 2023, 145, 111008. [Google Scholar] [CrossRef] [PubMed]
- Meneveau, C. Big wind power: Seven questions for turbulence research. J. Turbul. 2019, 20, 2–20. [Google Scholar] [CrossRef]
- Antonini, E.G.; Caldeira, K. Spatial constraints in large-scale expansion of wind power plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2103875118. [Google Scholar] [CrossRef] [PubMed]
- Bempedelis, N.; Laizet, S.; Deskos, G. Turbulent entrainment in finite-length wind farms. J. Fluid Mech. 2023, 955, A12. [Google Scholar] [CrossRef]
- Howland, M.F.; Quesada, J.B.; Martinez, J.J.P.; Larrañaga, F.P.; Yadav, N.; Chawla, J.S.; Sivaram, V.; Dabiri, J.O. Collective wind farm operation based on a predictive model increases utility-scale energy production. Nature Energy 2022, 7, 818–827. [Google Scholar] [CrossRef]
- Pawar, S.; Sharma, A.; Vijayakumar, G.; Bay, C.J.; Yellapantula, S.; San, O. Towards multi-fidelity deep learning of wind turbine wakes. Renew. Energy 2022, 200, 867–879. [Google Scholar] [CrossRef]
- Luzzatto-Fegiz, P.; Caulfield, C.c.P. Entrainment model for fully-developed wind farms: Effects of atmospheric stability and an ideal limit for wind farm performance. Phys. Rev. Fluids 2018, 3, 093802. [Google Scholar] [CrossRef]
- Sedaghatizadeh, N.; Arjomandi, M.; Kelso, R.; Cazzolato, B.; Ghayesh, M.H. Modelling of wind turbine wake using large eddy simulation. Renew. Energy 2018, 115, 1166–1176. [Google Scholar] [CrossRef]
- Mehta, D.; Van Zuijlen, A.; Koren, B.; Holierhoek, J.; Bijl, H. Large Eddy Simulation of wind farm aerodynamics: A review. J. Wind. Eng. Ind. Aerodyn. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Meneveau, C. The top-down model of wind farm boundary layers and its applications. J. Turbul. 2012, N7. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Wu, Y.T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerod. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Stadtmann, F.; Rasheed, A.; Kvamsdal, T.; Johannessen, K.A.; San, O.; Kölle, K.; Tande, J.O.; Barstad, I.; Benhamou, A.; Brathaug, T.; et al. Digital twins in wind energy: Emerging technologies and industry-informed future directions. IEEE Access 2023, 11, 110762–110795. [Google Scholar] [CrossRef]
- Hajisharifi, A.; Girfoglio, M.; Quaini, A.; Rozza, G. A comparison of data-driven reduced order models for the simulation of mesoscale atmospheric flow. Finite Elem. Anal. Des. 2024, 228, 104050. [Google Scholar] [CrossRef]
- Lario, A.; Maulik, R.; Schmidt, O.T.; Rozza, G.; Mengaldo, G. Neural-network learning of SPOD latent dynamics. J. Comput. Phys. 2022, 468, 111475. [Google Scholar] [CrossRef]
- Pawar, S.; San, O. Equation-Free Surrogate Modeling of Geophysical Flows at the Intersection of Machine Learning and Data Assimilation. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003170. [Google Scholar] [CrossRef]
- Schmidt, O.T.; Mengaldo, G.; Balsamo, G.; Wedi, N.P. Spectral empirical orthogonal function analysis of weather and climate data. Mon. Weather. Rev. 2019, 147, 2979–2995. [Google Scholar] [CrossRef]
- Chen, N.; Majda, A.J.; Giannakis, D. Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett. 2014, 41, 5612–5619. [Google Scholar] [CrossRef]
- Chen, N.; Majda, A.J.; Sabeerali, C.T.; Ajayamohan, R.S. Predicting monsoon intraseasonal precipitation using a low-order nonlinear stochastic model. J. Clim. 2018, 31, 4403–4427. [Google Scholar] [CrossRef]
- Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 2018, 120, 024102. [Google Scholar] [CrossRef] [PubMed]
- Rasp, S.; Thuerey, N. Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002405. [Google Scholar] [CrossRef]
- Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can deep learning beat numerical weather prediction? Philos. Trans. R. Soc. A 2021, 379, 20200097. [Google Scholar] [CrossRef] [PubMed]
- Weyn, J.A.; Durran, D.R.; Caruana, R. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. J. Adv. Model. Earth Syst. 2019, 11, 2680–2693. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Pritzel, A.; Ravuri, S.; Ewalds, T.; Alet, F.; Eaton-Rosen, Z.; et al. GraphCast: Learning skillful medium-range global weather forecasting. arXiv 2022, arXiv:2212.12794. [Google Scholar]
- Pathak, J.; Subramanian, S.; Harrington, P.; Raja, S.; Chattopadhyay, A.; Mardani, M.; Kurth, T.; Hall, D.; Li, Z.; Azizzadenesheli, K.; et al. FourCastNet: A global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv 2022, arXiv:2202.11214. [Google Scholar]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural network. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2016. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Schmid, P.J.; Li, L.; Juniper, M.P.; Pust, O. Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 2011, 25, 249–259. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On Dynamic Mode Decomposition: Theory and Applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Schmid, P.J. Application of the dynamic mode decomposition to experimental data. Exp. Fluids 2011, 50, 1123–1130. [Google Scholar] [CrossRef]
- Duke, D.; Honnery, D.; Soria, J. Experimental investigation of nonlinear instabilities in annular liquid sheets. J. Fluid Mech. 2012, 691, 594–604. [Google Scholar] [CrossRef]
- Seena, A.; Sung, H.J. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow 2011, 32, 1098–1110. [Google Scholar] [CrossRef]
- Arbabi, H.; Mezic, I. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096–2126. [Google Scholar] [CrossRef]
- Curtis, C.W.; Alford-Lago, D.J.; Bollt, E.; Tuma, A. Machine Learning Enhanced Hankel Dynamic-Mode Decomposition. arXiv 2023, arXiv:2303.06289. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Takeishi, N.; Kibushi, B.; Kouzaki, M.; Kawahara, Y. Data-driven spectral analysis for coordinative structures in periodic human locomotion. Sci. Rep. 2019, 9, 16755. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, J.; Dong, G.; Liu, T.; Chen, G. Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2015, 52, 338–359. [Google Scholar] [CrossRef]
- Vasconcelos Filho, E.; dos Santos, P.L. A dynamic mode decomposition approach with Hankel blocks to forecast multi-channel temporal series. IEEE Control. Syst. Lett. 2019, 3, 739–744. [Google Scholar] [CrossRef]
- Yang, D.; Gao, H.; Cai, G.; Chen, Z.; Wang, L.; Ma, J.; Li, D. Synchronized ambient data-based extraction of interarea modes using Hankel block-enhanced DMD. Int. J. Electr. Power Energy Syst. 2021, 128, 106687. [Google Scholar] [CrossRef]
- Frame, P.; Towne, A. Space-time POD and the Hankel matrix. arXiv 2022, arXiv:2206.08995. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.W.; Quaini, A.; Rozza, G. A data-driven surrogate modeling approach for time-dependent incompressible Navier-Stokes equations with dynamic mode decomposition and manifold interpolation. Adv. Comput. Math. 2023, 49, 22. [Google Scholar] [CrossRef]
- Girfoglio, M.; Ballarin, F.; Infantino, G.; Nicoló, F.; Montalto, A.; Rozza, G.; Scrofani, R.; Comisso, M.; Musumeci, F. Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. Med. Eng. Phys. 2022, 107, 103849. [Google Scholar] [CrossRef] [PubMed]
- Hajisharifi, A.; Romano’, F.; Girfoglio, M.; Beccari, A.; Bonanni, D.; Rozza, G. A non-intrusive data-driven reduced order model for parametrized CFD-DEM numerical simulations. J. Comput. Phys. 2023, 491, 112355. [Google Scholar] [CrossRef]
- Demo, N.; Tezzele, M.; Mola, A.; Rozza, G. An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference. ISOPE, Sapporo, Japan, 10–15 June 2018; pp. 565–572. [Google Scholar]
- Demo, N.; Tezzele, M.; Gustin, G.; Lavini, G.; Rozza, G. Shape optimization by means of proper orthogonal decomposition and dynamic mode decomposition. In Proceedings of the Technology and Science for the Ships of the Future: NAV 2018: 19th International Conference on Ship & Maritime Research, Trieste, Italy, 20–22 June 2018; pp. 212–219. [Google Scholar]
- Ripepi, M.; Verveld, M.J.; Karcher, N.; Franz, T.; Abu-Zurayk, M.; Görtz, S.; Kier, T. Reduced-order models for aerodynamic applications, loads and MDO. CEAS Aeronaut. J. 2018, 9, 171–193. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Balajewicz, M. Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. arXiv 2018, arXiv:1808.01346. [Google Scholar]
- Maulik, R.; Lusch, B.; Balaprakash, P. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids 2021, 33, 037106. [Google Scholar] [CrossRef]
- Mohan, A.; Daniel, D.; Chertkov, M.; Livescu, D. Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence. arXiv 2019, arXiv:1903.00033. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- RBniCSx—Reduced Order Modelling in FEniCSx. Available online: https://github.com/rbnics/rbnicsx (accessed on 28 June 2024).
- libROM—Library for Reduced Order Models. Available online: https://www.librom.net/ (accessed on 28 June 2024).
- Moser, D.R.; Kim, J.; Mansour, N.N. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 1999, 11, 943–945. [Google Scholar] [CrossRef]
Mesh | C | F | Mesh | C | F |
---|---|---|---|---|---|
Model | Evolve (s) | Filter (s) | Total (s) |
---|---|---|---|
EFR, | 0.06 | 0.023 | 772 |
EFR, | 0.06 | 0.029 | 790 |
Method | Basis Construction | Online Run |
---|---|---|
DMD | 0.085 s | 0.02 s |
HDMD | 2.865 s | 2.95 s |
PODI | 0.1 s | 0.018 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaini, A.; San, O.; Veneziani, A.; Iliescu, T. Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives. Fluids 2024, 9, 178. https://doi.org/10.3390/fluids9080178
Quaini A, San O, Veneziani A, Iliescu T. Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives. Fluids. 2024; 9(8):178. https://doi.org/10.3390/fluids9080178
Chicago/Turabian StyleQuaini, Annalisa, Omer San, Alessandro Veneziani, and Traian Iliescu. 2024. "Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives" Fluids 9, no. 8: 178. https://doi.org/10.3390/fluids9080178
APA StyleQuaini, A., San, O., Veneziani, A., & Iliescu, T. (2024). Bridging Large Eddy Simulation and Reduced-Order Modeling of Convection-Dominated Flows through Spatial Filtering: Review and Perspectives. Fluids, 9(8), 178. https://doi.org/10.3390/fluids9080178