The miRNA Contribution in Adipocyte Maturation
Abstract
:1. Introduction
2. Results
2.1. Different Culture Conditions Affect miRNA Expression
2.2. MicroRNAs Regulate Adipocyte Differentiation
3. Discussion and Conclusions
4. Materials and Methods
4.1. Adipose Tissue Samples and Cell Culture
4.2. Adipogenic Differentiation
4.3. miRNA Gene Expression
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cinti, S. The adipose organ: Morphological perspectives of adipose tissues. Proc. Nutr. Soc. 2001, 60, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H. Lipotoxic diseases. Annu. Rev. Med. 2002, 53, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fattty Acids 2005, 73, 9–15. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mangalat, D.; Korbut, R. Adipocytokines—Novel link between inflammation and vascular function? J. Physiol. Pharmacol. 2006, 57, 505–528. [Google Scholar] [PubMed]
- Greco, V.; Guo, S. Compartmentalized organization: A common and required feature of stem cell niches? Development 2010, 137, 1586–1594. [Google Scholar] [CrossRef]
- Li, L.; Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 2010, 327, 542–545. [Google Scholar] [CrossRef]
- Moore, K.A.; Lemischka, I.R. Stem cells and their niches. Science 2006, 311, 1880–1885. [Google Scholar] [CrossRef]
- Tang, W.; Zeve, D.; Suh, J.M.; Bosnakovski, D.; Kyba, M.; Hammer, R.E.; Tallquist, M.D.; Graff, J.M. White fat progenitor cells reside in the adipose vasculature. Science 2008, 322, 583–586. [Google Scholar] [CrossRef]
- Eto, H.; Suga, H.; Matsumoto, D.; Inoue, K.; Aoi, N.; Kato, H.; Araki, J.; Yoshimura, K. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast. Reconstr. Surg. 2009, 124, 1087–1097. [Google Scholar] [CrossRef]
- Granneman, J.G.; Li, P.; Lu, Y.; Tilak, J. Seeing the trees in the forest: Selective electroporation of adipocytes within adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E574–582. [Google Scholar] [CrossRef]
- Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 2007, 117, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lee, J.E.; Jin, J.; Lim, J.S.; Oh, N.; Kim, K.; Chang, S.I.; Shibuya, M.; Kim, H.; Koh, G.Y. The spatiotemporal development of adipose tissue. Development 2011, 138, 5027–5037. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wernstedt Asterholm, I.; Kusminski, C.M.; Bueno, A.C.; Wang, Z.V.; Pollard, J.W.; Brekken, R.A.; Scherer, P.E. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl. Acad. Sci. USA 2012, 109, 5874–5879. [Google Scholar] [CrossRef] [PubMed]
- Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Divoux, A.; Clement, K. Architecture and the extracellular matrix: The still unappreciated components of the adipose tissue. Obes. Rev. 2011, 12, e494–503. [Google Scholar] [CrossRef]
- Mariman, E.C.; Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol. Life Sci. 2010, 67, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, I.; Muroya, S.; Tanabe, R.; Chikuni, K. Extracellular matrix development during differentiation into adipocytes with a unique increase in type V and VI collagen. Biol. Cell 2002, 94, 197–203. [Google Scholar] [CrossRef]
- Pierleoni, C.; Verdenelli, F.; Castellucci, M.; Cinti, S. Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur. J. Histochem. 1998, 42, 183–188. [Google Scholar]
- Billon, N.; Monteiro, M.C.; Dani, C. Developmental origin of adipocytes: New insights into a pending question. Biol. Cell 2008, 100, 563–575. [Google Scholar] [CrossRef]
- Gesta, S.; Tseng, Y.H.; Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 2007, 131, 242–256. [Google Scholar] [CrossRef]
- Ramji, D.P.; Foka, P. CCAAT/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 2002, 365, 561–575. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Otto, T.C.; Lane, M.D. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 850–855. [Google Scholar] [CrossRef]
- Huang, H.; Tindall, D.J. Dynamic FoxO transcription factors. J. Cell Sci. 2007, 120, 2479–2487. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Shi, X.; Salisbury, E.; Sun, Y.; Albrecht, J.H.; Smith, R.G.; Timchenko, N.A. Cyclin D3 maintains growth-inhibitory activity of C/EBPalpha by stabilizing C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes. Mol. Cell Biol. 2006, 26, 2570–2582. [Google Scholar] [CrossRef]
- Kajimura, S.; Seale, P.; Tomaru, T.; Erdjument-Bromage, H.; Cooper, M.P.; Ruas, J.L.; Chin, S.; Tempst, P.; Lazar, M.A.; Spiegelman, B.M. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes. Dev. 2008, 22, 1397–1409. [Google Scholar] [CrossRef]
- Morrison, R.F.; Farmer, S.R. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J. Biol. Chem. 1999, 274, 17088–17097. [Google Scholar] [CrossRef]
- Gray, S.; Feinberg, M.W.; Hull, S.; Kuo, C.T.; Watanabe, M.; Sen-Banerjee, S.; DePina, A.; Haspel, R.; Jain, M.K. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 2002, 277, 34322–34328. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Sakaue, H.; Iguchi, H.; Gomi, H.; Okada, Y.; Takashima, Y.; Nakamura, K.; Nakamura, T.; Yamauchi, T.; Kubota, N.; et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J. Biol. Chem. 2005, 280, 12867–12875. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Srinivasan, S.V.; Neumann, J.C.; Lingrel, J.B. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 2005, 44, 11098–11105. [Google Scholar] [CrossRef]
- Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279, 52361–52365. [Google Scholar] [CrossRef]
- Ortega, F.J.; Moreno-Navarrete, J.M.; Pardo, G.; Sabater, M.; Hummel, M.; Ferrer, A.; Rodriguez-Hermosa, J.I.; Ruiz, B.; Ricart, W.; Peral, B.; et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 2010, 5, e9022. [Google Scholar] [CrossRef] [PubMed]
- Oskowitz, A.Z.; Lu, J.; Penfornis, P.; Ylostalo, J.; McBride, J.; Flemington, E.K.; Prockop, D.J.; Pochampally, R. Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl. Acad. Sci. USA 2008, 105, 18372–18377. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.W.; Li, X.; Zhang, Y.Y.; Huang, H.Y.; Liu, Y.; Sun, X.; Tang, Q.Q. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev. Biol. 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bian, C.; Zhou, H.; Huang, S.; Wang, S.; Liao, L.; Zhao, R.C. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev. 2011, 20, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Pauley, K.M.; Cha, S.; Chan, E.K. MicroRNA in autoimmunity and autoimmune diseases. J. Autoimmun. 2009, 32, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Stefani, G.; Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 2008, 9, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhao, Y.; Wang, Y.; Meng, Q.; Zhu, J.; Lin, Y. MiR-25-3p regulates the differentiation of intramuscular preadipocytes in goat via targeting KLF4. Arch. Anim. Breed. 2021, 64, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, A.Y.; Lee, H.W.; Son, Y.H.; Lee, G.Y.; Lee, J.W.; Lee, Y.S.; Kim, J.B. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem. Biophys. Res. Commun. 2010, 392, 323–328. [Google Scholar] [CrossRef]
- Hamam, D.; Ali, D.; Kassem, M.; Aldahmash, A.; Alajez, N.M. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2015, 24, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, R.; Nardelli, C.; Pilone, V.; Buonomo, T.; Liguori, R.; Castano, I.; Buono, P.; Masone, S.; Persico, G.; Forestieri, P.; et al. miR-519d overexpression is associated with human obesity. Obesity 2010, 18, 2170–2176. [Google Scholar] [CrossRef]
- Sun, F.; Wang, J.; Pan, Q.; Yu, Y.; Zhang, Y.; Wan, Y.; Wang, J.; Li, X.; Hong, A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun. 2009, 380, 660–665. [Google Scholar] [CrossRef]
- Ling, H.Y.; Wen, G.B.; Feng, S.D.; Tuo, Q.H.; Ou, H.S.; Yao, C.H.; Zhu, B.Y.; Gao, Z.P.; Zhang, L.; Liao, D.F. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin. Exp. Pharmacol. Physiol. 2011, 38, 239–246. [Google Scholar] [CrossRef] [PubMed]
- El Ouaamari, A.; Baroukh, N.; Martens, G.A.; Lebrun, P.; Pipeleers, D.; van Obberghen, E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008, 57, 2708–2717. [Google Scholar] [CrossRef]
- Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 2003, 13, 790–795. [Google Scholar] [CrossRef]
- Yi, C.; Xie, W.D.; Li, F.; Lv, Q.; He, J.; Wu, J.; Gu, D.; Xu, N.; Zhang, Y. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett. 2011, 585, 3303–3309. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Hemati, N.; Longo, K.A.; Bennett, C.N.; Lucas, P.C.; Erickson, R.L.; MacDougald, O.A. Inhibition of adipogenesis by Wnt signaling. Science 2000, 289, 950–953. [Google Scholar] [CrossRef]
- Qin, L.; Chen, Y.; Niu, Y.; Chen, W.; Wang, Q.; Xiao, S.; Li, A.; Xie, Y.; Li, J.; Zhao, X.; et al. A deep investigation into the adipogenesis mechanism: Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010, 11, 320. [Google Scholar] [CrossRef]
- Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58, 1050–1057. [Google Scholar] [CrossRef]
- Gerin, I.; Bommer, G.T.; McCoin, C.S.; Sousa, K.M.; Krishnan, V.; MacDougald, O.A. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E198–206. [Google Scholar] [CrossRef] [PubMed]
- Lund, E.; Guttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science 2004, 303, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Nakagawa, Y.; Tokushige, N.; Aoki, N.; Matsuzaka, T.; Ishii, K.; Yahagi, N.; Kobayashi, K.; Yatoh, S.; Takahashi, A.; et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem. Biophys. Res. Commun. 2009, 385, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Fu, M.; Bookout, A.L.; Kliewer, S.A.; Mangelsdorf, D.J. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol. Endocrinol. 2009, 23, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.C.; Jensen, C.H.; Schneider, M.; Nossent, A.Y.; Eskildsen, T.; Hansen, J.L.; Teisner, B.; Sheikh, S.P. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp. Cell Res. 2010, 316, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.D.; Kruger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Bronneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Bottger, T.; et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 2011, 13, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Virzi, F.; Bianca, P.; Giammona, A.; Apuzzo, T.; Di Franco, S.; Mangiapane, L.R.; Colorito, M.L.; Catalano, D.; Scavo, E.; Nicotra, A.; et al. Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients. Stem Cell Res. Ther. 2017, 8, 236. [Google Scholar] [CrossRef]
- Di Stefano, A.B.; Leto Barone, A.A.; Giammona, A.; Apuzzo, T.; Moschella, P.; Di Franco, S.; Giunta, G.; Carmisciano, M.; Eleuteri, C.; Todaro, M.; et al. Identification and Expansion of Adipose Stem Cells with Enhanced Bone Regeneration Properties. J. Regen. Med. 2016, 1, 1–11. [Google Scholar] [CrossRef]
- Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 2008, 15, 272–284. [Google Scholar] [CrossRef]
- Huang, F.; Fang, Z.F.; Hu, X.Q.; Tang, L.; Zhou, S.H.; Huang, J.P. Overexpression of miR-126 promotes the differentiation of mesenchymal stem cells toward endothelial cells via activation of PI3K/Akt and MAPK/ERK pathways and release of paracrine factors. Biol. Chem. 2013, 394, 1223–1233. [Google Scholar] [CrossRef]
- Hsieh, J.Y.; Huang, T.S.; Cheng, S.M.; Lin, W.S.; Tsai, T.N.; Lee, O.K.; Wang, H.W. miR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Res. 2013, 41, 9753–9763. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Xing, L.; Wu, J.; Wen, S.; Luo, J.; Chen, T.; Fan, Y.; Zhu, J.; Yang, L.; Liu, J.; et al. Skeletal Muscle-Derived Exosomal miR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARgamma Signaling. Int. J. Mol. Sci. 2023, 24, 4561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Chu, X.; Wang, M.; Xin, Y.; Liu, S. MiR-146a-5p, targeting ErbB4, promotes 3T3-L1 preadipocyte differentiation through the ERK1/2/PPAR-gamma signaling pathway. Lipids Health Dis. 2022, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Budd, E.; de Andres, M.C.; Sanchez-Elsner, T.; Oreffo, R.O.C. MiR-146b is down-regulated during the chondrogenic differentiation of human bone marrow derived skeletal stem cells and up-regulated in osteoarthritis. Sci. Rep. 2017, 7, 46704. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dai, Y.M.; Ji, C.B.; Yang, L.; Shi, C.M.; Xu, G.F.; Pang, L.X.; Huang, F.Y.; Zhang, C.M.; Guo, X.R. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol. Cell Endocrinol. 2014, 393, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Dalle Carbonare, L.; Minoia, A.; Braggio, M.; Bertacco, J.; Piritore, F.C.; Zouari, S.; Vareschi, A.; Elia, R.; Vedovi, E.; Scuma, C.; et al. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int. J. Mol. Sci. 2023, 24, 13163. [Google Scholar] [CrossRef]
- Liang, W.C.; Wang, Y.; Liang, P.P.; Pan, X.Q.; Fu, W.M.; Yeung, V.S.; Lu, Y.F.; Wan, D.C.; Tsui, S.K.; Tsang, S.Y.; et al. MiR-25 suppresses 3T3-L1 adipogenesis by directly targeting KLF4 and C/EBPalpha. J. Cell Biochem. 2015, 116, 2658–2666. [Google Scholar] [CrossRef]
- Wang, X.H.; Cai, P.; Wang, M.H.; Wang, Z. microRNA-25 promotes osteosarcoma cell proliferation by targeting the cell-cycle inhibitor p27. Mol. Med. Rep. 2014, 10, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Arderiu, G.; Pena, E.; Aledo, R.; Juan-Babot, O.; Crespo, J.; Vilahur, G.; Onate, B.; Moscatiello, F.; Badimon, L. MicroRNA-145 Regulates the Differentiation of Adipose Stem Cells Toward Microvascular Endothelial Cells and Promotes Angiogenesis. Circ. Res. 2019, 125, 74–89. [Google Scholar] [CrossRef]
- Yang, B.; Guo, H.; Zhang, Y.; Chen, L.; Ying, D.; Dong, S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS ONE 2011, 6, e21679. [Google Scholar] [CrossRef]
- Du, T.; Zamore, P.D. microPrimer: The Biogenesis and Function of microRNA. Development 2005, 132, 4645–4652. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, G.D.; Granados-López, A.J.; López-Hernández, Y.; Robles, M.J.G.; López, J.A. miRNAs as Interconnectors be-tween Obesity and Cancer. Noncoding RNA 2024, 10, 24. [Google Scholar] [PubMed]
- Lemecha, M.; Morino, K.; Imamura, T.; Iwasaki, H.; Ohashi, N.; Ida, S.; Sato, D.; Sekine, O.; Ugi, S.; Maegawa, H. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
miRNA | Reported Mechanisms | Ref. |
---|---|---|
miR-27b | Decreases adipogenesis impairing PPARδ and C/EBPα induction | [31] |
miR-519d | Suppresses, in a dose-dependent way, the translation of PPARα protein and increases lipid accumulation during preadipocyte differentiation | [42] |
miR-138 | Downregulated during the adipogenicity differentiation, but its overexpression in mesenchymal stem cells reduces lipid droplet accumulation | [34] |
miR-31 | Represses adipogenesis and is driven by C/EBPα expression | [22,43] |
miR-326 | Down-regulated long adipose-derived stem cell differentiation | |
miR-143 | Promotes adipogenesis through the MAPK signaling pathway, and by silencing pleiotrophin (PTN). Impairs glucose homeostasis via Akt pathway and ORP8 | [30,32,56] |
miR-210, miR-148a, miR-194, miR-322 | Promotes adipogenesis, repressing Wingless-type MMTV integration site family members (Wnt) | [49] |
miR-344, miR-27 | Impairs adipogenesis through Frizzled (Fz) receptors and (LRP) co-receptors | [49] |
miR-375 | Promotes adipocyte differentiation, suppressing ERK1/2 Modulates the glucose stimulatory effect on insulin gene expression by targeting PDK | [44] |
miR-210 | Induces hypertrophy and lipid droplet formation; its inhibition promotes adipogenesis arrest | [49] |
miR-103 | Upregulated during pre-adipocytes differentiation increases triglyceride accumulation and adipogenic gene expression | [50] |
miR-125b, miR-34a, miR-100 | Upregulated during adipogenesis and is associated with high BMI | [31] |
miR-448s | Suppresses adipogenesis through suppression of Kruppel-like factor 5 and triglyceride accumulation | [31] |
miR-15a | Its inhibition reduces preadipocyte size while promoting adipocyte proliferation, targeting DLK1 | [31] |
miR-222, miR-221 | Decreased during adipogenesis but upregulated in obese adipocytes | [31] |
miR-185 | Upregulated in mature adipocytes but downregulated in obese patients | [31] |
ASphCs vs. ADSCs | |||
---|---|---|---|
miRNA | Fold Change | Biological Role of miRNA | miRNA Targets |
miR-126 | 5.6 | Cell growth and angiogenesis control [59,60] | VEGF, FGF, EGF, PI3K/Akt and MAPK/ERK pathways |
miR-146a | 5.9 | Cell cycle regulation [61,62,63] | ErbB4, PPARγ |
miR-146b | 5.4 | Adipogenesis commitment promotion [64,65,66] | KLF7, PPARγ2 and SOX9 |
miR-25 | 4.72 | Adipogenesis suppression [38,67,68] | p27, KLF4 |
miR-145 | –2.71 | Regulates mesenchymal stem cell differentiation and promotes angiogenesis [69,70,71] | SOX9 and ROCK, TGF-β3, ETS1 |
miR-143 | −3.24 | Adipocyte commitment regulator [30,47,56] | AKT, glucose metabolism and ERK5 |
miR-494 | −3.6 | Inhibits both the growth and angiogenesis potential of mesenchymal stem cells [41,72,73] | PGC1-α signaling |
ASphCs vs. SDA | ADSCs vs. ADA | ||
---|---|---|---|
miRNA | Fold Change | Biological Role of miRNA | |
miR-100 | 7.3 | 2.17 | Upregulated during adipogenesis, associated with high BMI |
miR-10a | 4.29 | 3.1 | Modulates adiposity and suppresses inflammation through the TGF-β1/Smad3 signaling pathway. It regulates preadipocyte proliferation and differentiation by targeting KLF1, promoting the cell cycle, and restraining adipogenic differentiation by targeting MAP2k6 and FASN |
miR-143 | 5.39 | 3.22 | Promotes adipogenesis through the MAPK signaling pathway and pleiotrophin (PTN) silencing. It impairs glucose homeostasis through the Akt pathway and downregulation of the oxysterol-binding protein-related protein (ORP8) |
miR-197 | 7.08 | 3.74 | Overexpressed in obese individuals |
miR-222 | 10.5 | 3.08 | Upregulated in obese individuals and inhibits adipogenesis by targeting PPARG and CEBPA |
miR-410 | 6.75 | 3.21 | Inhibits adipocyte differentiation by targeting IRS-1 |
miR-484 | 8.39 | 3.94 | miR-484 targets SFRP1 and affects preadipocyte proliferation, differentiation, and apoptosis. MiR-424(322)/503 targets γ-Synuclein (SNCG), a factor that controls metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement to occur. |
miR-31 | 12 | 3.29 | Down-regulated long adipose-derived stem cell differentiation; represses adipogenesis; driven by C/EBPα expression |
miR-494 | −5.11 | −2.57 | miR-494-3p controls white adipose thermogenesis. Further gain and loss of function studies of miR-494-3p in 3T3-L1 adipocytes have shown that overexpressed miR-494-3p inhibits adipocyte browning, mitochondrial biogenesis, and thermogenesis through PGC1-α |
miR-202 | −3.82 | −4.05 | miR-202 promotes the differentiation of 3T3-L1 preadipocyte via inhibiting PGC1β expression |
ASphCs vs. SDA | ADSCs vs. ADA | ||
---|---|---|---|
miRNA | Fold Change | miRNA | Fold Change |
miR-106 | 9.04 | miR-10b | 5.11 |
miR-106b | 7.9 | miR-138 | 5.19 |
miR-125b | 5.32 | miR-141 | 4.23 |
miR-130b | 5.15 | miR-149 | 3.89 |
miR-17 | 10 | miR-15b | 4.09 |
miR-186 | 9.1 | miR-196b | 5.45 |
miR-191 | 6.48 | miR-197 | 3.74 |
miR-193A-3p | 4.7 | miR-212 | 3.58 |
miR-193A-5p | 7.1 | miR-28 | 3.9 |
miR-193b | 6.03 | miR-32-3p | 4.21 |
miR-195 | 8.05 | miR-328 | 4.13 |
miR-199A-3p | 10.5 | miR-342 | 5.17 |
miR-19a | 6.3 | miR-362 | 3.26 |
miR-19b | 8 | miR-370 | 3.53 |
miR-218 | 9.25 | miR-382 | 5.22 |
miR-221 | 9.03 | miR-410 | 3.21 |
miR-224 | 6.4 | miR-424 | 3.76 |
miR-24 | 7.2 | miR-431 | 4.69 |
miR-26a | 8.7 | miR-454 | 4.13 |
miR-27 | 4.7 | miR-199b | −3.87 |
miR-29c | 5 | miR-210 | −3.99 |
miR-30b | 7.4 | miR-22 | −3.39 |
miR-30c | 6.5 | miR-25 | −5.96 |
miR-320 | 8.2 | miR-29a | −3.14 |
miR-324-3p | 7.36 | miR-34c | −3.79 |
miR-331 | 5.2 | miR-59 | −4.6 |
miR-365 | 6.16 | miR-618 | −3.59 |
miR-374 | 6.02 | ||
miR-376c | 5.04 | ||
miR-411 | 4.6 | ||
miR-452 | 8.4 | ||
miR-486 | 8.8 | ||
miR-574 | 7.27 | ||
miR-744 | 7.75 | ||
miR-483-5p | −4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giammona, A.; Di Franco, S.; Lo Dico, A.; Stassi, G. The miRNA Contribution in Adipocyte Maturation. Non-Coding RNA 2024, 10, 35. https://doi.org/10.3390/ncrna10030035
Giammona A, Di Franco S, Lo Dico A, Stassi G. The miRNA Contribution in Adipocyte Maturation. Non-Coding RNA. 2024; 10(3):35. https://doi.org/10.3390/ncrna10030035
Chicago/Turabian StyleGiammona, Alessandro, Simone Di Franco, Alessia Lo Dico, and Giorgio Stassi. 2024. "The miRNA Contribution in Adipocyte Maturation" Non-Coding RNA 10, no. 3: 35. https://doi.org/10.3390/ncrna10030035
APA StyleGiammona, A., Di Franco, S., Lo Dico, A., & Stassi, G. (2024). The miRNA Contribution in Adipocyte Maturation. Non-Coding RNA, 10(3), 35. https://doi.org/10.3390/ncrna10030035