Molecular and Evolutionary Analysis of RNA–Protein Interactions in Telomerase Regulation
Abstract
:1. Introduction
2. Protein Interactors of the Telomerase Ribonucleoprotein
2.1. Core Telomerase-Interacting Proteins across Eukaryotes
2.2. Interactions of Telomerase with RNA-binding Proteins and RNA Chaperones
2.3. Technologies Used to Identify Global Interactors of Telomerase Holoenzymes
3. RNA-Binding Proteins in the Maturation and Processing Stages of the Telomerase RNA
3.1. Telomerase RNA Processing and Biogenesis
3.2. Telomerase RNA-Binding Proteins and Telomerase Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Lange, T. How telomeres solve the end-protection problem. Science 2009, 326, 948–952. [Google Scholar] [CrossRef] [PubMed]
- De Lange, T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018, 52, 223–247. [Google Scholar] [CrossRef]
- Price, C.; Boltz, K.A.; Chaiken, M.F.; Stewart, J.A.; Beilstein, M.A.; Shippen, D.E. Evolution of CST function in telomere maintenance. Cell Cycle 2010, 9, 3177–3185. [Google Scholar] [CrossRef] [PubMed]
- Lingner, J.; Cooper, J.P.; Cech, T.R. Telomerase and DNA end replication: No longer a lagging strand problem? Science 1995, 269, 1533–1534. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.M.; Lee, X.W.; Wang, X. Telomere shortening in human diseases. FEBS J. 2013, 280, 3180–3193. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989, 337, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Autexier, C.; Pruzan, R.; Funk, W.D.; Greider, C.W. Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. EMBO J. 1996, 15, 5928–5935. [Google Scholar] [CrossRef] [PubMed]
- Weinrich, S.L.; Pruzan, R.; Ma, L.; Ouellette, M.; Tesmer, V.M.; Holt, S.E.; Bodnar, A.G.; Lichtsteiner, S.; Kim, N.W.; Trager, J.B.; et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 1997, 17, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 2006, 7, 484–494. [Google Scholar] [CrossRef]
- Davis, J.A.; Chakrabarti, K. Telomerase ribonucleoprotein and genome integrity—An emerging connection in protozoan parasites. Wiley Interdiscip. Rev. RNA 2022, 13, e1710. [Google Scholar] [CrossRef]
- Moriarty, T.J.; Huard, S.; Dupuis, S.; Autexier, C. Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol. Cell. Biol. 2002, 22, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Bley, C.J.; Qi, X.; Rand, D.P.; Borges, C.R.; Nelson, R.W.; Chen, J.J.-L. RNA–protein binding interface in the telomerase ribonucleoprotein. Proc. Natl. Acad. Sci. USA 2011, 108, 20333–20338. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Brown, A.F.; Wu, J.; Xue, J.; Bley, C.J.; Rand, D.P.; Wu, L.; Zhang, R.; Chen, J.J.; Lei, M. Structural basis for protein-RNA recognition in telomerase. Nat. Struct. Mol. Biol. 2014, 21, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Jansson, L.I.; Akiyama, B.M.; Ooms, A.; Lu, C.; Rubin, S.M.; Stone, M.D. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat. Struct. Mol. Biol. 2015, 22, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Podlevsky, J.D.; Chen, J.J.-L. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016, 13, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Egan, E.D.; Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 2012, 18, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.M.; Cech, T.R. Reversing time: Origin of telomerase. Cell 1998, 92, 587–590. [Google Scholar] [CrossRef] [PubMed]
- De Lange, T. A loopy view of telomere evolution. Front. Genet. 2015, 6, 170282. [Google Scholar] [CrossRef]
- Cohen, S.B.; Graham, M.E.; Lovrecz, G.O.; Bache, N.; Robinson, P.J.; Reddel, R.R. Protein composition of catalytically active human telomerase from immortal cells. Science 2007, 315, 1850–1853. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell 2007, 28, 773–785. [Google Scholar] [CrossRef]
- Venteicher, A.S.; Abreu, E.B.; Meng, Z.; McCann, K.E.; Terns, R.M.; Veenstra, T.D.; Terns, M.P.; Artandi, S.E. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009, 323, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.D.; Tam, J.; Wu, R.A.; Greber, B.J.; Toso, D.; Nogales, E.; Collins, K. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 2018, 557, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, G.E.; Fountain, A.J.; Van Roon, A.-M.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef]
- Chen, L.; Roake, C.M.; Freund, A.; Batista, P.J.; Tian, S.; Yin, Y.A.; Gajera, C.R.; Lin, S.; Lee, B.; Pech, M.F.; et al. An activity switch in human telomerase based on RNA conformation and shaped by TCAB1. Cell 2018, 174, 218–230.e213. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.W.; McDonald, K.R.; Guise, A.J.; Chan, A.; Cristea, I.M.; Zakian, V.A. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat. Commun. 2015, 6, 8290. [Google Scholar] [CrossRef]
- Lemieux, B.; Laterreur, N.; Perederina, A.; Noël, J.-F.; Dubois, M.-L.; Krasilnikov, A.S.; Wellinger, R.J. Active yeast telomerase shares subunits with ribonucleoproteins RNase P and RNase MRP. Cell 2016, 165, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chan, H.; Cash, D.D.; Miracco, E.J.; Ogorzalek Loo, R.R.; Upton, H.E.; Cascio, D.; O’Brien Johnson, R.; Collins, K.; Loo, J.A.; et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 2015, 350, aab4070. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Wang, Z.; Koo, B.-K.; Patel, A.; Cascio, D.; Collins, K.; Feigon, J. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol. Cell 2012, 47, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.J.; Gooding, A.R.; Cech, T.R. Tetrahymena Telomerase Protein p65 Induces Conformational Changes throughout Telomerase RNA (TER) and Rescues Telomerase Reverse Transcriptase and TER Assembly Mutants. Mol. Cell. Biol. 2010, 30, 4965–4976. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Wang, Y.; Yang, Y.; Singh, M.; Eichhorn, C.D.; Cheng, X.; Jiang, Y.X.; Zhou, Z.H.; Feigon, J. Structure of LARP7 Protein p65–telomerase RNA Complex in Telomerase Revealed by Cryo-EM and NMR. J. Mol. Biol. 2023, 435, 168044. [Google Scholar] [CrossRef]
- Jiang, J.; Miracco, E.J.; Hong, K.; Eckert, B.; Chan, H.; Cash, D.D.; Min, B.; Zhou, Z.H.; Collins, K.; Feigon, J. The architecture of Tetrahymena telomerase holoenzyme. Nature 2013, 496, 187–192. [Google Scholar] [CrossRef]
- Davis, J.A.; Reyes, A.V.; Saha, A.; Wolfgeher, D.J.; Xu, S.-L.; Truman, A.W.; Li, B.; Chakrabarti, K. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front. Cell Dev. Biol. 2023, 11, 1110423. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Kolet, L.; Doniger, T.; Biswas, V.K.; Unger, R.; Tzfati, Y.; Michaeli, S. The Trypanosoma brucei telomerase RNA (TER) homologue binds core proteins of the C/D snoRNA family. FEBS Lett. 2013, 587, 1399–1404. [Google Scholar] [CrossRef]
- Nguyen, T.H.D.; Collins, K.; Nogales, E. Telomerase structures and regulation: Shedding light on the chromosome end. Curr. Opin. Struct. Biol. 2019, 55, 185–193. [Google Scholar] [CrossRef]
- Song, J.; Logeswaran, D.; Castillo-González, C.; Li, Y.; Bose, S.; Aklilu, B.B.; Ma, Z.; Polkhovskiy, A.; Chen, J.J.-L.; Shippen, D.E. The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans. Proc. Natl. Acad. Sci. USA 2019, 116, 24542–24550. [Google Scholar] [CrossRef] [PubMed]
- Fajkus, P.; Peška, V.; Závodník, M.; Fojtová, M.; Fulnečková, J.; Dobias, Š.; Kilar, A.; Dvořáčková, M.; Zachová, D.; Nečasová, I.; et al. Telomerase RNAs in land plants. Nucleic Acids Res. 2019, 47, 9842–9856. [Google Scholar] [CrossRef]
- Procházková Schrumpfová, P.; Schořová, Š.; Fajkus, J. Telomere-and telomerase-associated proteins and their functions in the plant cell. Front. Plant Sci. 2016, 7, 851. [Google Scholar] [CrossRef] [PubMed]
- Schrumpfova, P.P.; Vychodilova, I.; Dvořáčková, M.; Majerska, J.; Dokladal, L.; Schořová, Š.; Fajkus, J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014, 77, 770. [Google Scholar]
- Kusová, A.; Steinbachová, L.; Přerovská, T.; Drábková, L.Z.; Paleček, J.; Khan, A.; Rigóová, G.; Gadiou, Z.; Jourdain, C.; Stricker, T.; et al. Completing the TRB family: Newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. Plant Mol. Biol. 2023, 112, 61–83. [Google Scholar] [CrossRef]
- Wang, Y.; Sušac, L.; Feigon, J. Structural biology of telomerase. Cold Spring Harb. Perspect. Biol. 2019, 11, a032383. [Google Scholar] [CrossRef]
- Shakirov, E.V.; Surovtseva, Y.V.; Osbun, N.; Shippen, D.E. The Arabidopsis Pot1 and Pot2 proteins function in telomere length homeostasis and chromosome end protection. Mol. Cell. Biol. 2005, 25, 7725–7733. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Castillo-González, C.; Ma, Z.; Shippen, D.E. Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. Nucleic Acids Res. 2021, 49, 9496–9507. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Nelson, A.D.; Shippen, D.E. Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Mol. Cell. Biol. 2008, 28, 2332–2341. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Collins, K. An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol. Cell 2009, 36, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, R.; Sanford, S.; Basu, S.; Park, M.; Pandya, U.M.; Li, B.; Chakrabarti, K. A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Res. 2013, 23, 537–551. [Google Scholar] [CrossRef]
- Dey, A.; Monroy-Eklund, A.; Klotz, K.; Saha, A.; Davis, J.; Li, B.; Laederach, A.; Chakrabarti, K. In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei. Nucleic Acids Res. 2021, 49, 12445–12466. [Google Scholar] [CrossRef]
- Nittis, T.; Guittat, L.; LeDuc, R.D.; Dao, B.; Duxin, J.P.; Rohrs, H.; Townsend, R.R.; Stewart, S.A. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol Cell Proteom. 2010, 9, 1144–1156. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Reyes, A.; Green, P.; Caron, M.J.; Bonini, M.G.; Gordon, D.M.; Holt, I.J.; Santos, J.H. Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res. 2012, 40, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Matsuura, T.; Haga, N.; Mitsui, Y. Expression of telomerase reverse transcriptase and telomere elongation during sexual maturation in Paramecium caudatum. Gene 2001, 264, 153–161. [Google Scholar] [CrossRef]
- Amanda, J.Y.; Romero, D.P. A unique pause pattern during telomere addition by the error-prone telomerase from the ciliate Paramecium tetraurelia. Gene 2002, 294, 205–213. [Google Scholar]
- Figueiredo, L.M.; Rocha, E.P.; Mancio-Silva, L.; Prevost, C.; Hernandez-Verdun, D.; Scherf, A. The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucleic Acids Res. 2005, 33, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Giardini, M.A.; Lira, C.B.; Conte, F.F.; Camillo, L.R.; de Siqueira Neto, J.L.; Ramos, C.H.; Cano, M.I.N. The putative telomerase reverse transcriptase component of Leishmania amazonensis: Gene cloning and characterization. Parasitol. Res. 2006, 98, 447–454. [Google Scholar] [CrossRef]
- Malik, H.S.; Burke, W.D.; Eickbush, T.H. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene 2000, 251, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Nassir, N.; Hyde, G.J.; Baskar, R. A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet. 2019, 15, e1008188. [Google Scholar] [CrossRef]
- Rajkowitsch, L.; Chen, D.; Stampfl, S.; Semrad, K.; Waldsich, C.; Mayer, O.; Jantsch, M.F.; Konrat, R.; Bläsi, U.; Schroeder, R. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 2007, 4, 118–130. [Google Scholar] [CrossRef]
- Stern, J.L.; Zyner, K.G.; Pickett, H.A.; Cohen, S.B.; Bryan, T.M. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol. Cell. Biol. 2012, 32, 2384–2395. [Google Scholar] [CrossRef]
- Venteicher, A.S.; Artandi, S.E. TCAB1: Driving telomerase to Cajal bodies. Cell Cycle 2009, 8, 1329–1331. [Google Scholar] [CrossRef]
- Vasianovich, Y.; Bajon, E.; Wellinger, R.J. Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex. Elife 2020, 9, e60000. [Google Scholar] [CrossRef]
- Witkin, K.L.; Collins, K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 2004, 18, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Dock-Bregeon, A.-C.; Lewis, K.A.; Conte, M.R. The La-related proteins: Structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol. 2021, 18, 178–193. [Google Scholar] [CrossRef]
- Fu, D.; Collins, K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol. Cell 2003, 11, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Egan, E.D.; Collins, K. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol. Cell. Biol. 2012, 32, 2428–2439. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, E.J.; Nunes, V.S.; da Silva, M.S.; Segatto, M.; Myler, P.J.; Cano, M.I.N. The putative Leishmania telomerase RNA (Leish TER) undergoes trans-splicing and contains a conserved template sequence. PloS ONE 2014, 9, e112061. [Google Scholar] [CrossRef]
- Podlevsky, J.D.; Bley, C.J.; Omana, R.V.; Qi, X.; Chen, J.J.-L. The telomerase database. Nucleic Acids Res. 2007, 36, D339–D343. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A.; Chen, C.L.; Perrimon, N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. Wiley Interdiscip. Rev. Dev. Biol. 2021, 10, e392. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhao, B.S.; Myers, S.A.; Carr, S.A.; He, C.; Ting, A.Y. RNA–protein interaction mapping via MS2-or Cas13-based APEX targeting. Proc. Natl. Acad. Sci. USA 2020, 117, 22068–22079. [Google Scholar] [CrossRef] [PubMed]
- Ivanyi-Nagy, R.; Ahmed, S.M.; Peter, S.; Ramani, P.D.; Ong, P.F.; Dreesen, O.; Dröge, P. The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. Elife 2018, 7, e40037. [Google Scholar] [CrossRef] [PubMed]
- Fajkus, P.; Kilar, A.; Nelson, A.D.; Holá, M.; Peška, V.; Goffová, I.; Fojtová, M.; Zachová, D.; Fulnečková, J.; Fajkus, J. Evolution of plant telomerase RNAs: Farther to the past, deeper to the roots. Nucleic Acids Res. 2021, 49, 7680–7694. [Google Scholar] [CrossRef] [PubMed]
- Fajkus, P.; Adámik, M.; Nelson, A.D.; Kilar, A.M.; Franek, M.; Bubeník, M.; Frydrychová, R.Č.; Votavová, A.; Sýkorová, E.; Fajkus, J.; et al. Telomerase RNA in Hymenoptera (Insecta) switched to plant/ciliate-like biogenesis. Nucleic Acids Res. 2023, 51, 420–433. [Google Scholar] [CrossRef]
- Logeswaran, D.; Li, Y.; Podlevsky, J.D.; Chen, J.J.-L. Monophyletic origin and divergent evolution of animal telomerase RNA. Mol. Biol. Evol. 2021, 38, 215–228. [Google Scholar] [CrossRef]
- Cash, D.D.; Feigon, J. Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res. 2017, 45, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, Y.; Wang, Y.; Song, H.; Zhou, Z.H.; Feigon, J. Structure of active human telomerase with telomere shelterin protein TPP1. Nature 2022, 604, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Bozdechova, L.; Rudolfova, A.; Hanakova, K.; Fojtova, M.; Fajkus, J. Optimizing ChIRP-MS for Comprehensive Profiling of RNA-Protein Interactions in Arabidopsis thaliana: A Telomerase RNA Case Study. Plants 2024, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Forino, N.M.; Woo, J.Z.; Zaug, A.J.; Jimenez, A.G.; Cech, T.R.; Rouskin, S.; Stone, M.D. Dissecting telomerase RNA structural heterogeneity in living human cells with DMS-MaPseq. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bozděchová, L.; Havlová, K.; Fajkus, P.; Fajkus, J. Analysis of Telomerase RNA Structure in Physcomitrium patens Indicates Functionally Relevant Transitions Between OPEN and CLOSED Conformations. J. Mol. Biol. 2024, 436, 168417. [Google Scholar] [CrossRef]
- Zappulla, D.C.; Cech, T.R. Yeast telomerase RNA: A flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA 2004, 101, 10024–10029. [Google Scholar] [CrossRef] [PubMed]
- Zappulla, D.C. Yeast telomerase RNA flexibly scaffolds protein subunits: Results and repercussions. Molecules 2020, 25, 2750. [Google Scholar] [CrossRef] [PubMed]
- Chapon, C.; Cech, T.; Zaug, A. Polyadenylation of telomerase RNA in budding yeast. RNA 1997, 3, 1337–1351. [Google Scholar] [PubMed]
- Bosoy, D.; Lue, N.F. Yeast telomerase is capable of limited repeat addition processivity. Nucleic Acids Res. 2004, 32, 93–101. [Google Scholar]
- Seto, A.G.; Zaug, A.J.; Sobel, S.G.; Wolin, S.L.; Cech, T.R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 1999, 401, 177–180. [Google Scholar]
- Tang, W.; Kannan, R.; Blanchette, M.; Baumann, P. Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 2012, 484, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Box, J.A.; Bunch, J.T.; Tang, W.; Baumann, P. Spliceosomal cleavage generates the 3′ end of telomerase RNA. Nature 2008, 456, 910–914. [Google Scholar] [CrossRef]
- Webb, C.J.; Zakian, V.A. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat. Struct. Mol. Biol. 2008, 15, 34–42. [Google Scholar] [CrossRef]
- Tseng, C.-K.; Wang, H.-F.; Burns, A.M.; Schroeder, M.R.; Gaspari, M.; Baumann, P. Human telomerase RNA processing and quality control. Cell Rep. 2015, 13, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Jády, B.E.; Bertrand, E.; Kiss, T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal. J. Cell Biol. 2004, 164, 647–652. [Google Scholar] [CrossRef]
- Fu, D.; Collins, K. Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association. Genes Dev. 2006, 20, 531–536. [Google Scholar] [CrossRef]
- Girard, C.; Verheggen, C.; Neel, H.; Cammas, A.; Vagner, S.; Soret, J.; Bertrand, E.; Bordonne, R. Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J. Biol. Chem. 2008, 283, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Logeswaran, D.; Li, Y.; Akhter, K.; Podlevsky, J.D.; Olson, T.L.; Forsberg, K.; Chen, J.J.-L. Biogenesis of telomerase RNA from a protein-coding mRNA precursor. Proc. Natl. Acad. Sci. USA 2022, 119, e2204636119. [Google Scholar] [CrossRef]
- Liu, Y.; Snow, B.E.; Hande, M.P.; Baerlocher, G.; Kickhoefer, V.A.; Yeung, D.; Wakeham, A.; Itie, A.; Siderovski, D.P.; Lansdorp, P.M. Telomerase-associated protein TEP1 is not essential for telomerase activity or telomere length maintenance in vivo. Mol. Cell. Biol. 2000, 20, 8178–8184. [Google Scholar] [CrossRef]
- Hu, X.; Kim, J.K.; Yu, C.; Jun, H.I.; Liu, J.; Sankaran, B.; Huang, L.; Qiao, F. Quality-Control Mechanism for Telomerase RNA Folding in the Cell. Cell Rep. 2020, 33, 108568. [Google Scholar] [CrossRef]
Protein | Species | Accession Number (Uniprot) | References |
---|---|---|---|
Dyskerin | Human | O60832 | [19,22] |
NHP2 | Human | Q9NX24 | [22] |
NOP10 | Human | Q9NPE3 | [22] |
GAR1 | Human | Q9NY12 | [22] |
TCAB1 | Human | Q9BUR4 | [21,24] |
Est1 | S. cerevisiae | P17214 | [25] |
Pop1 | S. cerevisiae | P41812 | [26] |
Pop6 | S. cerevisiae | P53218 | [26] |
Pop7 | S. cerevisiae | P38291 | [26] |
Smd2 | S. cerevisiae | Q06217 | [25] |
Smb1 | S. cerevisiae | P40018 | [25] |
Smd3 | S. cerevisiae | P43321 | [25] |
p65 | T. thermophila | W7X6T2 | [27,28,29,30,31] |
p75 | T. thermophila | A0PGB2 | [27,31] |
p45 | T. thermophila | Q6JXI5 | [27,31] |
p19 | T. thermophila | D2CVN7 | [27,31] |
p50 | T. thermophila | D2CVN8 | [27,31] |
NOP56 | T. brucei | Q580Z5 | [32,33] |
NOP58 | T. brucei | Q38F23 | [32,33] |
Fibrillarin (NOP1) | T. brucei | Q38AL4 | [32,33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, J.A.; Chakrabarti, K. Molecular and Evolutionary Analysis of RNA–Protein Interactions in Telomerase Regulation. Non-Coding RNA 2024, 10, 36. https://doi.org/10.3390/ncrna10030036
Davis JA, Chakrabarti K. Molecular and Evolutionary Analysis of RNA–Protein Interactions in Telomerase Regulation. Non-Coding RNA. 2024; 10(3):36. https://doi.org/10.3390/ncrna10030036
Chicago/Turabian StyleDavis, Justin A., and Kausik Chakrabarti. 2024. "Molecular and Evolutionary Analysis of RNA–Protein Interactions in Telomerase Regulation" Non-Coding RNA 10, no. 3: 36. https://doi.org/10.3390/ncrna10030036
APA StyleDavis, J. A., & Chakrabarti, K. (2024). Molecular and Evolutionary Analysis of RNA–Protein Interactions in Telomerase Regulation. Non-Coding RNA, 10(3), 36. https://doi.org/10.3390/ncrna10030036