Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers
Abstract
:1. Introduction
1.1. Basics of Extracellular Vesicles (EVs)
1.2. A Plethora of Diverse RNA Biotypes Can Be Packaged into EVs
1.3. Sorting and Loading of RNAs into EVs: Active or Passive Process?
1.4. Functionality and Fate of Transferred EV RNA in Recipient Cells
1.5. EVs Possess Multiple Functional Roles During Cancer Progression
2. EV-ncRNAs with Functional Relevance in Cancer
2.1. EV-ncRNAs in Breast Cancer
2.2. EV-ncRNAs in Prostate Cancer
2.3. EV-ncRNAs in Liver Cancer
2.4. EV-ncRNAs in Pancreatic Cancer
2.5. EV-ncRNAs in Lung Cancer
2.6. EV-ncRNA in Brain Cancer
2.7. EV-ncRNA in Colorectal Cancer
3. EV ncRNA in Cancer Diagnosis and Therapeutics
3.1. EV ncRNA as Biomarkers in Cancer
3.2. EVs as Delivery Tools for Therapeutic Purposes
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicle 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Gonzalez-Kozlova, E.; Soleymani, T.; La Salvia, S.; Kyprianou, N.; Sahoo, S.; Tewari, A.K.; Cordon-Cardo, C.; Stolovitzky, G.; Dogra, N. Extracellular Vesicles Carry Distinct Proteo-Transcriptomic Signatures That Are Different from Their Cancer Cell of Origin. iScience 2022, 25, 104414. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicle 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; Loew, D.; Tkach, M.; Théry, C. Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracellular Vesicle Subtypes. Proc. Natl. Acad. Sci. USA 2016, 113, E968–E977. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, H.; Wang, B.; Yuan, F. Research Progress on the Roles of lncRNAs in Plant Development and Stress Responses. Front. Plant Sci. 2023, 14, 1138901. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Papoutsoglou, P.; Moustakas, A. Long Non-coding RNAs and TGF-β Signaling in Cancer. Cancer Sci. 2020, 111, 2672–2681. [Google Scholar] [CrossRef]
- Patop, I.L.; Wüst, S.; Kadener, S. Past, Present, and Future of circRNAs. EMBO J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Pisignano, G.; Michael, D.C.; Visal, T.H.; Pirlog, R.; Ladomery, M.; Calin, G.A. Going Circular: History, Present, and Future of circRNAs in Cancer. Oncogene 2023, 42, 2783–2800. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, A.; Story, M.D. The Long and Short of It: The Emerging Roles of Non-Coding RNA in Small Extracellular Vesicles. Cancers 2020, 12, 1445. [Google Scholar] [CrossRef] [PubMed]
- Batagov, A.O.; Kurochkin, I.V. Exosomes Secreted by Human Cells Transport Largely mRNA Fragments That Are Enriched in the 3′-Untranslated Regions. Biol. Direct 2013, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.-C.A.; Barutcu, S.; Malet, L.; Deschamps-Francoeur, G.; Calderon, V.; Kwon, E.; Lécuyer, E. Profiling the Polyadenylated Transcriptome of Extracellular Vesicles with Long-Read Nanopore Sequencing. BMC Genom. 2023, 24, 564. [Google Scholar] [CrossRef] [PubMed]
- Ransom, L.S.; Liu, C.S.; Dunsmore, E.; Palmer, C.R.; Nicodemus, J.; Ziomek, D.; Williams, N.; Chun, J. Human Brain Small Extracellular Vesicles Contain Selectively Packaged, Full-Length mRNA. Cell Rep. 2024, 43, 114061. [Google Scholar] [CrossRef]
- O’Grady, T.; Njock, M.-S.; Lion, M.; Bruyr, J.; Mariavelle, E.; Galvan, B.; Boeckx, A.; Struman, I.; Dequiedt, F. Sorting and Packaging of RNA into Extracellular Vesicles Shape Intracellular Transcript Levels. BMC Biol. 2022, 20, 72. [Google Scholar] [CrossRef]
- Almeida, A.; Gabriel, M.; Firlej, V.; Martin-Jaular, L.; Lejars, M.; Cipolla, R.; Petit, F.; Vogt, N.; San-Roman, M.; Dingli, F.; et al. Urinary Extracellular Vesicles Contain Mature Transcriptome Enriched in Circular and Long Noncoding RNAs with Functional Significance in Prostate Cancer. J. Extracell. Vesicle 2022, 11, e12210. [Google Scholar] [CrossRef]
- Dellar, E.R.; Hill, C.; Melling, G.E.; Carter, D.R.F.; Baena-Lopez, L.A. Unpacking Extracellular Vesicles: RNA Cargo Loading and Function. J. Extracell. Biol. 2022, 1, e40. [Google Scholar] [CrossRef]
- Oka, Y.; Tanaka, K.; Kawasaki, Y. A Novel Sorting Signal for RNA Packaging into Small Extracellular Vesicles. Sci. Rep. 2023, 13, 17436. [Google Scholar] [CrossRef]
- Corrado, C.; Barreca, M.M.; Zichittella, C.; Alessandro, R.; Conigliaro, A. Molecular Mediators of RNA Loading into Extracellular Vesicles. Cells 2021, 10, 3355. [Google Scholar] [CrossRef]
- Liu, X.-M.; Ma, L.; Schekman, R. Selective Sorting of microRNAs into Exosomes by Phase-Separated YBX1 Condensates. eLife 2021, 10, e71982. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.L.; Adams, A.; King, K.E.; Dunn, W.; Christenson, L.K.; Hung, W.-T.; Weinman, S.A. The RNA Binding Protein FMR1 Controls Selective Exosomal miRNA Cargo Loading during Inflammation. J. Cell Biol. 2020, 219, e201912074. [Google Scholar] [CrossRef] [PubMed]
- Martins-Marques, T.; Costa, M.C.; Catarino, S.; Simoes, I.; Aasen, T.; Enguita, F.J.; Girao, H. Cx43-Mediated Sorting of miRNAs into Extracellular Vesicles. EMBO Rep. 2022, 23, e54312. [Google Scholar] [CrossRef] [PubMed]
- Fabbiano, F.; Corsi, J.; Gurrieri, E.; Trevisan, C.; Notarangelo, M.; D’Agostino, V.G. RNA Packaging into Extracellular Vesicles: An Orchestra of RNA-binding Proteins? J. Extracell. Vesicle 2020, 10, e12043. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Singh, J.; Schekman, R. Two RNA-Binding Proteins Mediate the Sorting of miR223 from Mitochondria into Exosomes. eLife 2023, 12, e85878. [Google Scholar] [CrossRef]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef]
- Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and Mechanisms of Extracellular Vesicle Uptake. J. Extracell. Vesicles 2014, 3. [Google Scholar] [CrossRef]
- Bebelman, M.P.; Bun, P.; Huveneers, S.; van Niel, G.; Pegtel, D.M.; Verweij, F.J. Real-Time Imaging of Multivesicular Body-Plasma Membrane Fusion to Quantify Exosome Release from Single Cells. Nat. Protoc. 2020, 15, 102–121. [Google Scholar] [CrossRef]
- Choi, W.; Park, D.J.; Eliceiri, B.P. Defining Tropism and Activity of Natural and Engineered Extracellular Vesicles. Front. Immunol. 2024, 15, 1363185. [Google Scholar] [CrossRef]
- Bonsergent, E.; Grisard, E.; Buchrieser, J.; Schwartz, O.; Théry, C.; Lavieu, G. Quantitative Characterization of Extracellular Vesicle Uptake and Content Delivery within Mammalian Cells. Nat. Commun. 2021, 12, 1864. [Google Scholar] [CrossRef]
- Lai, C.P.; Kim, E.Y.; Badr, C.E.; Weissleder, R.; Mempel, T.R.; Tannous, B.A.; Breakefield, X.O. Visualization and Tracking of Tumour Extracellular Vesicle Delivery and RNA Translation Using Multiplexed Reporters. Nat. Commun. 2015, 6, 7029. [Google Scholar] [CrossRef] [PubMed]
- Rufino-Ramos, D.; Leandro, K.; Perdigão, P.R.L.; O’Brien, K.; Pinto, M.M.; Santana, M.M.; van Solinge, T.S.; Mahjoum, S.; Breakefield, X.O.; Breyne, K.; et al. Extracellular Communication between Brain Cells through Functional Transfer of Cre mRNA Mediated by Extracellular Vesicles. Mol. Ther. 2023, 31, 2220–2239. [Google Scholar] [CrossRef] [PubMed]
- Somiya, M.; Kuroda, S. Verification of Extracellular Vesicle-Mediated Functional mRNA Delivery via RNA Editing. bioRxiv 2022. [Google Scholar] [CrossRef]
- Tao, S.-C.; Guo, S.-C. Role of Extracellular Vesicles in Tumour Microenvironment. Cell Commun. Signal 2020, 18, 163. [Google Scholar] [CrossRef]
- Kalluri, R.; McAndrews, K.M. The Role of Extracellular Vesicles in Cancer. Cell 2023, 186, 1610–1626. [Google Scholar] [CrossRef]
- Liu, C.; Lu, C.; Yixi, L.; Hong, J.; Dong, F.; Ruan, S.; Hu, T.; Zhao, X. Exosomal Linc00969 Induces Trastuzumab Resistance in Breast Cancer by Increasing HER-2 Protein Expression and mRNA Stability by Binding to HUR. Breast Cancer Res. 2023, 25, 124. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y.; Chen, J.; Yang, J.; Yuan, Y.; Wu, W. Exosomal lncRNA SNHG12 Promotes Angiogenesis and Breast Cancer Progression. Breast Cancer 2024, 31, 607–620. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Yang, L.; Liu, J.; Zhang, X.; Zhang, Y.; Tu, Q.; Yin, D.; Lin, D.; Wong, P.-P.; et al. Extracellular Vesicle-Packaged HIF-1α-Stabilizing lncRNA from Tumour-Associated Macrophages Regulates Aerobic Glycolysis of Breast Cancer Cells. Nat. Cell Biol. 2019, 21, 498–510. [Google Scholar] [CrossRef]
- Tao, S.; Wang, J.; Li, F.; Shi, B.; Ren, Q.; Zhuang, Y.; Qian, X. Extracellular Vesicles Released by Hypoxia-Induced Tumor-Associated Fibroblasts Impart Chemoresistance to Breast Cancer Cells via Long Noncoding RNA H19 Delivery. FASEB J. 2024, 38, e23165. [Google Scholar] [CrossRef]
- Ahadi, A.; Brennan, S.; Kennedy, P.J.; Hutvagner, G.; Tran, N. Long Non-Coding RNAs Harboring miRNA Seed Regions Are Enriched in Prostate Cancer Exosomes. Sci. Rep. 2016, 6, 24922. [Google Scholar] [CrossRef]
- Li, Q.; Hu, J.; Shi, Y.; Xiao, M.; Bi, T.; Wang, C.; Yan, L.; Li, X. Exosomal lncAY927529 Enhances Prostate Cancer Cell Proliferation and Invasion through Regulating Bone Microenvironment. Cell Cycle 2021, 20, 2531–2546. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-Y.; Chen, J.; Qin, X.-H.; You, P.; Ma, J.; Zhang, J.; Zhang, H.; Xu, J.-D. Long Non-Coding RNA NORAD Promotes the Prostate Cancer Cell Extracellular Vesicle Release via microRNA-541-3p-Regulated PKM2 to Induce Bone Metastasis of Prostate Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 98. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Kawakami, K.; Mizutani, K.; Ando, T.; Sakai, Y.; Sakurai, K.; Toyota, S.; Ehara, H.; Ito, H.; Ito, M. H19 in Serum Extracellular Vesicles Reflects Resistance to AR Axis-Targeted Therapy Among CRPC Patients. Cancer Genom. Proteom. 2023, 20, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Bajo-Santos, C.; Hessvik, N.P.; Lorenz, S.; Fromm, B.; Berge, V.; Sandvig, K.; Linē, A.; Llorente, A. Identification of Non-Invasive miRNAs Biomarkers for Prostate Cancer by Deep Sequencing Analysis of Urinary Exosomes. Mol. Cancer 2017, 16, 156. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, Y.; Xiong, H.; Zhang, Y.; Wang, F.; Zhuo, W.; Zeng, Z.; Zhao, Y.; Wang, H.; Hu, P.; et al. Exosomal SLC16A1-AS1-Induced M2 Macrophages Polarization Facilitates Hepatocellular Carcinoma Progression. Int. J. Biol. Sci. 2024, 20, 4341–4363. [Google Scholar] [CrossRef]
- Lv, S.; Wang, J.; Li, L. Extracellular Vesicular lncRNA FAL1 Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion by Inducing Macrophage M2 Polarization. J. Physiol. Biochem. 2023, 79, 669–682. [Google Scholar] [CrossRef]
- Takahashi, K.; Yan, I.K.; Kogure, T.; Haga, H.; Patel, T. Extracellular Vesicle-Mediated Transfer of Long Non-Coding RNA ROR Modulates Chemosensitivity in Human Hepatocellular Cancer. FEBS Open Bio 2014, 4, 458–467. [Google Scholar] [CrossRef]
- Yao, H.; Huang, C.; Zou, J.; Liang, W.; Zhao, Y.; Yang, K.; Zhong, Z.; Zhou, S.; Li, J.; Li, Y.; et al. Extracellular Vesicle-Packaged lncRNA from Cancer-Associated Fibroblasts Promotes Immune Evasion by Downregulating HLA-A in Pancreatic Cancer. J. Extracell. Vesicles 2024, 13, e12484. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Q.; Lu, W.; Zhang, F.; Wu, D.; Sun, J. NNT-AS1 in CAFs-Derived Exosomes Promotes Progression and Glucose Metabolism through miR-889-3p/HIF-1α in Pancreatic Adenocarcinoma. Sci. Rep. 2024, 14, 6979. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, J.; Liu, Q.; Ji, Y.; Liu, L.; Guo, X.; Wang, Q.; Li, S.; Sun, J.; Gong, M.; et al. Exosomal lncRNA XIST Promotes Perineural Invasion of Pancreatic Cancer Cells via miR-211-5p/GDNF. Oncogene 2024, 43, 1341–1352. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, T.; Yang, X.; Qin, P.; Wang, P.; Zhang, H.; Bai, M.; Wu, R.; Li, F. Tumor-Derived Exosomal Long Noncoding RNA LINC01133, Regulated by Periostin, Contributes to Pancreatic Ductal Adenocarcinoma Epithelial-Mesenchymal Transition through the Wnt/β-Catenin Pathway by Silencing AXIN2. Oncogene 2021, 40, 3164–3179. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Y.; Jin, Y. Exosomal LncRNAs and CircRNAs in Lung Cancer: Emerging Regulators and Potential Therapeutic Targets. Noncoding RNA Res. 2024, 9, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xia, Z.; Xie, M.; Gao, Y.; Yu, Q.; He, B. Exosomal Long Non-Coding RNA SOX2 Overlapping Transcript Enhances the Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer Cell Line H1975. Hum. Cell 2021, 34, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Patel, N.; Deng, Y.; Ding, S.; Wang, T.; Zhang, H. Extracellular Vesicle-Derived LINC00482 Induces Microglial M2 Polarization to Facilitate Brain Metastasis of NSCLC. Cancer Lett. 2023, 561, 216146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, B.; Zhang, X.; Zhao, H.; Xue, W.; Yuan, Z.; Xu, S.; Duan, G. M2 Macrophage-Derived lncRNA NORAD in EVs Promotes NSCLC Progression via miR-520g-3p/SMIM22/GALE Axis. NPJ Precis. Oncol. 2024, 8, 185. [Google Scholar] [CrossRef]
- Papoutsoglou, P.; Pineau, R.; Leroux, R.; Louis, C.; L’Haridon, A.; Foretek, D.; Morillon, A.; Banales, J.M.; Gilot, D.; Aubry, M.; et al. TGFβ-Induced Long Non-Coding RNA LINC00313 Activates Wnt Signaling and Promotes Cholangiocarcinoma. EMBO Rep. 2024, 25, 1022–1054. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, L.; Chen, Y.; Yu, Z.; Zhao, Z. Cancer Cell-Derived Exosomal LINC00313 Induces M2 Macrophage Differentiation in Non-Small Cell Lung Cancer. Clin. Transl. Oncol. 2022, 24, 2395–2408. [Google Scholar] [CrossRef]
- Li, J.; Liao, T.; Liu, H.; Yuan, H.; Ouyang, T.; Wang, J.; Chai, S.; Li, J.; Chen, J.; Li, X.; et al. Hypoxic Glioma Stem Cell-Derived Exosomes Containing Linc01060 Promote Progression of Glioma by Regulating the MZF1/c-Myc/HIF1α Axis. Cancer Res. 2021, 81, 114–128. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Xu, H.; Wei, K.; Wang, S.; Wang, Y.; Han, J. Serum-Derived Extracellular Vesicles Facilitate Temozolomide Resistance in Glioblastoma through a HOTAIR-Dependent Mechanism. Cell Death Dis. 2022, 13, 344. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, Q.; Wu, B.; Wang, J.; Li, N.; Zhang, T.; Wang, Z.; Luo, J.; Guo, X.; Ding, X.; et al. LncRNA-Encoded Microproteins: A New Form of Cargo in Cell Culture-Derived and Circulating Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12123. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, D.; Wang, T.; Ji, J.; Jin, C.; Peng, C.; Tan, Y.; Zhou, J.; Wang, L.; Feng, Y.; et al. CAF-Derived Exosomal WEE2-AS1 Facilitates Colorectal Cancer Progression via Promoting Degradation of MOB1A to Inhibit the Hippo Pathway. Cell Death Dis. 2022, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lin, H.; Huang, K.; Li, S. Cancer-Associated Fibroblasts-Derived Extracellular Vesicles Carrying lncRNA SNHG3 Facilitate Colorectal Cancer Cell Proliferation via the miR-34b-5p/HuR/HOXC6 Axis. Cell Death Discov. 2022, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, Q.; Li, H.; Han, Y.; Pu, Y.; Li, L.; Rong, W.; Liu, X.; Wang, Z.; Sun, J.; et al. Targeting Circ-0034880-Enriched Tumor Extracellular Vesicles to Impede SPP1highCD206+ pro-Tumor Macrophages Mediated Pre-Metastatic Niche Formation in Colorectal Cancer Liver Metastasis. Mol. Cancer 2024, 23, 168. [Google Scholar] [CrossRef]
- Chen, C.; Yu, H.; Han, F.; Lai, X.; Ye, K.; Lei, S.; Mai, M.; Lai, M.; Zhang, H. Tumor-Suppressive circRHOBTB3 Is Excreted out of Cells via Exosome to Sustain Colorectal Cancer Cell Fitness. Mol. Cancer 2022, 21, 46. [Google Scholar] [CrossRef]
- Hinger, S.A.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Dou, Y.; Ping, J.; Shu, L.; Prasad, N.; Levy, S.; Zhang, B.; et al. Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Rep. 2018, 25, 715–725. [Google Scholar] [CrossRef]
- Casanova-Salas, I.; Aguilar, D.; Cordoba-Terreros, S.; Agundez, L.; Brandariz, J.; Herranz, N.; Mas, A.; Gonzalez, M.; Morales-Barrera, R.; Sierra, A.; et al. Circulating Tumor Extracellular Vesicles to Monitor Metastatic Prostate Cancer Genomics and Transcriptomic Evolution. Cancer Cell 2024, 42, 1301–1312.e7. [Google Scholar] [CrossRef]
- Erdbrügger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borràs, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcón-Pérez, J.M.; et al. Urinary Extracellular Vesicles: A Position Paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.; Lu, Y.; Lin, P.; Lin, Y.; Zheng, Y.; Xu, R.; Mai, Z.; Guo, B.; Zhao, X. New Frontiers in Salivary Extracellular Vesicles: Transforming Diagnostics, Monitoring, and Therapeutics in Oral and Systemic Diseases. J. Nanobiotechnol. 2024, 22, 171. [Google Scholar] [CrossRef]
- Rajendran, P.; Sekar, R.; Zahra, H.A.; Jayaraman, S.; Rajagopal, P.; Abdallah, B.M.; Ali, E.M.; Abdelsalam, S.A.; Veeraraghavan, V. Salivaomics to Decode Non-Coding RNAs in Oral Cancer. A Narrative Review. Noncoding RNA Res. 2023, 8, 376–384. [Google Scholar] [CrossRef]
- Gai, C.; Camussi, F.; Broccoletti, R.; Gambino, A.; Cabras, M.; Molinaro, L.; Carossa, S.; Camussi, G.; Arduino, P.G. Salivary Extracellular Vesicle-Associated miRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma. BMC Cancer 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Chiabotto, G.; Gai, C.; Deregibus, M.C.; Camussi, G. Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers 2019, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Zayakin, P.; Sadovska, L.; Eglītis, K.; Romanchikova, N.; Radoviča-Spalviņa, I.; Endzeliņš, E.; Liepniece-Karele, I.; Eglītis, J.; Linē, A. Extracellular Vesicles-A Source of RNA Biomarkers for the Detection of Breast Cancer in Liquid Biopsies. Cancers 2023, 15, 4329. [Google Scholar] [CrossRef] [PubMed]
- Sadovska, L.; Zayakin, P.; Eglītis, K.; Endzeliņš, E.; Radoviča-Spalviņa, I.; Avotiņa, E.; Auders, J.; Keiša, L.; Liepniece-Karele, I.; Leja, M.; et al. Comprehensive Characterization of RNA Cargo of Extracellular Vesicles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Front. Oncol. 2022, 12, 1005812. [Google Scholar] [CrossRef] [PubMed]
- Bajo-Santos, C.; Brokāne, A.; Zayakin, P.; Endzeliņš, E.; Soboļevska, K.; Belovs, A.; Jansons, J.; Sperga, M.; Llorente, A.; Radoviča-Spalviņa, I.; et al. Plasma and Urinary Extracellular Vesicles as a Source of RNA Biomarkers for Prostate Cancer in Liquid Biopsies. Front. Mol. Biosci. 2023, 10, 980433. [Google Scholar] [CrossRef]
- Chen, C.; Shang, A.; Sun, Z.; Gao, Y.; Huang, J.; Ping, Y.; Chang, W.; Gu, C.; Sun, J.; Ji, P.; et al. Urinary Exosomal Long Noncoding RNA TERC as a Noninvasive Diagnostic and Prognostic Biomarker for Bladder Urothelial Carcinoma. J. Immunol. Res. 2022, 2022, 9038808. [Google Scholar] [CrossRef]
- Liu, C.; Xu, P.; Shao, S.; Wang, F.; Zheng, Z.; Li, S.; Liu, W.; Li, G. The Value of Urinary Exosomal lncRNA SNHG16 as a Diagnostic Biomarker for Bladder Cancer. Mol. Biol. Rep. 2023, 50, 8297–8304. [Google Scholar] [CrossRef]
- Zhan, Y.; Du, L.; Wang, L.; Jiang, X.; Zhang, S.; Li, J.; Yan, K.; Duan, W.; Zhao, Y.; Wang, L.; et al. Expression Signatures of Exosomal Long Non-Coding RNAs in Urine Serve as Novel Non-Invasive Biomarkers for Diagnosis and Recurrence Prediction of Bladder Cancer. Mol. Cancer 2018, 17, 142. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Zhan, N.; Lin, L.; Zhang, J.; Peng, L.; Qiu, T.; Luo, Y.; Liu, C.; Pan, C.; et al. Exosome-Related lncRNA Score: A Value-Based Individual Treatment Strategy for Predicting the Response to Immunotherapy in Clear Cell Renal Cell Carcinoma. Cancer Med. 2024, 13, e7308. [Google Scholar] [CrossRef]
- Cinque, A.; Vago, R.; Trevisani, F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes 2021, 12, 835. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kim, G.; Tak, W.Y.; Jang, S.Y.; Kweon, Y.O.; Park, J.G.; Lee, H.W.; Han, Y.S.; Chun, J.M.; Park, S.Y.; et al. Circulating Exosomal Noncoding RNAs as Prognostic Biomarkers in Human Hepatocellular Carcinoma. Int. J. Cancer 2019, 144, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Baek, G.O.; Ahn, H.R.; Sung, S.; Seo, C.W.; Cho, H.J.; Nam, S.W.; Cheong, J.Y.; Eun, J.W. Serum Small Extracellular Vesicle-Derived LINC00853 as a Novel Diagnostic Marker for Early Hepatocellular Carcinoma. Mol. Oncol. 2020, 14, 2646–2659. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Inuzuka, T.; Shimizu, Y.; Sawamoto, K.; Taniue, K.; Ono, Y.; Asai, F.; Koyama, K.; Sato, H.; Kawabata, H.; et al. Liquid Biopsy for Pancreatic Cancer by Serum Extracellular Vesicle-Encapsulated Long Noncoding RNA HEVEPA. Pancreas 2024, 53, e395–e404. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Ota, Y.; Kogure, T.; Suzuki, Y.; Iwamoto, H.; Yamakita, K.; Kitano, Y.; Fujii, S.; Haneda, M.; Patel, T.; et al. Circulating Extracellular Vesicle-Encapsulated HULC Is a Potential Biomarker for Human Pancreatic Cancer. Cancer Sci. 2020, 111, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, B.; Lian, J.; Wang, X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024, 16, 1029. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, Z.; Tangruksa, B.; Synnergren, J.; Heydarkhan-Hagvall, S.; Nordin, J.Z.; Andaloussi, S.E.; Borén, J.; Wiseman, J.; Bohlooly-Y, M.; Lindfors, L.; et al. Extracellular Vesicles Transport RNA between Cells: Unraveling Their Dual Role in Diagnostics and Therapeutics. Mol. Asp. Med. 2024, 99, 101302. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular Vesicles as Tools and Targets in Therapy for Diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Tang, M.; Chen, Y.; Li, B.; Sugimoto, H.; Yang, S.; Yang, C.; LeBleu, V.S.; McAndrews, K.M.; Kalluri, R. Therapeutic Targeting of STAT3 with Small Interference RNAs and Antisense Oligonucleotides Embedded Exosomes in Liver Fibrosis. FASEB J. 2021, 35, e21557. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, X.; Zhu, L.; Luo, L.; Sun, N.; Pei, R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. Biosensors 2023, 13, 129. [Google Scholar] [CrossRef]
- Yousafzai, N.A.; El Khalki, L.; Wang, W.; Szpendyk, J.; Sossey-Alaoui, K. Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers 2024, 16, 883. [Google Scholar] [CrossRef]
- Hulstaert, E.; Morlion, A.; Avila Cobos, F.; Verniers, K.; Nuytens, J.; Vanden Eynde, E.; Yigit, N.; Anckaert, J.; Geerts, A.; Hindryckx, P.; et al. Charting Extracellular Transcriptomes in The Human Biofluid RNA Atlas. Cell Rep. 2020, 33, 108552. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | lncRNA | Sample Type | Reference |
---|---|---|---|
Breast | Linc00969 | BT474-TR, SKBR-3-TR, and HER2+ serum of patients with breast cancer | [36] |
SNHG12 | MDA-MB-231 TNBC | [37] | |
HISLA | tumor-associated macrophages (TAMs) | [38] | |
H19 | tumor-associated fibroblasts | [39] | |
lnc-IFT-122-2, lnc-C9orf50-4, lnc-FAM122C-3 | Plasma from patients with locally advanced breast cancer or 7 days post-surgery vs. healthy | [73] | |
lnc-ALX1-2, lnc-KLF17-1, lnc-DPH7-1, lnc-PARP8-6 | Plasma from patients with breast cancer with neoadjuvant chemotherapy (responders vs. non-responders) | [74] | |
Prostate | AY927529 | VCaP, LNCaP, DU145, PC3 | [41] |
NORAD | 22Rv1, DU145, PC-3 | [42] | |
H19 | Serum from patients with CRPC before or after resistance to ARAT | [43] | |
Linc00662, CHASERR, lnc-LTBP3-11 | Urine from patients with prostate cancer before or after prostatectomy | [75] | |
Liver | SLC16A1-AS1 | HepG2, MHCC97H | [45] |
FAL1 | Serum from patients with HCC | [46] | |
linc-ROR | HepG2 stimulated with TGFβ | [47] | |
lncRNA-ATB | Serum from patients with HCC | [81] | |
LINC00853 | Serum from patients with HCC | [82] | |
Pancreatic | RP11-161H23.5 | Primary CAFs from patients with PDAC | [48] |
NNT-AS1 | CAFs from patients with PDAC | [49] | |
lncXIST | PANC-1, ASPC-1 | [50] | |
LINC01133 | SW1990, CFPAC-1, AsPC-1, Panc-1 | [51] | |
HEVEPA | Serum from patients with PDAC vs. patients with IPMN vs. healthy | [83] | |
HULC | Serum from patients with PDAC vs. patients with IPMN vs. 21 healthy | [84] | |
Lung | SOX2-OT | NSCLC cell line H1975 | [53] |
LINC00482 | NSCLC patient serum or A549 (EV donor), HMC3 (recipient cells) | [54] | |
NORAD | THP-1 treated with PMA (EV donor cells) and A549 (EV recipient cells) | [55] | |
LINC00313 | NCI-H1299 | [57] | |
Brain | Linc01060 | Primary tumor cells and GSC from human GBM | [58] |
HOTAIR | Serum from patients with GBM | [59] | |
Colon | WEE2-AS1 | CAFs | [62] |
SNHG3 | Primary CAFs | [63] | |
circ-0034880 | Plasma from patients with CRC | [64] | |
circRHOBTB3 | Serum from patients with CRC | [65] | |
Bladder | TERC | Urine (patient vs. healthy) | [76] |
MALAT1, PCAT-1, SPRY4-IT1 | Urine (patient vs. healthy) | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papoutsoglou, P.; Morillon, A. Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Non-Coding RNA 2024, 10, 54. https://doi.org/10.3390/ncrna10060054
Papoutsoglou P, Morillon A. Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Non-Coding RNA. 2024; 10(6):54. https://doi.org/10.3390/ncrna10060054
Chicago/Turabian StylePapoutsoglou, Panagiotis, and Antonin Morillon. 2024. "Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers" Non-Coding RNA 10, no. 6: 54. https://doi.org/10.3390/ncrna10060054
APA StylePapoutsoglou, P., & Morillon, A. (2024). Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Non-Coding RNA, 10(6), 54. https://doi.org/10.3390/ncrna10060054