Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland
Abstract
:1. Introduction
2. Results
2.1. Choosing a Reference Gene for qPCR
2.2. Analysis of miRNA Expression Levels between Different Intratumor Areas and Normal Mammary Gland Tissue
2.3. Comparative Analysis of miRNA Expression Levels between Specimens Taken from the Tumor Border, Tumor Peripheries, and Tumor Center
2.4. Comparative Analysis of miRNA Expression Levels between Specimens Taken from the Tumor Center and Tumor Peripheries
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. RNA Extraction
4.3. Reverse Transcription
4.4. Real-time PCR
4.5. GeNorm Algorithm
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navin, N.; Krasnitz, A.; Rodgers, L.; Cook, K.; Meth, J.; Kendall, J.; Riggs, M.; Eberling, Y.; Troge, J.; Grubor, V.; et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010, 2, 68–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, L.R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; van Loo, P.; Aas, T.; Alexandrov, L.B.; Larsimont, D.; Davies, H.; et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 2015, 2, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, R.E.; Toro, A.L.; Blackburn, H.L.; Decewicz, A.; Deyarmin, B.; Mamula, K.A.; Costantino, N.S.; Hooke, J.A.; Shriver, C.D.; Ellsworth, D.L. Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis. Cancer Growth Metastasis 2015, 8, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 2015, 2, 2929–2943. [Google Scholar]
- Allott, E.H.; Geradts, J.; Sun, X.; Cohen, S.M.; Zirpoli, G.R.; Khoury, T.; Bshara, W.; Chen, M.; Sherman, M.E.; Palmer, J.R.; et al. Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification. Breast Cancer Res. 2016, 2, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, L.S.; Yau, C.; Czene, K.; Thompson, C.K.; Hoadley, K.A.; Van’t Veer, L.J.; Balassanian, R.; Bishop, J.W.; Carpenter, P.M.; Chen, Y.Y.; et al. Intratumor, Heterogeneity of the Estrogen Receptor and the Long-term Risk of Fatal Breast Cancer. J. Natl. Cancer Inst. 2018, 2, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas-Jones, A.G.; Collett, N.; Morgan, J.M.; Jasani, B. Comparison of core oestrogen receptor (ER) assay with excised tumour: Intratumoral distribution of ER in breast carcinoma. J. Clin. Pathol. 2001, 2, 951–955. [Google Scholar] [CrossRef]
- Rye, I.H.; Trinh, A.; Saetersdal, A.B.; Nebdal, D.J.H.; Lingjærde, O.C.; Almendro, V.; Polyak, K.; Børresen-Dale, A.L.; Helland, Å.; Markowetz, F.; et al. Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors. Mol. Oncol. 2018, 2, 1838–1855. [Google Scholar] [CrossRef] [Green Version]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [Green Version]
- Blenkiron, C.; Goldstein, L.D.; Thorne, N.P.; Spiteri, I.; Chin, S.F.; Dunning, M.J.; Barbosa-Morais, N.L.; Teschendorff, A.E.; Green, A.R.; Ellis, I.O.; et al. MiRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007, 2, R214. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biase, D.; Visani, M.; Morandi, L.; Marucci, G.; Taccioli, C.; Cerasoli, S.; Baruzzi, A.; Pession, A.; PERNO Study Group. miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR. PLoS ONE 2012, 2, e35596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojtechova, Z.; Zavadil, J.; Klozar, J.; Grega, M.; Tachezy, R. Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors. PLoS ONE 2017, 2, e0179645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raychaudhuri, M.; Schuster, T.; Buchner, T.; Malinowsky, K.; Bronger, H.; Schwarz-Boeger, U.; Höfler, H.; Avril, S. Intratumoral heterogeneity of miRNA expression in breast. Cancer J. Mol. Diagn. 2012, 14, 376–384. [Google Scholar] [CrossRef]
- Lou, G.; Ma, N.; Xu, Y.; Jiang, L.; Yang, J.; Wang, C.; Jiao, Y.; Gao, X. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for miRNA quantification. Int. J. Mol. Med. 2015, 36, 1400–1408. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, A.; Castellvi, J.; Artero-Castro, A.; Leal, J.A.; Romagosa, C.; Hernández-Losa, J.; Peg, V.; Fabra, A.; Vidal, F.; Kondoh, H.; et al. miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP CK2-α CCNJ and MEGF9. PLoS ONE 2013, 2, e76247. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Z.; Yuan, P.; Li, Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int. J. Clin. Exp. Pathol. 2015, 2, 6547–6553. [Google Scholar]
- Li, J.Y.; Zhang, Y.; Zhang, W.H.; Jia, S.; Kang, Y.; Zhu, X.Y. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac. J. Cancer Prev. 2012, 2, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Calvano Filho, C.M.; Calvano-Mendes, D.C.; Carvalho, K.C.; Maciel, G.A.; Ricci, M.D.; Torres, A.P.; Filassi, J.R.; Baracat, E.C. Triple-negative and luminal, A.; breast tumors: Differential expression of miR-18a-5p, miR-17-5p, and miR-20a-5p. Tumour Biol. 2014, 35, 7733–7741. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Niu, W.; Wang, H.; Wen, Q.; Fan, S.; Zhao, R.; Li, Z.; Xiong, W.; Peng, S.; et al. Elevated miRNA-125b levels predict a worse prognosis in HER2-positive breast cancer patients. Oncol. Lett. 2016, 2, 867–874. [Google Scholar]
- Greene, S.B.; Herschkowitz, J.I.; Rosen, J.M. The ups and downs of miR-205: Identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol. 2010, 2, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the, E.;-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 2, 894–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Li, L.; Chen, Z.; Zhu, M.; Gu, Y. MiRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int. J. Mol. Med. 2016, 37, 1421–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derfoul, A.; Juan, A.H.; Difilippantonio, M.J.; Palanisamy, N.; Ried, T.; Sartorelli, V. Decreased miRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 2011, 2, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tabatabaei, S.N.; Ruan, X.; Hardy, P. The dual regulatory role of mir-181a in breast cancer. Cell Physiol. Biochem. 2017, 44, 843–856. [Google Scholar] [CrossRef]
- Mar-Aguilar, F.; Luna-Aguirre, C.M.; Moreno-Rocha, J.C.; Araiza-Chavez, J.; Trevino, V.; Rodriguez-Padilla, C.; Resendez-Perez, D. Differential expression of miR-21, miR-125b and miR-191 in breast cancer tissue. Asia-Pacific. J. Clin. Oncol. 2013, 9, 53–59. [Google Scholar] [CrossRef]
- Cheng, C.W.; Yu, J.C.; Hsieh, Y.H.; Liao, W.L.; Shieh, J.C.; Yao, C.C.; Lee, H.J.; Chen, P.M.; Wu, P.E.; Shen, C.Y. Increased cellular levels of miRNA-9 and miRNA-221 correlate with cancer stemness and predict poor outcome in human breast. Cancer Cell Physiol. Biochem. 2018, 48, 2205–2218. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qi, W.; Zhang, N.; Sun, M.; Huo, Q.; Cai, C.; Lv, S.; Yang, Q. MiRNA-99a inhibits tumor aggressive phenotypes through regulating HOXA1 in breast cancer cells. Oncotarget 2015, 2, 32737–32747. [Google Scholar]
- Zhao, H.; Kang, X.; Xia, X.; Wo, L.; Gu, X.; Hu, Y.; Xie, X.; Chang, H.; Lou, L.; Shen, X. miR-145 suppresses breast cancer cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal transition. Am. J. Transl. Res. 2016, 2, 3106–3114. [Google Scholar]
- Cheng, C.W.; Wang, H.W.; Chang, C.W.; Chu, H.W.; Chen, C.Y.; Yu, J.C. MiRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res. Treat. 2012, 2, 1081–1093. [Google Scholar] [CrossRef]
- Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast. Cancer Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, K.S.; Raza, A.; Karedath, T.; Raza, S.S.; Fathima, H.; Ahmed, E.I.; Kuttikrishnan, S.; Therachiyil, L.; Kulinski, M.; Dermime, S.; et al. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers 2020, 12, 351. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Han, G.; Liu, Y.; Jiang, H.; He, Q. MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed. Pharmacother. 2018, 103, 1482–1489. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, C.; Xu, Y.; Qian, W.; Zheng, M. Negative, Regulation of PTEN by MicroRNA-221 and Its Association with Drug Resistance and Cellular Senescence in Lung, Cancer Cells. Biomed. Res. Int. 2018, 2018, 7908950. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Liu, W. MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A. J. Cell Physiol. 2019, 2, 3526–3537. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, X.; Huo, Q.; Sun, M.; Cai, C.; Liu, Z.; Hu, G.; Yang, Q. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 2014, 2, 3119–3128. [Google Scholar] [CrossRef] [Green Version]
- Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008, 283, 14910–14914. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Miao, T.; Feng, T.; Jiang, Z.; Li, M.; Zhou, L.; Li, H. miR-451a Inhibited Cell Proliferation and Enhanced Tamoxifen Sensitive in Breast Cancer via Macrophage Migration Inhibitory Factor. Biomed. Res. Int. 2015, 2015, 207684. [Google Scholar] [CrossRef]
- Li, Y.; Kuscu, C.; Banach, A.; Zhang, Q.; Pulkoski-Gross, A.; Kim, D.; Liu, J.; Roth, E.; Li, E.; Shroyer, K.R.; et al. miR-181a-5p Inhibits Cancer Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14. Cancer Res. 2015, 2, 2674–2685. [Google Scholar] [CrossRef] [Green Version]
miRNA | Stability Measure (M) | V Name | NFn/NF(n+1) Variation | NFn Stability |
---|---|---|---|---|
miRNA-143 | 1.707295837 | 1 | ||
miRNA-100 | 1.80022993 | V1/2 | 0.528235232 | 1.670849973 |
miRNA-126 | 1.800986451 | V2/3 | 0.361285079 | 1.63594884 |
miRNA-125b | 1.811601327 | V3/4 | 0.2027059 | 1.641631035 |
miRNA-145 | 1.859214933 | V4/5 | 0.16494292 | 1.650351674 |
miRNA-20a | 1.876414282 | V5/6 | 0.220042327 | 1.618486051 |
miRNA-21 | 1.933340528 | V6/7 | 0.203421143 | 1.591868665 |
miRNA-222 | 1.937542742 | V7/8 | 0.147144095 | 1.58906537 |
miRNA-181a | 1.969174988 | V8/9 | 0.139065169 | 1.584626526 |
miRNA-221 | 1.971881076 | V9/10 | 0.113726124 | 1.58903484 |
miRNA-204 | 2.00646399 | V10/11 | 0.119749575 | 1.583226837 |
miRNA-214 | 2.106526407 | V11/12 | 0.109896221 | 1.587798283 |
miRNA-30a | 2.156076925 | V12/13 | 0.136245315 | 1.570279014 |
U6 | 2.159702998 | V13/14 | 0.123657069 | 1.558184739 |
U58 | 2.256085709 | V14/15 | 0.118561989 | 1.553964734 |
miRNA-191 | 2.307850884 | V15/16 | 0.117821227 | 1.548875535 |
miRNA-99a | 2.336822525 | V16/17 | 0.09952473 | 1.551560708 |
miRNA-200a | 2.380047394 | V17/18 | 0.112528959 | 1.545511535 |
U54 | 2.391901029 | V18/19 | 0.098671803 | 1.548786269 |
miRNA-200b | 2.70503197 | V19/20 | 0.116023318 | 1.552206252 |
miRNA-205 | 2.808484382 | V20/21 | 0.112807048 | 1.552130251 |
miRNA-451a | 3.301276521 | V21/22 | 0.13524655 | 1.551292987 |
miRNA | Normal vs. Tumor Border | Normal vs. Tumor Center | Normal vs. Tumor Periphery1 | Normal vs. Tumor Periphery2 |
---|---|---|---|---|
miRNA-20a | 0.615703 | 0.062666 | 0.130845 | 0.000003 * |
miRNA-21 | 0.019136 * | 0.000001 * | 0.000006 * | 0.000000 * |
miRNA-125b | 0.561720 | 0.018225 * | 0.001328 * | 0.000002 * |
miRNA-126 | 0.017146 * | 0.683480 | 0.750119 | 0.001682 * |
miRNA-181a | 0.057594 | 0.000003 * | 0.001461 * | 0.000000 * |
miRNA-200b | 0.000029 * | 0.000000 * | 0.030546 * | 0.000004 * |
miRNA-205 | 0.911808 | 0.031572 * | 0.112178 | 0.000014 * |
miRNA-221 | 0.013697 * | 0.779285 | 0.888576 | 0.000000 * |
miRNA-222 | 0.011748 * | 0.702299 | 0.898649 | 0.001328 * |
miRNA-451a | 0.281086 | 0.18650 | 0.000000 * | 0.344958 |
miRNA-99a | 0.0000001 * | 0.000000 * | 0.000418 * | 0.081107 |
miRNA-145 | 0.002129 * | 0.020995 * | 0.637295 | 0.000008 * |
miRNA-200a | 0.000027 * | 0.000000 * | 0.000011 * | 0.000000 * |
miRNA-214 | 0.094485 | 0.959369 | 0.407011 | 0.001531 * |
miRNA-30a | 0.018452 * | 0.001095 * | 0.001934 * | 0.183532 |
miRNA-191 | 0.000425 * | 0.012171 * | 0.002541 * | 0.000000 * |
miRNA | Tumor Border vs. Tumor Center | Tumor Border vs. Tumor Periphery1 | Tumor Border vs. Tumor Periphery2 |
---|---|---|---|
miRNA-20a | 0.030221 * | 0.038173 * | 0.000001 * |
miRNA-21 | 0.000029 * | 0.000155 * | 0.000000 * |
miRNA-125b | 0.004383 * | 0.000195 * | 0.000000 * |
miRNA-126 | 0.005207 * | 0.008225 * | 0.226516 |
miRNA-181a | 0.001454 * | 0.197599 | 0.000067 * |
miRNA-200b | 0.012689 * | 0.068964 | 0.099840 |
miRNA-205 | 0.015337 * | 0.123681 | 0.000000 * |
miRNA-221 | 0.002448 * | 0.020571 * | 0.000000 * |
miRNA-222 | 0.012689 * | 0.004383 * | 0.000001 * |
miRNA-451 | 0.378257 | 0.000000 * | 0.040743 * |
miRNA-99a | 0.000207 * | 0.911808 | 0.008915 * |
miRNA-145 | 0.193051 | 0.005912 * | 0.000290 * |
miRNA-200a | 0.000001 * | 0.066952 | 0.000000 * |
miRNA-214 | 0.252791 | 0.799400 | 0.022097 * |
miRNA-30a | 0.114274 | 0.111264 | 0.350545 |
miRNA-191 | 0.414709 | 0.984406 | 0.000001 * |
miRNA | Tumor Center vs. Tumor Periphery1 | Tumor Center vs. Tumor Periphery2 | Tumor Periphery1 vs. Tumor Periphery2 |
---|---|---|---|
miRNA-20a | 0.918841 | 0.000077 * | 0.000946 * |
miRNA-21 | 0.798904 | 0.000054 * | 0.000057 * |
miRNA-125b | 0.179320 | 0.000000 * | 0.000000 * |
miRNA-126 | 0.908738 | 0.000572 * | 0.000815 * |
miRNA-181a | 0.127579 | 0.137569 | 0.006775 * |
miRNA-200b | 0.000156 * | 0.721300 | 0.003172 * |
miRNA-205 | 0.338451 | 0.004479 * | 0.000147 * |
miRNA-221 | 0.888576 | 0.000000 * | 0.000000 * |
miRNA-222 | 0.601311 | 0.001266 * | 0.006247 * |
miRNA-451a | 0.000000 * | 0.239813 | 0.000011 * |
miRNA-99a | 0.000357 * | 0.000004 * | 0.068390 |
miRNA-145 | 0.035976 * | 0.000042 * | 0.000002 * |
miRNA-200a | 0.007054 * | 0.062666 | 0.000069 * |
miRNA-214 | 0.358206 | 0.006506 * | 0.053998 |
miRNA-30a | 0.858470 | 0.042196 * | 0.106438 |
miRNA-191 | 0.319401 | 0.000000 * | 0.000004 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veryaskina, Y.A.; Titov, S.E.; Kometova, V.V.; Rodionov, V.V.; Zhimulev, I.F. Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland. Non-Coding RNA 2020, 6, 16. https://doi.org/10.3390/ncrna6020016
Veryaskina YA, Titov SE, Kometova VV, Rodionov VV, Zhimulev IF. Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland. Non-Coding RNA. 2020; 6(2):16. https://doi.org/10.3390/ncrna6020016
Chicago/Turabian StyleVeryaskina, Yuliya A., Sergei E. Titov, Vlada V. Kometova, Valerii V. Rodionov, and Igor F. Zhimulev. 2020. "Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland" Non-Coding RNA 6, no. 2: 16. https://doi.org/10.3390/ncrna6020016
APA StyleVeryaskina, Y. A., Titov, S. E., Kometova, V. V., Rodionov, V. V., & Zhimulev, I. F. (2020). Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland. Non-Coding RNA, 6(2), 16. https://doi.org/10.3390/ncrna6020016