The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep
Abstract
:1. Introduction
2. Locations of miRNAs in the Mammary Glands of Various Animals
2.1. Cattle
2.2. Goats
2.3. Sheep
3. Regulation of miRNA Gene Expression in the Mammary Glands of Ruminants
3.1. Functions of Mammary miRNAs and the Variability of Their Expression Depending on the Reproductive Period
3.2. Hormonal Regulation of Mammary miRNAs
3.3. Lipid Metabolism
3.4. Mammary Gland Cells
4. Dependence of Mammary miRNA Expression on External Conditions
4.1. Immunological Role of Mammary Gland miRNAs and Their Functions in Breast Diseases
4.2. Heat Stress
4.3. Food Components and Additives
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, O.; Morrow, A.L. Human Milk Composition. Pediatric Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Do, D.N.; Ibeagha-Awemu, E.M. Non-Coding RNA Roles in Ruminant Mammary Gland Development and Lactation. In Current Topics in Lactation; InTech: London, UK, 2017; Volume 55. [Google Scholar]
- Wormsbaecher, C.; Hindman, A.R.; Avendano, A.; Cortes-Medina, M.; Jones, C.E.; Bushman, A.; Onua, L.; Kovalchin, C.E.; Murphy, A.R.; Helber, H.L.; et al. In Utero Estrogenic Endocrine Disruption Alters the Stroma to Increase Extracellular Matrix Density and Mammary Gland Stiffness. Breast Cancer Res. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Perrot-Applanat, M.; Kolf-Clauw, M.; Michel, C.; Beausoleil, C. Alteration of Mammary Gland Development by Bisphenol a and Evidence of a Mode of Action Mediated through Endocrine Disruption. Mol. Cell. Endocrinol. 2018, 475, 29–53. [Google Scholar] [CrossRef]
- Welsh, J. Function of the Vitamin D Endocrine System in Mammary Gland and Breast Cancer. Mol. Cell. Endocrinol. 2017, 453, 88–95. [Google Scholar] [CrossRef]
- Ma, M.; Pei, Y.; Wang, X.; Feng, J.; Zhang, Y.; Gao, M.-Q. LncRNA XIST Mediates Bovine Mammary Epithelial Cell Inflammatory Response via NF-ΚB/NLRP3 Inflammasome Pathway. Cell Prolif. 2019, 52, e12525. [Google Scholar] [CrossRef] [Green Version]
- Olabi, S.; Ucar, A.; Brennan, K.; Streuli, C.H. Integrin-Rac Signalling for Mammary Epithelial Stem Cell Self-Renewal. Breast Cancer Res. 2018, 20, 128. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Eversole, K.A.; Gill, C.A.; Green, R.D.; Hamernik, D.L.; Kappes, S.M.; Lien, S.; et al. Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science 2009, 324, 528–532. [Google Scholar]
- Heaton, M.P.; Smith, T.P.L.; Bickhart, D.M.; Vander Ley, B.L.; Kuehn, L.A.; Oppenheimer, J.; Shafer, W.R.; Schuetze, F.T.; Stroud, B.; McClure, J.C.; et al. A Reference Genome Assembly of Simmental Cattle, Bos Taurus Taurus. J. Hered. 2021, 112, 184–191. [Google Scholar] [CrossRef]
- Lemay, D.G.; Lynn, D.J.; Martin, W.F.; Neville, M.C.; Casey, T.M.; Rincon, G.; Kriventseva, E.V.; Barris, W.C.; Hinrichs, A.S.; Molenaar, A.J.; et al. The Bovine Lactation Genome: Insights into the Evolution of Mammalian Milk. Genome Biol. 2009, 10, R43. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Rincon, G.; Islas-Trejo, A.; Medrano, J.F. Transcriptional Profiling of Bovine Milk Using RNA Sequencing. BMC Genom. 2012, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Lawlor, T.J.; Crooker, B.A.; Van Tassell, C.P.; Yang, J.; Wang, S.; Matukumalli, L.K.; et al. Genome-Wide Association Analysis of Thirty One Production, Health, Reproduction and Body Conformation Traits in Contemporary U.S. Holstein Cows. BMC Genom. 2011, 12, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strucken, E.M.; Bortfeldt, R.H.; de Koning, D.J.; Brockmann, G.A. Genome-Wide Associations for Investigating Time-Dependent Genetic Effects for Milk Production Traits in Dairy Cattle. Anim. Genet. 2012, 43, 375–382. [Google Scholar] [CrossRef]
- Buitenhuis, B.; Janss, L.L.; Poulsen, N.A.; Larsen, L.B.; Larsen, M.K.; Sørensen, P. Genome-Wide Association and Biological Pathway Analysis for Milk-Fat Composition in Danish Holstein and Danish Jersey Cattle. BMC Genom. 2014, 15, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, L.-A.; Cocks, B.G.; Hayes, B.J. Multibreed Genome Wide Association Can Improve Precision of Mapping Causative Variants Underlying Milk Production in Dairy Cattle. BMC Genom. 2014, 15, 62. [Google Scholar] [CrossRef] [Green Version]
- Elsik, C.G.; Unni, D.R.; Diesh, C.M.; Tayal, A.; Emery, M.L.; Nguyen, H.N.; Hagen, D.E. Bovine Genome Database: New Tools for Gleaning Function from the Bos Taurus Genome. Nucleic Acids Res. 2016, 44, D834–D839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czech, B.; Guldbrandtsen, B.; Szyda, J. Patterns of DNA Variation between the Autosomes, the X Chromosome and the Y Chromosome in Bos Taurus Genome. Sci. Rep. 2020, 10, 13641. [Google Scholar] [CrossRef] [PubMed]
- Dubon, M.A.C.; Pedrosa, V.B.; Feitosa, F.L.B.; Costa, R.B.; de Camargo, G.M.F.; Silva, M.R.; Pinto, L.F.B. Identification of Novel Candidate Genes for Age at First Calving in Nellore Cows Using a SNP Chip Specifically Developed for Bos Taurus Indicus Cattle. Theriogenology 2021, 173, 156–162. [Google Scholar] [CrossRef]
- The ENCODE Project Consortium. Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature 2007, 447, 799. [Google Scholar] [CrossRef] [Green Version]
- Sana, J.; Faltejskova, P.; Svoboda, M.; Slaby, O. Novel Classes of Non-Coding RNAs and Cancer. J. Transl. Med. 2012, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Brodersen, P.; Voinnet, O. Revisiting the Principles of microRNA Target Recognition and Mode of Action. Nat. Rev. Mol. Cell Biol. 2009, 10, 141–148. [Google Scholar] [CrossRef]
- Bartel, D.P. microRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Morozova, N.; Zinovyev, A.; Nonne, N.; Pritchard, L.-L.; Gorban, A.N.; Harel-Bellan, A. Kinetic Signatures of microRNA Modes of Action. RNA 2012, 18, 1635–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehl, T.; Backes, C.; Kern, F.; Fehlmann, T.; Ludwig, N.; Meese, E.; Lenhof, H.-P.; Keller, A. About miRNAs, miRNA Seeds, Target Genes and Target Pathways. Oncotarget 2017, 8, 107167. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K.; Kim, V.N. Processing of Intronic microRNAs. EMBO J. 2007, 26, 775–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambros, V.; Chen, X. The Regulation of Genes and Genomes by Small RNAs. Development 2007, 134, 1635–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of Post-Transcriptional Regulation by microRNAs: Are the Answers in Sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Lobo, N.A.; Shimono, Y.; Qian, D.; Clarke, M.F. The Biology of Cancer Stem Cells. Annu. Rev. Cell Dev. Biol. 2007, 23, 675–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauley, K.M.; Cha, S.; Chan, E.K.L. microRNA in Autoimmunity and Autoimmune Diseases. J. Autoimmun. 2009, 32, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thum, T. microRNA Therapeutics in Cardiovascular Medicine. EMBO Mol. Med. 2012, 4, 3–14. [Google Scholar] [CrossRef]
- Di Leva, G.; Croce, C.M. miRNA Profiling of Cancer. Curr. Opin. Genet. Dev. 2013, 23, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gao, C.; Li, H.; Huang, L.; Sun, Q.; Dong, Y.; Tian, C.; Gao, S.; Dong, H.; Guan, D.; et al. Identification and Characterization of microRNAs in Raw Milk during Different Periods of Lactation, Commercial Fluid, and Powdered Milk Products. Cell Res. 2010, 20, 1128–1137. [Google Scholar] [CrossRef]
- Kosaka, N.; Izumi, H.; Sekine, K.; Ochiya, T. microRNA as a New Immune-Regulatory Agent in Breast Milk. Silence 2010, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Avril-Sassen, S.; Goldstein, L.D.; Stingl, J.; Blenkiron, C.; Le Quesne, J.; Spiteri, I.; Karagavriilidou, K.; Watson, C.J.; Tavaré, S.; Miska, E.A.; et al. Characterisation of microRNA Expression in Post-Natal Mouse Mammary Gland Development. BMC Genom. 2009, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Human Milk miRNAs Primarily Originate from the Mammary Gland Resulting in Unique miRNA Profiles of Fractionated Milk. Sci. Rep. 2016, 6, 20680. [Google Scholar] [CrossRef]
- Li, Q.; Yang, C.; Du, J.; Zhang, B.; He, Y.; Hu, Q.; Li, M.; Zhang, Y.; Wang, C.; Zhong, J. Characterization of miRNA Profiles in the Mammary Tissue of Dairy Cattle in Response to Heat Stress. BMC Genom. 2018, 19, 105–149. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Wang, G.; Xie, Z.; Zhang, C.; Wang, J. Identification and Characterization of microRNA in the Dairy Goat (Capra Hircus) Mammary Gland by Solexa Deep-Sequencing Technology. Mol. Biol. Rep. 2012, 39, 9361–9371. [Google Scholar] [CrossRef]
- Wang, J.; Hao, Z.; Hu, J.; Liu, X.; Li, S.; Wang, J.; Shen, J.; Song, Y.; Ke, N.; Luo, Y. Small RNA Deep Sequencing Reveals the Expressions of microRNAs in Ovine Mammary Gland Development at Peak-Lactation and during the Non-Lactating Period. Genomics 2021, 113, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Penso-Dolfin, L.; Moxon, S.; Haerty, W.; Di Palma, F. The Evolutionary Dynamics of microRNAs in Domestic Mammals. Sci. Rep. 2018, 8, 17050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gu, Z.; Jiang, H. microRNAs in Farm Animals. Animal 2013, 7, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, A.; Morris, D.G. microRNAs in Domestic Livestock. Physiol. Genom. 2013, 45, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Wara, A.B.; Chhotaray, S.; Shafi, B.U.D.; Panda, S.; Tarang, M.; Yosuf, S.; Baba, N.A.; Kumar, A. Role of miRNA Signatures in Health and Productivity of Livestock. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 727–738. [Google Scholar] [CrossRef]
- Bourdon, C.; Bardou, P.; Aujean, E.; Le Guillou, S.; Tosser-Klopp, G.; Le Provost, F. RumimiR: A Detailed microRNA Database Focused on Ruminant Species. Database 2019, 2019, baz099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Moisá, S.; Khan, M.J.; Wang, J.; Bu, D.; Loor, J.J. microRNA Expression Patterns in the Bovine Mammary Gland Are Affected by Stage of Lactation. J. Dairy Sci. 2012, 95, 6529–6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsik, C.G.; Tellam, R.L.; Worley, K.C.; Gibbs, R.A.; Muzny, D.M.; Weinstock, G.M.; Adelson, D.L.; Eichler, E.E.; Elnitski, L.; Guigo, R.; et al. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science 2009, 324, 522–528. [Google Scholar]
- Gu, S.G.; Pak, J.; Barberan-Soler, S.; Ali, M.; Fire, A.; Zahler, A.M. Distinct Ribonucleoprotein Reservoirs for microRNA and SiRNA Populations in C. Elegans. RNA 2007, 13, 1492–1504. [Google Scholar] [CrossRef] [Green Version]
- Long, J.-E.; Chen, H.-X. Identification and Characteristics of Cattle microRNAs by Homology Searching and Small RNA Cloning. Biochem. Genet. 2009, 47, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Izumi, H.; Kosaka, N.; Shimizu, T.; Sekine, K.; Ochiya, T.; Takase, M. Bovine Milk Contains microRNA and Messenger RNA That Are Stable under Degradative Conditions. J. Dairy Sci. 2012, 95, 4831–4841. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, H.; Jin, X.; Lo, L.; Liu, J. Expression Profiles of microRNAs from Lactating and Non-Lactating Bovine Mammary Glands and Identification of miRNA Related to Lactation. BMC Genom. 2012, 13, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Guillou, S.; Marthey, S.; Laloë, D.; Laubier, J.; Mobuchon, L.; Leroux, C.; Le Provost, F. Characterisation and Comparison of Lactating Mouse and Bovine Mammary Gland MiRNomes. PLoS ONE 2014, 9, e91938. [Google Scholar]
- Li, R.; Beaudoin, F.; Ammah, A.A.; Bissonnette, N.; Benchaar, C.; Zhao, X.; Lei, C.; Ibeagha-Awemu, E.M. Deep Sequencing Shows microRNA Involvement in Bovine Mammary Gland Adaptation to Diets Supplemented with Linseed Oil or Safflower Oil. BMC Genom. 2015, 16, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Dudemaine, P.-L.; Zhao, X.; Lei, C.; Ibeagha-Awemu, E.M. Comparative Analysis of the MiRNome of Bovine Milk Fat, Whey and Cells. PLoS ONE 2016, 11, e0154129. [Google Scholar] [CrossRef] [Green Version]
- Wicik, Z.; Gajewska, M.; Majewska, A.; Walkiewicz, D.; Osińska, E.; Motyl, T. Characterization of microRNA Profile in Mammary Tissue of Dairy and Beef Breed Heifers. J. Anim. Breed. Genet. 2016, 133, 31–42. [Google Scholar] [CrossRef]
- Shen, B.; Yang, Z.; Han, S.; Zou, Z.; Liu, J.; Nie, L.; Dong, W.; Li, E.; Liu, S.; Zhao, Z.; et al. MiR-124a Affects Lipid Metabolism by Regulating PECR Gene. BioMed Res. Int. 2019, 2019, 2596914. [Google Scholar] [CrossRef] [Green Version]
- Strucken, E.M.; Laurenson, Y.C.S.M.; Brockmann, G.A. Go with the Flow—Biology and Genetics of the Lactation Cycle. Front. Genet. 2015, 6, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Liu, Q.; Zhang, X.; Ren, Y.; Lei, X.; Li, S.; Chen, Q.; Deng, K.; Wang, P.; Zhang, H.; et al. Identification and Analysis of the Expression of microRNA from Lactating and Nonlactating Mammary Glands of the Chinese Swamp Buffalo. J. Dairy Sci. 2017, 100, 1971–1986. [Google Scholar] [CrossRef] [Green Version]
- Ju, Z.; Jiang, Q.; Liu, G.; Wang, X.; Luo, G.; Zhang, Y.; Zhang, J.; Zhong, J.; Huang, J. Solexa Sequencing and Custom microRNA Chip Reveal Repertoire of microRNAs in Mammary Gland of Bovine Suffering from Natural Infectious Mastitis. Anim. Genet. 2018, 49, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Ibeagha-Awemu, E.M.; Liang, G.; Beaudoin, F.; Zhao, X.; Guan, L.L. Transcriptome microRNA Profiling of Bovine Mammary Epithelial Cells Challenged with Escherichia Coli or Staphylococcus Aureusbacteria Reveals Pathogen Directed microRNA Expression Profiles. BMC Genom. 2014, 15, 181. [Google Scholar] [CrossRef] [Green Version]
- Luoreng, Z.-M.; Wang, X.-P.; Mei, C.-G.; Zan, L.-S. Comparison of microRNA Profiles between Bovine Mammary Glands Infected with Staphylococcus Aureus and Escherichia Coli. Int. J. Biol. Sci. 2018, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.; He, H.; Jia, X.; Chen, S.; Wang, J.; Shi, Y.; Liu, B.; Xiao, W.; Lai, S. Genome-Wide microRNA Profiling of Bovine Milk-Derived Exosomes Infected with Staphylococcus Aureus. Cell Stress Chaperones 2018, 23, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, X.; Liu, J.; Zou, Z.; Luo, L.; Wu, R.; Zhao, Z.; Wang, C.; Shen, B. MiR-223 Targeting CBLB Contributes to Resistance to Staphylococcus Aureus Mastitis Through the PI3K/AKT/NF-ΚB Pathway. Front. Vet. Sci. 2020, 7, 506. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, S.; Zhang, Q.; Guo, X.; Wu, C.; Yao, M.; Sun, D. Comprehensive microRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages. Front. Genet. 2020, 11, 548268. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Hou, Y.; Yang, S.; Xie, Y.; Zhang, S.; Zhang, Y.; Zhang, Q.; Lu, X.; Liu, G.E.; Sun, D. Transcriptional Profiling of Mammary Gland in Holstein Cows with Extremely Different Milk Protein and Fat Percentage Using RNA Sequencing. BMC Genom. 2014, 15, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Shi, H.; Luo, J.; Yi, Y.; Yao, D.; Zhang, X.; Ma, G.; Loor, J.J. MiR-145 Regulates Lipogenesis in Goat Mammary Cells Via Targeting INSIG1 and Epigenetic Regulation of Lipid-Related Genes. J. Cell. Physiol. 2017, 232, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Xie, M.; Jiang, Y.; Xiao, N.; Du, X.; Zhang, W.; Tosser-Klopp, G.; Wang, J.; Yang, S.; Liang, J.; et al. Sequencing and Automated Whole-Genome Optical Mapping of the Genome of a Domestic Goat (Capra Hircus). Nat. Biotechnol. 2013, 31, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lan, X.; Guo, W.; Sun, J.; Huang, Y.; Wang, J.; Huang, T.; Lei, C.; Fang, X.; Chen, H. Comparative Transcriptome Profiling of Dairy Goat microRNAs from Dry Period and Peak Lactation Mammary Gland Tissues. PLoS ONE 2012, 7, e52388. [Google Scholar]
- Hou, J.; An, X.; Song, Y.; Cao, B.; Yang, H.; Zhang, Z.; Shen, W.; Li, Y. Detection and Comparison of microRNAs in the Caprine Mammary Gland Tissues of Colostrum and Common Milk Stages. BMC Genet. 2017, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Wang, G.; Xie, Z.; Wang, J.; Zhang, C.; Dong, F.; Chen, C. Identification of Novel and Differentially Expressed microRNAs of Dairy Goat Mammary Gland Tissues Using Solexa Sequencing and Bioinformatics. PLoS ONE 2012, 7, e49463. [Google Scholar] [CrossRef]
- Xuan, R.; Chao, T.; Wang, A.; Zhang, F.; Sun, P.; Liu, S.; Guo, M.; Wang, G.; Ji, Z.; Wang, J.; et al. Characterization of microRNA Profiles in the Mammary Gland Tissue of Dairy Goats at the Late Lactation, Dry Period and Late Gestation Stages. PLoS ONE 2020, 15, e0234427. [Google Scholar] [CrossRef] [PubMed]
- Mobuchon, L.; Marthey, S.; Boussaha, M.; Le Guillou, S.; Leroux, C.; Le Provost, F. Annotation of the Goat Genome Using next Generation Sequencing of microRNA Expressed by the Lactating Mammary Gland: Comparison of Three Approaches. BMC Genom. 2015, 16, 285. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.; Qiu, Y.; Zhen, Z.; Zhao, F.; Wang, C.; Cui, Y.; Li, Q.; Zhang, L. Computational Identification and Characterization of Novel microRNA in the Mammary Gland of Dairy Goat (Capra Hircus). J. Genet. 2016, 95, 625–637. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, Z.; Chao, T.; Hou, L.; Fan, R.; He, R.; Wang, G.; Wang, J. Screening of miRNA Profiles and Construction of Regulation Networks in Early and Late Lactation of Dairy Goat Mammary Glands. Sci. Rep. 2017, 7, 11933. [Google Scholar] [CrossRef] [PubMed]
- Caiment, F.; Charlier, C.; Hadfield, T.; Cockett, N.; Georges, M.; Baurain, D. Assessing the Effect of the CLPG Mutation on the microRNA Catalog of Skeletal Muscle Using High-Throughput Sequencing. Genome Res. 2010, 20, 1651–1662. [Google Scholar] [CrossRef] [Green Version]
- McBride, D.; Carré, W.; Sontakke, S.D.; Hogg, C.O.; Law, A.; Donadeu, F.X.; Clinton, M. Identification of miRNAs Associated with the Follicular–Luteal Transition in the Ruminant Ovary. Reproduction 2012, 144, 221. [Google Scholar] [CrossRef] [Green Version]
- Galio, L.; Droineau, S.; Yeboah, P.; Boudiaf, H.; Bouet, S.; Truchet, S.; Devinoy, E. microRNA in the Ovine Mammary Gland during Early Pregnancy: Spatial and Temporal Expression of MiR-21, MiR-205, and MiR-200. Physiol. Genom. 2013, 45, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S.; Makunin, I.V. Non-Coding RNA. Hum. Mol. Genet. 2006, 15, R17–R29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivdasani, R.A. microRNAs: Regulators of Gene Expression and Cell Differentiation. Blood 2006, 108, 3646–3653. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Li, R.; Dudemaine, P.-L.; Ibeagha-Awemu, E.M. microRNA Roles in Signalling during Lactation: An Insight from Differential Expression, Time Course and Pathway Analyses of Deep Sequence Data. Sci. Rep. 2017, 7, 44605. [Google Scholar] [CrossRef] [Green Version]
- Jiao, B.L.; Zhang, X.L.; Wang, S.H.; Wang, L.X.; Luo, Z.X.; Zhao, H.B.; Khatib, H.; Wang, X. microRNA-221 Regulates Proliferation of Bovine Mammary Gland Epithelial Cells by Targeting the STAT5a and IRS1 Genes. J. Dairy Sci. 2019, 102, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, J.; Sun, S.; Cao, D.; Shi, H.; Loor, J.J. MiR-148a and MiR-17–5p Synergistically Regulate Milk TAG Synthesis via PPARGC1A and PPARA in Goat Mammary Epithelial Cells. RNA Biol. 2017, 14, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Shi, H.; Sun, S.; Xu, H.; Cao, D.; Luo, J. microRNA-181b Suppresses TAG via Target IRS2 and Regulating Multiple Genes in the Hippo Pathway. Exp. Cell Res. 2016, 348, 64–74. [Google Scholar] [CrossRef]
- Chu, M.; Zhao, Y.; Yu, S.; Hao, Y.; Zhang, P.; Feng, Y.; Zhang, H.; Ma, D.; Liu, J.; Cheng, M.; et al. MiR-15b Negatively Correlates with Lipid Metabolism in Mammary Epithelial Cells. Am. J. Physiol.-Cell Physiol. 2018, 314, C43–C52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Luo, J.; Zhang, C.; Ma, Y.; Sun, S.; Zhang, T.; Loor, J.J. Mechanism of Prolactin Inhibition of miR-135b via Methylation in Goat Mammary Epithelial Cells. J. Cell. Physiol. 2018, 233, 651–662. [Google Scholar] [CrossRef]
- Lin, X.; Luo, J.; Zhang, L.; Wang, W.; Shi, H.; Zhu, J. MiR-27a Suppresses Triglyceride Accumulation and Affects Gene mRNA Expression Associated with Fat Metabolism in Dairy Goat Mammary Gland Epithelial Cells. Gene 2013, 521, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Lee, H.; Jung, C.H.; Jeon, T.I.; Ha, T.Y. microRNA-146b Promotes Adipogenesis by Suppressing the SIRT 1-FOXO 1 Cascade. EMBO Mol. Med. 2013, 5, 1602–1612. [Google Scholar] [CrossRef]
- Elsarraj, H.S.; Hong, Y.; Valdez, K.; Carletti, M.; Salah, S.M.; Raimo, M.; Taverna, D.; Prochasson, P.; Bharadwaj, U.; Tweardy, D.J.; et al. Novel Role of microRNA146b in Promoting Mammary Alveolar Progenitor Cell Maintenance. J. Cell Sci. 2013, 126, 2446–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, F.; Li, H.; Zhang, J.; Lu, J.; Xia, Y.; Xia, Q. MiR-31 Regulates Interleukin 2 and Kinase Suppressor of Ras 2 during T Cell Activation. Genes Immun. 2013, 14, 127–131. [Google Scholar] [CrossRef]
- Bryan, D.-L.; Forsyth, K.D.; Gibson, R.A.; Hawkes, J.S. Interleukin-2 in Human Milk: A Potential Modulator of Lymphocyte Development in the Breastfed Infant. Cytokine 2006, 33, 289–293. [Google Scholar] [CrossRef]
- Aspinall, R.; Prentice, A.M.; Ngom, P.T. Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T-Cell Development in Offspring. PLoS ONE 2011, 6, e20812. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Hwang, S.J.; Bae, Y.C.; Jung, J.S. MiR-21 Regulates Adipogenic Differentiation Through the Modulation of TGF-β Signaling in Mesenchymal Stem Cells Derived from Human Adipose Tissue. Stem Cells 2009, 27, 3093–3102. [Google Scholar] [CrossRef] [PubMed]
- NEVILLE, M. Lactation and Its Hormonal Control. In Knobil and Neill’s Physiology of Reproduction; Elsevier: Amsterdam, The Netherlands, 2006; pp. 2993–3054. [Google Scholar]
- Akers, R.M. Lactation and the Mammary Gland; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Muroya, S.; Hagi, T.; Kimura, A.; Aso, H.; Matsuzaki, M.; Nomura, M. Lactogenic Hormones Alter Cellular and Extracellular microRNA Expression in Bovine Mammary Epithelial Cell Culture. J. Anim. Sci. Biotechnol. 2016, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Luo, J.; Zhang, L.; Zhu, J. microRNAs Synergistically Regulate Milk Fat Synthesis in Mammary Gland Epithelial Cells of Dairy Goats. Gene Expr. 2013, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Yuan, Y.; Zhang, M.; Sun, Y.; Wei, C.; Xie, X.; Zhang, Y.; Wang, S.; Chen, Z.; Wang, X. PRL/microRNA-183/IRS1 Pathway Regulates Milk Fat Metabolism in Cow Mammary Epithelial Cells. Genes 2020, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Dong, F.; Wang, G.; Hou, L.; Liu, Z.; Chao, T.; Wang, J. MiR-135a Targets and Regulates Prolactin Receptor Gene in Goat Mammary Epithelial Cells. DNA Cell Biol. 2015, 34, 534–540. [Google Scholar] [CrossRef]
- Cui, W.; Li, Q.; Feng, L.; Ding, W. MiR-126-3p Regulates Progesterone Receptors and Involves Development and Lactation of Mouse Mammary Gland. Mol. Cell. Biochem. 2011, 355, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.E.; Vernon, R.G. Effects of Exogenous Bovine Somatotropin on Lactation. Annu. Rev. Nutr. 1993, 13, 437–461. [Google Scholar] [CrossRef]
- Sakamoto, K.; Komatsu, T.; Kobayashi, T.; Rose, M.T.; Aso, H.; Hagino, A.; Obara, Y. Growth Hormone Acts on the Synthesis and Secretion of α-Casein in Bovine Mammary Epithelial Cells. J. Dairy Res. 2005, 72, 264–270. [Google Scholar] [CrossRef]
- Li, H.-M.; Wang, C.-M.; Li, Q.-Z.; Gao, X.-J. MiR-15a Decreases Bovine Mammary Epithelial Cell Viability and Lactation and Regulates Growth Hormone Receptor Expression. Molecules 2012, 17, 12037–12048. [Google Scholar] [CrossRef] [Green Version]
- Llobet-Navas, D.; Rodriguez-Barrueco, R.; de la Iglesia-Vicente, J.; Olivan, M.; Castro, V.; Saucedo-Cuevas, L.; Marshall, N.; Putcha, P.; Castillo-Martin, M.; Bardot, E.; et al. The microRNA 424/503 Cluster Reduces CDC25A Expression during Cell Cycle Arrest Imposed by Transforming Growth Factor β in Mammary Epithelial Cells. Mol. Cell. Biol. 2014, 34, 4216–4231. [Google Scholar] [CrossRef] [Green Version]
- Smith, S. Mechanism of Chain Length Determination in Biosynthesis of Milk Fatty Acids. J. Dairy Sci. 1980, 63, 337–352. [Google Scholar] [CrossRef]
- Anderson, S.M.; Rudolph, M.C.; McManaman, J.L.; Neville, M.C. Key Stages in Mammary Gland Development. Secretory Activation in the Mammary Gland: It’s Not Just about Milk Protein Synthesis! Breast Cancer Res. 2007, 9, 204. [Google Scholar] [CrossRef]
- Rebuffé-Scrive, M.; Enk, L.; Crona, N.; Lönnroth, P.; Abrahamsson, L.; Smith, U.; Björntorp, P. Fat Cell Metabolism in Different Regions in Women. Effect of Menstrual Cycle, Pregnancy, and Lactation. J. Clin. Investig. 1985, 75, 1973–1976. [Google Scholar] [CrossRef] [Green Version]
- Rönn, T.; Volkov, P.; Davegårdh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, Å.; Dekker Nitert, M.; Eriksson, K.-F.; et al. A Six Months Exercise Intervention Influences the Genome-Wide DNA Methylation Pattern in Human Adipose Tissue. PLoS Genet. 2013, 9, e1003572. [Google Scholar] [CrossRef]
- Lomb, D.J.; Laurent, G.; Haigis, M.C. Sirtuins Regulate Key Aspects of Lipid Metabolism. Biochim. Et Biophys. Acta-Proteins Proteom. 2010, 1804, 1652–1657. [Google Scholar] [CrossRef]
- Feng, D.; Liu, T.; Sun, Z.; Bugge, A.; Mullican, S.E.; Alenghat, T.; Liu, X.S.; Lazar, M.A. A Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism. Science 2011, 331, 1315–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Xia, W.; Hou, M. Macrophage Migration Inhibitory Factor Serves a Pivotal Role In the Regulation of Radiation-Induced Cardiac Senescencethrough Rebalancing the microRNA-34a/Sirtuin 1 Signaling Pathway. Int. J. Mol. Med. 2018, 42, 2849–2858. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Luo, J.; Zhang, L.; Wang, W.; Gou, D. MiR-103 Controls Milk Fat Accumulation in Goat (Capra Hircus) Mammary Gland during Lactation. PLoS ONE 2013, 8, e79258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; Andrew, S.D.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; et al. Genome-Wide Identification of microRNAs Regulating Cholesterol and Triglyceride Homeostasis. Nat. Med. 2015, 21, 1290–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JENSEN, R.G.; NEWBURG, D.S. Bovine Milk Lipids. In Handbook of Milk Composition; Elsevier: Amsterdam, The Netherlands, 1995; pp. 543–575. [Google Scholar]
- Wang, H.; Luo, J.; Chen, Z.; Cao, W.T.; Xu, H.F.; Gou, D.M.; Zhu, J.J. microRNA-24 Can Control Triacylglycerol Synthesis in Goat Mammary Epithelial Cells by Targeting the Fatty Acid Synthase Gene. J. Dairy Sci. 2015, 98, 9001–9014. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, J.; Wang, C.; Li, K.; Liu, B.; Du, Y.; Xiao, F.; Chen, S.; Guo, F. MiR-212-5p Suppresses Lipid Accumulation by Targeting FAS and SCD1. J. Mol. Endocrinol. 2017, 59, 205–217. [Google Scholar] [CrossRef]
- Chen, Z.; Chu, S.; Liang, Y.; Xu, T.; Sun, Y.; Li, M.; Zhang, H.; Wang, X.; Mao, Y.; Loor, J.J.; et al. MiR-497 Regulates Fatty Acid Synthesis via LATS2 in Bovine Mammary Epithelial Cells. Food Funct. 2020, 11, 8625–8636. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chu, S.; Wang, X.; Sun, Y.; Xu, T.; Mao, Y.; Loor, J.J.; Yang, Z. MiR-16a Regulates Milk Fat Metabolism by Targeting Large Tumor Suppressor Kinase 1 (LATS1) in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2019, 67, 11167–11178. [Google Scholar] [CrossRef]
- Deiuliis, J.A. microRNAs as Regulators of Metabolic Disease: Pathophysiologic Significance and Emerging Role as Biomarkers and Therapeutics. Int. J. Obes. 2016, 40, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Lehrke, M.; Lazar, M.A. The Many Faces of PPARγ. Cell 2005, 123, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Cao, M.; Kong, L.; Liu, J.; Wang, Y.; Song, C.; Chen, X.; Lai, M.; Fang, X.; Chen, H.; et al. MiR-204-5p Promotes Lipid Synthesis in Mammary Epithelial Cells by Targeting SIRT1. Biochem. Biophys. Res. Commun. 2020, 533, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xia, H.; Lu, X.; Xu, C.; Li, M.; Chen, Z.; Yang, Z. microRNA-141 Participates in Milk Lipid Metabolism by Targeting SIRT1 in Bovine Mammary Epithelial Cells. Anim. Prod. Sci. 2020, 60, 1877–1884. [Google Scholar] [CrossRef]
- Lu, X.; Xia, H.; Jiang, J.; Xu, X.; Li, M.; Chen, Z.; Sun, Y.; Zhang, H.; Yang, Z. microRNA-212 Targets SIRT2 to Influence Lipogenesis in Bovine Mammary Epithelial Cell Line. J. Dairy Res. 2020, 87, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Mani, O.; Körner, M.; Ontsouka, C.E.; Sorensen, M.T.; Sejrsen, K.; Bruckmaier, R.M.; Albrecht, C. Identification of ABCA1 and ABCG1 in Milk Fat Globules and Mammary Cells—Implications for Milk Cholesterol Secretion. J. Dairy Sci. 2011, 94, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chu, S.; Wang, X.; Fan, Y.; Zhan, T.; Arbab, A.A.I.; Li, M.; Zhang, H.; Mao, Y.; Loor, J.J.; et al. microRNA-106b Regulates Milk Fat Metabolism via ATP Binding Cassette Subfamily A Member 1 (ABCA1) in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2019, 67, 3981–3990. [Google Scholar] [CrossRef]
- Chen, Z.; Qiu, H.; Ma, L.; Luo, J.; Sun, S.; Kang, K.; Gou, D.; Loor, J. MiR-30e-5p and MiR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1. Int. J. Mol. Sci. 2016, 17, 1909. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Zhao, Y.; Feng, Y.; Zhang, H.; Liu, J.; Cheng, M.; Li, L.; Shen, W.; Cao, H.; Li, Q.; et al. microRNA-126 Participates in Lipid Metabolism in Mammary Epithelial Cells. Mol. Cell. Endocrinol. 2017, 454, 77–86. [Google Scholar] [CrossRef]
- Heinz, R.E.; Rudolph, M.C.; Ramanathan, P.; Spoelstra, N.S.; Butterfield, K.T.; Webb, P.G.; Babbs, B.L.; Gao, H.; Chen, S.; Gordon, M.A.; et al. Constitutive Expression of microRNA-150 in Mammary Epithelium Suppresses Secretory Activation and Impairs de Novo Lipogenesis. Development 2016, 143, 4236–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Guo, W.; Tang, K.; Wang, Y.; Zan, L.; Yang, W. MiR-34b Regulates Milk Fat Biosynthesis by Targeting mRNA Decapping Enzyme 1A (DCP1A) in Cultured Bovine Mammary Epithelial Cells1. J. Anim. Sci. 2019, 97, 3823–3831. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Zhang, L.; Lian, C.; Lu, C.; Zhang, Y.; Pan, Q.; Yang, R.; Zhao, Z. Deep Sequencing and Screening of Differentially Expressed microRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells. Int. J. Mol. Sci. 2016, 17, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, Y.; Lei, Y.; Wang, C.; Wang, J.; Wang, L.; Liu, L.; Liu, L.; Gao, X.; Li, Q. Epigenetic Regulation of MiR-29s Affects the Lactation Activity of Dairy Cow Mammary Epithelial Cells. J. Cell. Physiol. 2015, 230, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Qiu, H.; Chen, Z.; Li, L.; Zeng, Y.; Luo, J.; Gou, D. MiR-25 Modulates Triacylglycerol and Lipid Accumulation in Goat Mammary Epithelial Cells by Repressing PGC-1beta. J. Anim. Sci. Biotechnol. 2018, 9, 48. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Ma, L.; Wang, H.; Cao, W.; Xu, H.; Zhu, J.; Sun, Y.; Li, J.; Yao, D.; et al. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells. PLoS ONE 2015, 10, e0142809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Q.; Gao, J.-L.; Liao, X.-D.; Huang, T.-H.; Zhang, M.-N.; Wang, M.-Q.; Tian, Y.; Bai, J.; Zhou, C.-H. MiR-454 Regulates Triglyceride Synthesis in Bovine Mammary Epithelial Cells by Targeting PPAR-γ. Gene 2019, 691, 1–7. [Google Scholar] [CrossRef]
- Tang, K.Q.; Wang, Y.N.; Zan, L.S.; Yang, W.C. MiR-27a Controls Triacylglycerol Synthesis in Bovine Mammary Epithelial Cells by Targeting Peroxisome Proliferator-Activated Receptor Gamma. J. Dairy Sci. 2017, 100, 4102–4112. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, J.; Wang, M.; Liu, J.; Zhang, L.; Loor, J.J.; Liang, Y.; Wu, H.; Yang, Z. Circ09863 Regulates Unsaturated Fatty Acid Metabolism by Adsorbing MiR-27a-3p in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2020, 68, 8589–8601. [Google Scholar] [CrossRef]
- Lian, S.; Guo, J.R.; Nan, X.M.; Ma, L.; Loor, J.J.; Bu, D.P. microRNA MiR-181a Regulates the Biosynthesis of Bovine Milk Fat by Targeting ACSL1. J. Dairy Sci. 2016, 99, 3916–3924. [Google Scholar] [CrossRef] [Green Version]
- Sui, M.; Wang, Z.; Xi, D.; Wang, H. MiR-142-5P Regulates Triglyceride by Targeting CTNNB1 in Goat Mammary Epithelial Cells. Reprod. Domest. Anim. 2020, 55, 613–623. [Google Scholar] [CrossRef]
- Chu, M.; Zhao, Y.; Yu, S.; Hao, Y.; Zhang, P.; Feng, Y.; Zhang, H.; Ma, D.; Liu, J.; Cheng, M.; et al. microRNA-221 May Be Involved in Lipid Metabolism in Mammary Epithelial Cells. Int. J. Biochem. Cell Biol. 2018, 97, 118–127. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.-Q.; Wang, Y.-J.; Wang, M.; Yang, W.-C. MiR-143 Regulates Milk Fat Synthesis by Targeting Smad3 in Bovine Mammary Epithelial Cells. Animals 2020, 10, 1453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Q.; Liu, J.; An, X.; Cao, B. Circ-140/MiR-8516/STC1-MMP1 Regulates As1-/β-Casein Secretion and Lipid Formation in Goat Mammary Epithelial Cells. Genes 2021, 12, 671. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shi, H.; Sun, S.; Luo, J.; Zhang, W.; Hou, Y.; Loor, J.J. MiR-183 Regulates Milk Fat Metabolism via MST1 in Goat Mammary Epithelial Cells. Gene 2018, 646, 12–19. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, P.; Iqbal, A.; Ali, S.; Gao, Z.; Pan, Z.; Xia, L.; Yin, F.; Zhao, Z. MiR-485 Targets the DTX4 Gene to Regulate Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Sci. Rep. 2021, 11, 7623. [Google Scholar] [CrossRef]
- Fan, Y.; Arbab, A.A.I.; Zhang, H.; Yang, Y.; Lu, X.; Han, Z.; Yang, Z. microRNA-193a-5p Regulates the Synthesis of Polyunsaturated Fatty Acids by Targeting Fatty Acid Desaturase 1 (FADS1) in Bovine Mammary Epithelial Cells. Biomolecules 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Oakes, S.R.; Rogers, R.L.; Naylor, M.J.; Ormandy, C.J. Prolactin Regulation of Mammary Gland Development. J. Mammary Gland. Biol. Neoplasia 2008, 13, 13–28. [Google Scholar] [CrossRef]
- Ambros, V. The Functions of Animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Piao, H.; Ma, L. Non-Coding RNAs as Regulators of Mammary Development and Breast Cancer. J. Mammary Gland. Biol. Neoplasia 2012, 17, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; et al. Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell 2009, 138, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Boutinaud, M.; Guinard-Flament, J. The Number and Activity of Mammary Epithelial Cells, Determining Factors for Milk Production. Reprod. Nutr. Dev. 2004, 44, 499–508. [Google Scholar] [CrossRef]
- Nagaoka, K.; Zhang, H.; Watanabe, G.; Taya, K. Epithelial Cell Differentiation Regulated by microRNA-200a in Mammary Glands. PLoS ONE 2013, 8, e65127. [Google Scholar] [CrossRef]
- Tanaka, T.; Haneda, S.; Imakawa, K.; Sakai, S.; Nagaoka, K. A microRNA, MiR-101a, Controls Mammary Gland Development by Regulating Cyclooxygenase-2 Expression. Differentiation 2009, 77, 181–187. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The MiR-200 Family and MiR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Greene, S.B.; Gunaratne, P.H.; Hammond, S.M.; Rosen, J.M. A Putative Role for microRNA-205 in Mammary Epithelial Cell Progenitors. J. Cell Sci. 2010, 123, 606–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sempere, L.F.; Christensen, M.; Silahtaroglu, A.; Bak, M.; Heath, C.V.; Schwartz, G.; Wells, W.; Kauppinen, S.; Cole, C.N. Altered microRNA Expression Confined to Specific Epithelial Cell Subpopulations in Breast Cancer. Cancer Res. 2007, 67, 11612–11620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namihira, H.; Sato, M.; Murao, K.; Cao, W.; Matsubara, S.; Imachi, H.; Niimi, M.; Dobashi, H.; Wong, N.; Ishida, T. The Multiple Endocrine Neoplasia Type 1 Gene Product, Menin, Inhibits the Human Prolactin Promoter Activity. J. Mol. Endocrinol. 2002, 29, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, K.; Liu, X.; Li, H.; Lin, X.; Yan, Z.; Cao, Q.; Zhao, M.; Xu, Z.; Wang, Z. Menin Modulates Mammary Epithelial Cell Numbers in Bovine Mammary Glands Through Cyclin D1. J. Mammary Gland. Biol. Neoplasia 2017, 22, 221–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickert, G.; Neufert, C.; Leppkes, M.; Zheng, Y.; Wittkopf, N.; Warntjen, M.; Lehr, H.-A.; Hirth, S.; Weigmann, B.; Wirtz, S.; et al. STAT3 Links IL-22 Signaling in Intestinal Epithelial Cells to Mucosal Wound Healing. J. Exp. Med. 2009, 206, 1465–1472. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Liu, L.-Z.; Dixon, D.A.; Zheng, J.Z.; Chandran, B.; Jiang, B.-H. Insulin-like Growth Factor-I Induces Cyclooxygenase-2 Expression via PI3K, MAPK and PKC Signaling Pathways in Human Ovarian Cancer Cells. Cell. Signal. 2007, 19, 1542–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Low, L.-H.; Putz, U.; Goh, C.-P.; Tan, S.-S.; Howitt, J. Rab5 and Ndfip1 Are Involved in Pten Ubiquitination and Nuclear Trafficking. Traffic 2014, 15, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; He, R.; Chao, T.; Xuan, R.; Liu, S.; Wang, G.; Wang, J. MiR-143-3p Promotes Apoptosis of Mammary Gland Epithelial Cells from Dairy Goats by Targeting Ndfip1. DNA Cell Biol. 2019, 38, 1188–1196. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Tan, T.; Chen, D.; Liang, H.; Sun, K.; Li, M.; Zhang, H.; Mao, Y.; Yang, Z. microRNA-145 Regulates Immune Cytokines via Targeting FSCN1 in Staphylococcus Aureus-induced Mastitis in Dairy Cows. Reprod. Domest. Anim. 2019, 54, 882–891. [Google Scholar] [CrossRef]
- Neville, M.C.; Medina, D.; Monks, J.; Hovey, R.C. The Mammary Fat Pad. J. Mammary Gland. Biol. Neoplasia 1998, 3, 109–116. [Google Scholar] [CrossRef]
- Xie, H.; Lim, B.; Lodish, H.F. microRNAs Induced During Adipogenesis That Accelerate Fat Cell Development Are Downregulated in Obesity. Diabetes 2009, 58, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Chen, Y.; Niu, Y.; Chen, W.; Wang, Q.; Xiao, S.; Li, A.; Xie, Y.; Li, J.; Zhao, X.; et al. A Deep Investigation into the Adipogenesis Mechanism: Profile of microRNAs Regulating Adipogenesis by Modulating the Canonical Wnt/β-Catenin Signaling Pathway. BMC Genom. 2010, 11, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Li, Y.C.; Wang, J.; Kong, J.; Qi, Y.; Quigg, R.J.; Li, X. MiR-17-92 Cluster Accelerates Adipocyte Differentiation by Negatively Regulating Tumor-Suppressor Rb2/P130. Proc. Natl. Acad. Sci. USA 2008, 105, 2889–2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Chen, Y.; Zhang, Y.; Zhang, Y.; Chen, L.; Mo, D. Up-Regulated MiR-145 Expression Inhibits Porcine Preadipocytes Differentiation by Targeting IRS1. Int. J. Biol. Sci. 2012, 8, 1408. [Google Scholar] [CrossRef]
- Seo, E.; Basu-Roy, U.; Gunaratne, P.H.; Coarfa, C.; Lim, D.-S.; Basilico, C.; Mansukhani, A. SOX2 Regulates YAP1 to Maintain Stemness and Determine Cell Fate in the Osteo-Adipo Lineage. Cell Rep. 2013, 3, 2075–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.K.; Lee, M.J.; Abdelmohsen, K.; Kim, W.; Kim, M.M.; Srikantan, S.; Martindale, J.L.; Hutchison, E.R.; Kim, H.H.; Marasa, B.S.; et al. MiR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor Expression. Mol. Cell. Biol. 2011, 31, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Wang, Y.; Liang, P.; Pan, X.; Fu, W.; Yeung, V.S.; Lu, Y.; Wan, D.C.; Tsui, S.K.; Tsang, S.; et al. MiR-25 Suppresses 3T3-L1 Adipogenesis by Directly Targeting KLF4 and C/EBPα. J. Cell. Biochem. 2015, 116, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Kumar, A.; Ingle, H.; Kumar, H. The Interplay between Viral-Derived miRNAs and Host Immunity during Infection. Front. Immunol. 2020, 10, 3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecker, M.; Thamilarasan, M.; Koczan, D.; Schröder, I.; Flechtner, K.; Freiesleben, S.; Füllen, G.; Thiesen, H.-J.; Zettl, U. microRNA Expression Changes during Interferon-Beta Treatment in the Peripheral Blood of Multiple Sclerosis Patients. Int. J. Mol. Sci. 2013, 14, 16087–16110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoli, G.; Cava, C.; Castiglioni, I. microRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer. Int. J. Mol. Sci. 2016, 17, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leidinger, P.; Backes, C.; Dahmke, I.N.; Galata, V.; Huwer, H.; Stehle, I.; Bals, R.; Keller, A.; Meese, E. What Makes a Blood Cell Based miRNA Expression Pattern Disease Specific?—A MiRNome Analysis of Blood Cell Subsets in Lung Cancer Patients and Healthy Controls. Oncotarget 2014, 5, 9484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, D.; Shaughnessy, R.G.; Britton, L.; MacHugh, D.E.; Markey, B.; Gordon, S.V. The Identification of Circulating miRNA in Bovine Serum and Their Potential as Novel Biomarkers of Early Mycobacterium Avium Subsp Paratuberculosis Infection. PLoS ONE 2015, 10, e0134310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, R.M.; Chaudhuri, A.A.; Rao, D.S.; Gibson, W.S.J.; Balazs, A.B.; Baltimore, D. microRNAs Enriched in Hematopoietic Stem Cells Differentially Regulate Long-Term Hematopoietic Output. Proc. Natl. Acad. Sci. USA 2010, 107, 14235–14240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momen-Heravi, F.; Bala, S. miRNA Regulation of Innate Immunity. J. Leukoc. Biol. 2018, 103, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Lai, Y.; Rahman, M.M.; Chen, H.; Husna, A.A.; Fujikawa, T.; Ando, T.; Kitahara, G.; Koiwa, M.; Kubota, C.; et al. Bovine Milk Transcriptome Analysis Reveals microRNAs and RNU2 Involved in Mastitis. FEBS J. 2020, 287, 1899–1918. [Google Scholar] [CrossRef] [PubMed]
- Gaziel-Sovran, A.; Segura, M.F.; Di Micco, R.; Collins, M.K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J.F.; Dankert, J.F.; Shang, S.; Kerbel, R.S.; et al. MiR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell 2011, 20, 104–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation. PLoS ONE 2016, 11, e0152610. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, Y.; Gray, C.; Vuocolo, T.; Donaldson, L.; Broadway, M.; Tellam, R. Lipopolysaccharide and Lipoteichoic Acid Induce Different Innate Immune Responses in Bovine Mammary Epithelial Cells. Cytokine 2005, 31, 72–86. [Google Scholar] [CrossRef]
- Günther, J.; Koczan, D.; Yang, W.; Nürnberg, G.; Repsilber, D.; Schuberth, H.-J.; Park, Z.; Maqbool, N.; Molenaar, A.; Seyfert, H.-M. Assessment of the Immune Capacity of Mammary Epithelial Cells: Comparison with Mammary Tissue after Challenge with Escherichia Coli. Vet. Res. 2009, 40, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Griesbeck-Zilch, B.; Meyer, H.H.D.; Kühn, C.; Schwerin, M.; Wellnitz, O. Staphylococcus Aureus and Escherichia Coli Cause Deviating Expression Profiles of Cytokines and Lactoferrin Messenger Ribonucleic Acid in Mammary Epithelial Cells. J. Dairy Sci. 2008, 91, 2215–2224. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-Q.; Zhou, C.-H.; Cong, S.; Han, D.-X.; Wang, C.-J.; Tian, Y.; Zhang, J.-B.; Jiang, H.; Yuan, B. Lipopolysaccharide Inhibits Triglyceride Synthesis in Dairy Cow Mammary Epithelial Cells by Upregulating MiR-27a-3p, Which Targets the PPARG Gene. J. Dairy Sci. 2021, 104, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, J.; Barkema, H.W.; Ali, T.; Liu, G.; Deng, Y.; Naushad, S.; Kastelic, J.P.; Han, B. Virulence Gene Profiles: Alpha-Hemolysin and Clonal Diversity in Staphylococcus Aureus Isolates from Bovine Clinical Mastitis in China. BMC Vet. Res. 2018, 14, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, H.; Chen, L.; Wang, L.; Liu, X.; Ru, C.; Song, A. Identification and Characterization of Novel and Differentially Expressed microRNAs in Peripheral Blood from Healthy and Mastitis Holstein Cattle by Deep Sequencing. Anim. Genet. 2014, 45, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Aswath, K.; Schroeder, S.G.; Lippolis, J.D.; Reinhardt, T.A.; Sonstegard, T.S. microRNA Expression Profiles of Bovine Milk Exosomes in Response to Staphylococcus Aureus Infection. BMC Genom. 2015, 16, 806. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, C.-L.; Liao, X.-X.; Chen, D.; Wang, W.-Q.; Zhu, Y.-H.; Geng, X.-H.; Ji, D.-J.; Mao, Y.-J.; Gong, Y.-C.; et al. Transcriptome microRNA Profiling of Bovine Mammary Glands Infected with Staphylococcus Aureus. Int. J. Mol. Sci. 2015, 16, 4997–5013. [Google Scholar] [CrossRef] [Green Version]
- Nakada, T.; Russell, J.A.; Boyd, J.H.; Walley, K.R. IL17A Genetic Variation Is Associated with Altered Susceptibility to Gram-Positive Infection and Mortality of Severe Sepsis. Crit. Care 2011, 15, R254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Villar, M.; Hafler, D.A. An Innate Role for IL-17. Science 2011, 332, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional Specialization of Interleukin-17 Family Members. Immunity 2011, 34, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, M.S.; Ghosh, S. NF-ΚB in Immunobiology. Cell Res. 2011, 21, 223–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiugel, M.; Hellberg, S.; Käkelä, M.; Liljenbäck, H.; Saanijoki, T.; Li, X.-G.; Tuomela, J.; Knuuti, J.; Saraste, A.; Roivainen, A. Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques. Molecules 2018, 23, 3168. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fan, Y.; He, Y.; Han, Z.; Gong, Z.; Peng, Y.; Meng, Y.; Mao, Y.; Yang, Z.; Yang, Y. Integrative Analysis of miRNA and mRNA Expression Profiles in Mammary Glands of Holstein Cows Artificially Infected with Staphylococcus Aureus. Pathogens 2021, 10, 506. [Google Scholar] [CrossRef]
- Lawless, N.; Reinhardt, T.A.; Bryan, K.; Baker, M.; Pesch, B.; Zimmerman, D.; Zuelke, K.; Sonstegard, T.; O’Farrelly, C.; Lippolis, J.D.; et al. microRNA Regulation of Bovine Monocyte Inflammatory and Metabolic Networks in an In Vivo Infection Model. G3 Genes Genomes Genet. 2014, 4, 957–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liu, X.; Li, Z.; Wang, H.; Liu, Y.; He, H.; Yang, J.; Niu, F.; Wang, L.; Guo, J. Expression Differences of miRNAs and Genes on NF-ΚB Pathway between the Healthy and the Mastitis Chinese Holstein Cows. Gene 2014, 545, 117–125. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, Z.; Shen, X.; Wu, Z.; Dong, Y.; Cheng, J. microRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways. Int. J. Mol. Sci. 2016, 17, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.; Hayward, J.; Huang, C.; Huma, Z.E.; Sanchez, J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int. J. Mol. Sci. 2017, 18, 342. [Google Scholar] [CrossRef] [Green Version]
- Li, M.O.; Rudensky, A.Y. T Cell Receptor Signalling in the Control of Regulatory T Cell Differentiation and Function. Nat. Rev. Immunol. 2016, 16, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luoreng, Z.-M.; Wang, X.-P.; Mei, C.-G.; Zan, L.-S. Expression Profiling of Peripheral Blood miRNA Using RNAseq Technology in Dairy Cows with Escherichia Coli-Induced Mastitis. Sci. Rep. 2018, 8, 12693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, L.A.; Sheedy, F.J.; McCoy, C.E. microRNAs: The Fine-Tuners of Toll-like Receptor Signalling. Nat. Rev. Immunol. 2011, 11, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.T.; Wheelwright, M.; Teles, R.; Komisopoulou, E.; Edfeldt, K.; Ferguson, B.; Mehta, M.D.; Vazirnia, A.; Rea, T.H.; Sarno, E.N.; et al. microRNA-21 Targets the Vitamin D–Dependent Antimicrobial Pathway in Leprosy. Nat. Med. 2012, 18, 267–273. [Google Scholar] [CrossRef]
- Gombart, A.F. The Vitamin D–Antimicrobial Peptide Pathway and Its Role in Protection against Infection. Future Microbiol. 2009, 4, 1151–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.; Hou, Y.; An, J.; Li, B.; Song, M.; Wang, X.; Sørensen, P.; Dong, Y.; Liu, C.; Wang, Y.; et al. Genome-Wide Transcriptional and Post-Transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus Aureus. Front. Cell. Infect. Microbiol. 2016, 6, 193. [Google Scholar] [CrossRef] [Green Version]
- Wojtusik, J.; Johnson, P.A. Vitamin D Regulates Anti-Mullerian Hormone Expression in Granulosa Cells of the Hen1. Biol. Reprod. 2012, 86, 1–7. [Google Scholar] [CrossRef]
- Simeoli, R.; Montague, K.; Jones, H.R.; Castaldi, L.; Chambers, D.; Kelleher, J.H.; Vacca, V.; Pitcher, T.; Grist, J.; Al-Ahdal, H.; et al. Exosomal Cargo Including microRNA Regulates Sensory Neuron to Macrophage Communication after Nerve Trauma. Nat. Commun. 2017, 8, 1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.-C.; Habiby, G.H.; Jasing Pathiranage, C.C.; Rahman, M.M.; Chen, H.-W.; Husna, A.A.; Kubota, C.; Miura, N. Bovine Serum MiR-21 Expression Affected by Mastitis. Res. Vet. Sci. 2021, 135, 290–292. [Google Scholar] [CrossRef]
- Valmiki, S.; Ahuja, V.; Puri, N.; Paul, J. MiR-125b and MiR-223 Contribute to Inflammation by Targeting the Key Molecules of NFκB Pathway. Front. Med. 2020, 6, 313. [Google Scholar] [CrossRef]
- Calin, G.A.; Cimmino, A.; Fabbri, M.; Ferracin, M.; Wojcik, S.E.; Shimizu, M.; Taccioli, C.; Zanesi, N.; Garzon, R.; Aqeilan, R.I.; et al. MiR-15a and MiR-16-1 Cluster Functions in Human Leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 5166–5171. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.-G.; Yang, J.; Zheng, Y.; Jin, Y. MiR-15a/16 Regulates Macrophage Phagocytosis after Bacterial Infection. J. Immunol. 2014, 193, 4558–4567. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhou, J.; Wang, X.; Zhang, Y.; Lu, X.; Fan, Y.; Mao, Y.; Loor, J.J.; Yang, Z. Screening Candidate MicroR-15a- IRAK2 Regulatory Pairs for Predicting the Response to Staphylococcus Aureus-Induced Mastitis in Dairy Cows. J. Dairy Res. 2019, 86, 425–431. [Google Scholar] [CrossRef]
- Huang, J.; Luo, G.; Zhang, Z.; Wang, X.; Ju, Z.; Qi, C.; Zhang, Y.; Wang, C.; Li, R.; Li, J.; et al. ITRAQ-Proteomics and Bioinformatics Analyses of Mammary Tissue from Cows with Clinical Mastitis Due to Natural Infection with Staphylococci Aureus. BMC Genom. 2014, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Lawless, N.; Foroushani, A.B.K.; McCabe, M.S.; O’Farrelly, C.; Lynn, D.J. Next Generation Sequencing Reveals the Expression of a Unique miRNA Profile in Response to a Gram-Positive Bacterial Infection. PLoS ONE 2013, 8, e57543. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.M.; Spiel, A.O.; Jilma, B.; Wolzt, M.; Müller, M. In Vivo Profile of the Human Leukocyte microRNA Response to Endotoxemia. Biochem. Biophys. Res. Commun. 2009, 380, 437–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheedy, F.J.; Palsson-McDermott, E.; Hennessy, E.J.; Martin, C.; O’Leary, J.J.; Ruan, Q.; Johnson, D.S.; Chen, Y.; O’Neill, L.A.J. Negative Regulation of TLR4 via Targeting of the Proinflammatory Tumor Suppressor PDCD4 by the microRNA MiR-21. Nat. Immunol. 2010, 11, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, D.; Hirsch, H.A.; Struhl, K. An Epigenetic Switch Involving NF-ΚB, Lin28, Let-7 microRNA, and IL6 Links Inflammation to Cell Transformation. Cell 2009, 139, 693–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefont, C.M.; Toufeer, M.; Caubet, C.; Foulon, E.; Tasca, C.; Aurel, M.-R.; Bergonier, D.; Boullier, S.; Robert-Granié, C.; Foucras, G.; et al. Transcriptomic Analysis of Milk Somatic Cells in Mastitis Resistant and Susceptible Sheep upon Challenge with Staphylococcus Epidermidis and Staphylococcus Aureus. BMC Genom. 2011, 12, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith, B.K.; Berry, D.P.; Kearney, F.; Finlay, E.K.; Fahey, A.G.; Bradley, D.G.; Lynn, D.J. A Genome-Wide Association Study for Somatic Cell Score Using the Illumina High-Density Bovine Beadchip Identifies Several Novel QTL Potentially Related to Mastitis Susceptibility. Front. Genet. 2013, 4, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Huang, J.; Zhang, X.; Ju, Z.; Qi, C.; Zhang, Y.; Li, Q.; Wang, C.; Miao, W.; Zhong, J.; et al. One SNP in the 3′-UTR of HMGB1 Gene Affects the Binding of Target MiR-223 and Is Involved in Mastitis in Dairy Cattle. Immunogenetics 2012, 64, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Huang, J.M.; Feng, M.Y.; Ju, Z.H.; Wang, C.F.; Yang, G.W.; Yuan, J.D.; Zhong, J.F. Regulatory Mutations in the A2M Gene Are Involved in the Mastitis Susceptibility in Dairy Cows. Anim. Genet. 2014, 45, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, R.F. C-Reactive Protein, Inflammation, and Innate Immunity. Immunol. Res. 2001, 24, 163–176. [Google Scholar] [CrossRef]
- Gilbert, F.B.; Cunha, P.; Jensen, K.; Glass, E.J.; Foucras, G.; Robert-Granié, C.; Rupp, R.; Rainard, P. Differential Response of Bovine Mammary Epithelial Cells to Staphylococcus Aureus or Escherichia Coli Agonists of the Innate Immune System. Vet. Res. 2013, 44, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Zhou, E.; Liu, Z.; Li, F.; Liang, D.; Liu, B.; Song, X.; Zhao, F.; Fen, X.; Li, D.; et al. Staphylococcus Aureus and Escherichia Coli Elicit Different Innate Immune Responses from Bovine Mammary Epithelial Cells. Vet. Immunol. Immunopathol. 2013, 155, 245–252. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Ibeagha, A.E.; Messier, S.; Zhao, X. Proteomics, Genomics, and Pathway Analyses of Escherichia Coli and Staphylococcus Aureus Infected Milk Whey Reveal Molecular Pathways and Networks Involved in Mastitis. J. Proteome Res. 2010, 9, 4604–4619. [Google Scholar] [CrossRef] [PubMed]
- Günther, J.; Esch, K.; Poschadel, N.; Petzl, W.; Zerbe, H.; Mitterhuemer, S.; Blum, H.; Seyfert, H.-M. Comparative Kinetics of Escherichia Coli- and Staphylococcus Aureus-Specific Activation of Key Immune Pathways in Mammary Epithelial Cells Demonstrates That S. Aureus Elicits a Delayed Response Dominated by Interleukin-6 (IL-6) but Not by IL-1A or Tumor Necrosis Factor Alpha. Infect. Immun. 2011, 79, 695–707. [Google Scholar] [PubMed] [Green Version]
- Lahouassa, H.; Moussay, E.; Rainard, P.; Riollet, C. Differential Cytokine and Chemokine Responses of Bovine Mammary Epithelial Cells to Staphylococcus Aureus and Escherichia Coli. Cytokine 2007, 38, 12–21. [Google Scholar] [CrossRef]
- Wang, X.P.; Luoreng, Z.M.; Zan, L.S.; Raza, S.H.A.; Li, F.; Li, N.; Liu, S. Expression Patterns of MiR-146a and MiR-146b in Mastitis Infected Dairy Cattle. Mol. Cell. Probes 2016, 30, 342–344. [Google Scholar] [CrossRef]
- Wang, X.-P.; Luoreng, Z.-M.; Zan, L.-S.; Li, F.; Li, N. Bovine MiR-146a Regulates Inflammatory Cytokines of Bovine Mammary Epithelial Cells via Targeting the TRAF6 Gene. J. Dairy Sci. 2017, 100, 7648–7658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-C.; Lu, H.; Zhou, Q.; Yu, S.-M.; Mao, Y.-L.; Zhang, H.-J.; Zhang, P.-C.; Yan, W.-J. MiR-451 Inhibits Synovial Fibroblasts Proliferation and Inflammatory Cytokines Secretion in Rheumatoid Arthritis through Mediating P38MAPK Signaling Pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 14562. [Google Scholar] [PubMed]
- Yang, S.; Gao, L.; Lu, F.; Wang, B.; Gao, F.; Zhu, G.; Cai, Z.; Lai, J.; Yang, Q. Transcription Factor Myocyte Enhancer Factor 2D Regulates Interleukin-10 Production in Microglia to Protect Neuronal Cells from Inflammation-Induced Death. J. Neuroinflamm. 2015, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Karantanos, T.; Chistofides, A.; Barhdan, K.; Li, L.; Boussiotis, V.A. Regulation of T Cell Differentiation and Function by EZH2. Front. Immunol. 2016, 7, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Sheng, C.; Liu, D.; Yao, C.; Gao, S.; Song, L.; Jiang, W.; Li, J.; Huang, W. Enhancer of Zeste Homolog 2 Is a Negative Regulator of Mitochondria-Mediated Innate Immune Responses. J. Immunol. 2013, 191, 2614–2623. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Liu, Y.; Wang, L.; Chen, R.; Ge, W.; Lin, Z.; Zhang, Y.; Liu, S.; Shan, Y.; Lin, Q.; et al. Down-Regulation of MiR-301a Suppresses pro-Inflammatory Cytokines in TLR-Triggered Macrophages. Immunology 2013, 140, 314–322. [Google Scholar] [CrossRef]
- Qiu, W.; He, J.; Zuo, H.; Niu, S.; Li, C.; Zhang, S.; Weng, S.; He, J.; Xu, X. Identification, Characterization, and Function Analysis of the NF-ΚB Repressing Factor (NKRF) Gene from Litopenaeus Vannamei. Dev. Comp. Immunol. 2017, 76, 83–92. [Google Scholar] [CrossRef]
- Lai, J.; Liu, Y.; Liu, C.; Qi, M.; Liu, R.; Zhu, X.; Zhou, Q.; Chen, Y.; Guo, A.; Hu, C. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-KB and MAPK Signaling Pathways. Inflammation 2017, 40, 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Sun, Y.; Huang, S.; Tang, J.; Yu, P.; Wang, G. Altered Molecular Expression of the TLR4/NF-ΚB Signaling Pathway in Mammary Tissue of Chinese Holstein Cattle with Mastitis. PLoS ONE 2015, 10, e0118458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, A.; Zhong, K.; Moisá, S.J.; Drackley, J.K.; Moyes, K.M.; Loor, J.J. Bioinformatics Analysis of microRNA and Putative Target Genes in Bovine Mammary Tissue Infected with Streptococcus Uberis. J. Dairy Sci. 2012, 95, 6397–6408. [Google Scholar] [CrossRef] [Green Version]
- Fazi, F.; Rosa, A.; Fatica, A.; Gelmetti, V.; De Marchis, M.L.; Nervi, C.; Bozzoni, I. A Minicircuitry Comprised of microRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell 2005, 123, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laios, A.; O’Toole, S.; Flavin, R.; Martin, C.; Kelly, L.; Ring, M.; Finn, S.P.; Barrett, C.; Loda, M.; Gleeson, N.; et al. Potential Role of MiR-9 and MiR-223 in Recurrent Ovarian Cancer. Mol. Cancer 2008, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Haneklaus, M.; Gerlic, M.; O’Neill, L.A.J.; Masters, S.L. MiR-223: Infection, Inflammation and Cancer. J. Intern. Med. 2013, 274, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Yanaba, K.; Asano, Y.; Noda, S.; Akamata, K.; Aozasa, N.; Taniguchi, T.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Sumida, H.; et al. Augmented Production of Soluble CD93 in Patients with Systemic Sclerosis and Clinical Association with Severity of Skin Sclerosis. Br. J. Dermatol. 2012, 167, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-Q.; Gong, G.; Xu, Z.-L.; Wang, L.-Y.; Fang, M.-L.; Zhou, H.; Xing, H.; Wang, K.-R.; Sun, L. miRNA Profiling Reveals a Potential Role of Milk Stasis in Breast Carcinogenesis. Int. J. Mol. Med. 2014, 33, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-C.; Fujikawa, T.; Maemura, T.; Ando, T.; Kitahara, G.; Endo, Y.; Yamato, O.; Koiwa, M.; Kubota, C.; Miura, N. Inflammation-Related microRNA Expression Level in the Bovine Milk Is Affected by Mastitis. PLoS ONE 2017, 12, e0177182. [Google Scholar]
- Wu, H.; Neilson, J.R.; Kumar, P.; Manocha, M.; Shankar, P.; Sharp, P.A.; Manjunath, N. miRNA Profiling of Naïve, Effector and Memory CD8 T Cells. PLoS ONE 2007, 2, e1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobbo, T.; Penasa, M.; Finocchiaro, R.; Visentin, G.; Cassandro, M. Alternative Somatic Cell Count Traits Exploitable in Genetic Selection for Mastitis Resistance in Italian Holsteins. J. Dairy Sci. 2018, 101, 10001–10010. [Google Scholar] [CrossRef]
- Asselstine, V.; Miglior, F.; Suárez-Vega, A.; Fonseca, P.A.S.; Mallard, B.; Karrow, N.; Islas-Trejo, A.; Medrano, J.F.; Cánovas, A. Genetic Mechanisms Regulating the Host Response during Mastitis. J. Dairy Sci. 2019, 102, 9043–9059. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat Stress Effects on Livestock: Molecular, Cellular and Metabolic Aspects, a Review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TABIRI, H.Y.; SATO, K.; TAKAHASHI, K.; TOYOMIZU, M.; AKIBA, Y. Effect of Acute Heat Stress on Plasma Amino Acids Concentration of Broiler Chickens. Jpn. Poult. Sci. 2000, 37, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Temim, S.; Chagneau, A.-M.; Peresson, R.; Tesseraud, S. Chronic Heat Exposure Alters Protein Turnover of Three Different Skeletal Muscles in Finishing Broiler Chickens Fed 20 or 25% Protein Diets. J. Nutr. 2000, 130, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shwartz, G.; Rhoads, M.L.; VanBaale, M.J.; Rhoads, R.P.; Baumgard, L.H. Effects of a Supplemental Yeast Culture on Heat-Stressed Lactating Holstein Cows. J. Dairy Sci. 2009, 92, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.A.; Forsberg, N.E. Influence of Stress and Nutrition on Cattle Immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef] [PubMed]
- Flamenbaum, I.; Galon, N. Management of Heat Stress to Improve Fertility in Dairy Cows in Israel. J. Reprod. Dev. 2010, 56, S36–S41. [Google Scholar] [CrossRef] [Green Version]
- Sengar, G.S.; Deb, R.; Singh, U.; Raja, T.V.; Kant, R.; Sajjanar, B.; Alex, R.; Alyethodi, R.R.; Kumar, A.; Kumar, S.; et al. Differential Expression of microRNAs Associated with Thermal Stress in Frieswal (Bos Taurus × Bos Indicus) Crossbred Dairy Cattle. Cell Stress Chaperones 2018, 23, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Wang, T.; Cao, Y.; Liu, J.; Li, J.; Wang, T. microRNAs: A Novel Promising Therapeutic Target for Cerebral Ischemia/Reperfusion Injury? Neural Regen. Res. 2015, 10, 1799. [Google Scholar]
- Srikanth, K.; Kwon, A.; Lee, E.; Chung, H. Characterization of Genes and Pathways That Respond to Heat Stress in Holstein Calves through Transcriptome Analysis. Cell Stress Chaperones 2017, 22, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Liao, Y.; Sun, B.; Guo, Y.; Deng, M.; Li, Y.; Liu, D. Effects of Chronic Heat Stress on mRNA and miRNA Expressions in Dairy Cows. Gene 2020, 742, 144550. [Google Scholar] [CrossRef]
- Cai, M.; Hu, Y.; Zheng, T.; He, H.; Xiao, W.; Liu, B.; Shi, Y.; Jia, X.; Chen, S.; Wang, J.; et al. microRNA-216b Inhibits Heat Stress-Induced Cell Apoptosis by Targeting Fas in Bovine Mammary Epithelial Cells. Cell Stress Chaperones 2018, 23, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.-H.; Ghassemi Nejad, J.; Peng, D.-Q.; Kim, H.-R.; Kim, S.-H.; Lee, H.-G. Characterization of Short-Term Heat Stress in Holstein Dairy Cows Using Altered Indicators of Metabolomics, Blood Parameters, Milk microRNA-216 and Characteristics. Animals 2021, 11, 722. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Zheng, X.; Li, H.; Wang, G. Identification and Bioinformatics Analysis of microRNAs Associated with Stress and Immune Response in Serum of Heat-Stressed and Normal Holstein Cows. Cell Stress Chaperones 2014, 19, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Dado-Senn, B.; Skibiel, A.L.; Fabris, T.F.; Zhang, Y.; Dahl, G.E.; Peñagaricano, F.; Laporta, J. RNA-Seq Reveals Novel Genes and Pathways Involved in Bovine Mammary Involution during the Dry Period and under Environmental Heat Stress. Sci. Rep. 2018, 8, 11096. [Google Scholar] [CrossRef] [PubMed]
- Faylon, M.P.; Baumgard, L.H.; Rhoads, R.P.; Spurlock, D.M. Effects of Acute Heat Stress on Lipid Metabolism of Bovine Primary Adipocytes. J. Dairy Sci. 2015, 98, 8732–8740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhu, W.; Mao, S. High-Concentrate Feeding Upregulates the Expression of Inflammation-Related Genes in the Ruminal Epithelium of Dairy Cattle. J. Anim. Sci. Biotechnol. 2016, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Martinez, N.; Sinedino, L.D.P.; Bisinotto, R.S.; Ribeiro, E.S.; Gomes, G.C.; Lima, F.S.; Greco, L.F.; Risco, C.A.; Galvão, K.N.; Taylor-Rodriguez, D.; et al. Effect of Induced Subclinical Hypocalcemia on Physiological Responses and Neutrophil Function in Dairy Cows. J. Dairy Sci. 2014, 97, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Hu, R.; Fan, H.; Yang, Y.; Gong, B.; Zhang, S.; Ding, J.; Su, Y.; Zhuo, Z.; Cheng, J. Effects of Seasonal Ambient Heat Stress on Expression of microRNAs in the Mammary Gland of Holstein Cows. Int. J. Biometeorol. 2021, 65, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Mobuchon, L.; Marthey, S.; Le Guillou, S.; Laloë, D.; Le Provost, F.; Leroux, C. Food Deprivation Affects the MiRNome in the Lactating Goat Mammary Gland. PLoS ONE 2015, 10, e0140111. [Google Scholar]
- Ollier, S.; Robert-Granié, C.; Bernard, L.; Chilliard, Y.; Leroux, C. Mammary Transcriptome Analysis of Food-Deprived Lactating Goats Highlights Genes Involved in Milk Secretion and Programmed Cell Death. J. Nutr. 2007, 137, 560–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bionaz, M.; Loor, J.J. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological State. Gene Regul. Syst. Biol. 2012, 6, GRSB-S9852. [Google Scholar] [CrossRef] [Green Version]
- Harding, F. (Ed.) Milk Quality; Blackie Academic & Professional: New York, NY, USA, 1995. [Google Scholar]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of Microalgae in Ruminant Nutrition and Implications on Milk Quality—A Review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and Nutritional Regulation of Lipogenic Genes in the Ruminant Lactating Mammary Gland. In Bioactive Components of Milk; Springer: New York, NY, USA, 2008; Volume 606, pp. 67–108. [Google Scholar]
- Mach, N.; Jacobs, A.A.A.; Kruijt, L.; van Baal, J.; Smits, M.A. Alteration of Gene Expression in Mammary Gland Tissue of Dairy Cows in Response to Dietary Unsaturated Fatty Acids. Animal 2011, 5, 1217–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Segura, L.; Pérez-Andrade, M.; Miranda-Ríos, J. The Emerging Role of microRNAs in the Regulation of Gene Expression by Nutrients. J. Nutr. Nutr. 2013, 6, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Pando, R.; Even-Zohar, N.; Shtaif, B.; Edry, L.; Shomron, N.; Phillip, M.; Gat-Yablonski, G. microRNAs in the Growth Plate Are Responsive to Nutritional Cues: Association between MiR-140 and SIRT1. J. Nutr. Biochem. 2012, 23, 1474–1481. [Google Scholar] [CrossRef]
- Ørom, U.A.; Lim, M.K.; Savage, J.E.; Jin, L.; Saleh, A.D.; Lisanti, M.P.; Simone, N.L. microRNA-203 Regulates Caveolin-1 in Breast Tissue during Caloric Restriction. Cell Cycle 2012, 11, 1291–1295. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.L.; Boettcher, P.J.; Dekkers, J.C.M.; Petitclerc, D.; Schaeffer, L.R. Relationships Between Energy Balance and Health Traits of Dairy Cattle in Early Lactation. J. Dairy Sci. 2000, 83, 2683–2690. [Google Scholar] [CrossRef]
- Billa, P.-A.; Faulconnier, Y.; Ye, T.; Bourdon, C.; Pires, J.A.A.; Leroux, C. Nutrigenomic Analyses Reveal miRNAs and mRNAs Affected by Feed Restriction in the Mammary Gland of Midlactation Dairy Cows. PLoS ONE 2021, 16, e0248680. [Google Scholar] [CrossRef]
- Overton, T.R.; Waldron, M.R. Nutritional Management of Transition Dairy Cows: Strategies to Optimize Metabolic Health. J. Dairy Sci. 2004, 87, E105–E119. [Google Scholar] [CrossRef] [Green Version]
- Goetsch, A.L. Recent Research of Feeding Practices and the Nutrition of Lactating Dairy Goats. J. Appl. Anim. Res. 2019, 47, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Nishita, M.; Park, S.-Y.; Nishio, T.; Kamizaki, K.; Wang, Z.; Tamada, K.; Takumi, T.; Hashimoto, R.; Otani, H.; Pazour, G.J.; et al. Ror2 Signaling Regulates Golgi Structure and Transport through IFT20 for Tumor Invasiveness. Sci. Rep. 2017, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Masotti, A.; Caputo, V.; Da Sacco, L.; Pizzuti, A.; Dallapiccola, B.; Bottazzo, G.F. Quantification of Small Non-Coding RNAs Allows an Accurate Comparison of miRNA Expression Profiles. J. Biomed. Biotechnol. 2009, 2009, 659028. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Mavangira, V. The Nexus between Nutrient Metabolism, Oxidative Stress and Inflammation in Transition Cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Dessauge, F.; Lollivier, V.; Ponchon, B.; Bruckmaier, R.; Finot, L.; Wiart, S.; Cutullic, E.; Disenhaus, C.; Barbey, S.; Boutinaud, M. Effects of Nutrient Restriction on Mammary Cell Turnover and Mammary Gland Remodeling in Lactating Dairy Cows. J. Dairy Sci. 2011, 94, 4623–4635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Tian, F.; Yu, Y.; Liu, G.; Zan, L.; Updike, M.S.; Song, J. miRNA-Dysregulation Associated with Tenderness Variation Induced by Acute Stress in Angus Cattle. J. Anim. Sci. Biotechnol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bionaz, M.; Loor, J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 Are the Most Abundant Isoforms in Bovine Mammary Tissue and Their Expression Is Affected by Stage of Lactation. J. Nutr. 2008, 138, 1019–1024. [Google Scholar] [CrossRef]
- Akbar, H.; Bionaz, M.; Carlson, D.B.; Rodriguez-Zas, S.L.; Everts, R.E.; Lewin, H.A.; Drackley, J.K.; Loor, J.J. Feed Restriction, but Not l-Carnitine Infusion, Alters the Liver Transcriptome by Inhibiting Sterol Synthesis and Mitochondrial Oxidative Phosphorylation and Increasing Gluconeogenesis in Mid-Lactation Dairy Cows. J. Dairy Sci. 2013, 96, 2201–2213. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Loor, J.J. Gene Networks Driving Bovine Milk Fat Synthesis during the Lactation Cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigle, J.T.; Oliver, G. Prox1 Function Is Required for the Development of the Murine Lymphatic System. Cell 1999, 98, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Wang, M.; Zhou, G.; Chen, L.; Ding, L.; Bu, D.; Loor, J. Arginine Supply Impacts the Expression of Candidate microRNA Controlling Milk Casein Yield in Bovine Mammary Tissue. Animals 2020, 10, 797. [Google Scholar] [CrossRef]
- Shi, Q.; Gibson, G.E. Up-Regulation of the Mitochondrial Malate Dehydrogenase by Oxidative Stress Is Mediated by MiR-743a. J. Neurochem. 2011, 118, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Dong, G.; Wang, B.; Gao, W.; Yang, Q. MiR-543 Promotes Gastric Cancer Cell Proliferation by Targeting SIRT1. Biochem. Biophys. Res. Commun. 2016, 469, 15–21. [Google Scholar] [CrossRef]
- Wang, D.; Liang, G.; Wang, B.; Sun, H.; Liu, J.; Guan, L.L. Systematic microRNAome Profiling Reveals the Roles of microRNAs in Milk Protein Metabolism and Quality: Insights on Low-Quality Forage Utilization. Sci. Rep. 2016, 6, 21194. [Google Scholar] [CrossRef] [Green Version]
- Phan, J.; Reue, K. Lipin, a Lipodystrophy and Obesity Gene. Cell Metab. 2005, 1, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Mobuchon, L.; Le Guillou, S.; Marthey, S.; Laubier, J.; Laloë, D.; Bes, S.; Le Provost, F.; Leroux, C. Sunflower Oil Supplementation Affects the Expression of MiR-20a-5p and MiR-142-5p in the Lactating Bovine Mammary Gland. PLoS ONE 2017, 12, e0185511. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G.; McKenzie, M.A.; Van Horn, C.G.; Coleman, R.A. Rat Long Chain Acyl-CoA Synthetase 5 Increases Fatty Acid Uptake and Partitioning to Cellular Triacylglycerol in McArdle-RH7777 Cells. J. Biol. Chem. 2006, 281, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty Acid Elongases in Mammals: Their Regulation and Roles in Metabolism. Prog. Lipid Res. 2006, 45, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Gerin, I.; Bommer, G.T.; McCoin, C.S.; Sousa, K.M.; Krishnan, V.; MacDougald, O.A. Roles for miRNA-378/378* in Adipocyte Gene Expression and Lipogenesis. Am. J. Physiol.-Endocrinol. Metab. 2010, 299, E198–E206. [Google Scholar] [CrossRef] [Green Version]
- Baumgard, L.H.; Matitashvili, E.; Corl, B.A.; Dwyer, D.A.; Bauman, D.E. Trans-10, Cis-12 Conjugated Linoleic Acid Decreases Lipogenic Rates and Expression of Genes Involved in Milk Lipid Synthesis in Dairy Cows. J. Dairy Sci. 2002, 85, 2155–2163. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Mahecha, L.; Nuernberg, K.; Nuernberg, G.; Dannenberger, D.; Olivera, M.; Boutinaud, M.; Leroux, C.; Albrecht, E.; Bernard, L. Effects of Polyunsaturated Fatty Acids from Plant Oils and Algae on Milk Fat Yield and Composition Are Associated with Mammary Lipogenic and SREBF1 Gene Expression. Animal 2012, 6, 1961–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissue Location | Amount of Found miRNAs | Identification Approach | References |
---|---|---|---|
Adipose and epithelial mammary gland tissues | 59 | Small RNA cloning | [47] |
Raw milk and colostrum | 441 | Solexa Sequencing + MIREAP | [33] |
Colostrum and mature milk | 153 | Microarray Analysis | [49] |
Mammary gland biopsy | 884 | Solexa Sequencing | [50] |
Mammary gland biopsy | 167 | Illumina Sequencing | [51] |
Mammary epithelial cell line | 344 | RNA-Seq + miRDeep2 | [51] |
Mammary gland biopsy | 497 | Illumina Sequencing + miRDeep2 | [52] |
Milk fat | 243 | Illumina HiSeq 2000 | [53] |
Milk whey | 231 | Illumina HiSeq 2000 | [53] |
Milk cells | 285 | Illumina HiSeq 2000 | [53] |
Mammary gland tissue | 497 | Illumina HiSeq 2000 | [53] |
Mammary gland tissue | 54 | miRNA microarray analysis | [54] |
Mammary gland cell cultures | 408 | Solexa Sequencing and bioinformatic Analysis of Small RNAs | [55] |
Milk fat | 713 | Illumina HiSeq 2000 | [56] |
Mammary gland tissue | 957 | Illumina-Solexa high-throughput sequencing | [57] |
Mammary gland tissue | 326 | Solexa Sequencing | [58] |
Mammary epithelial cell line | 344 | RNA-Seq + miRDeep2 | [59] |
Mammary gland tissue | 1838 | RNA-Seq + miRDeep2 | [60] |
Milk exosomes | 1472 | Illumina Hiseq 2500 | [61] |
Udder biopsy | 48 | HiSeq2500 + Bowtie + miRDeep2 | [62] |
The mammary gland epithelium | 546 | Illumina Sequencing + Bioinformatic Analysis (DESeq2 R package) | [63] |
Tissue Location | Amount of Found miRNAs | Identification Approach | References |
---|---|---|---|
Mammary gland tissues | 431 | Illumina/Solexa high-throughput sequencing | [38] |
Mammary gland tissues | 441 | Illumina/Solexa high-throughput sequencing | [67] |
Colostrum | 131 | Solexa sequencing + bioinformatic analysis | [68] |
Mammary gland tissues | 1144 | Solexa sequencing + bioinformatic analysis | [69] |
Mammary gland tissues | 4038 | Illumina/Solexa high-throughput sequencing | [70] |
The secretory area containing lobulo-alveolar structures (acini) | 924 | Illumina HiSeq 2500 + miRDeep2 + comparing with goat sequences | [71] |
The secretory area containing lobulo-alveolar structures (acini) | 1178 | Illumina HiSeq 2500 + miRDeep2 + comparing with cattle sequences | [71] |
Mammary gland (in silico) | 29 | Expressed sequence tag analysis and genome sequence analysis | [72] |
Mammary gland tissues | 1487 | Illumina Sequencing + mapping of the mammalian miRNAs precursor sequences | [73] |
Tissue Location | Amount of Found miRNAs | Identification Approach | References |
---|---|---|---|
Mammary epithelial tissue | 50 | Comparison with other species miRNomes | [76] |
Parenchyma of the mammary gland | 147 | Illumina HiSeq 2500 + aligning with known miRNA sequences | [39] |
Animal Species | Period | Amount of miRNAs | Most Expressed miRNAs | Expression Pattern | References |
---|---|---|---|---|---|
Cattle | Peak lactation | 165 | Suppressed | [50] | |
Lactation | 9 | Expressed | |||
Dry period | 6 | Expressed | |||
Dry period | 12 | miR-10a, miR-15b, miR-16, miR-21, miR-33b, miR-145, miR-146b, miR-155, miR-181a, miR-205, miR-221, miR-223 | Suppressed | [45,67] | |
Beginning of lactation | 1 | miR-31 | Expressed | ||
Lactation | 15 | miR-30a-5p, miR-30d, miR-21-5p, miR-26a, miR-148a, let-7a-5p, let-7b, let-7f, let-7g, miR-99a-5p, miR-191, miR-200a, miR-200c, miR-186, miR-92a | Expressed | [79] | |
Post-pubertal | 54 | miR-10b, miR-29b, miR-101, miR-375, miR-2285t, miR-146b, let7b, miR-107, miR-1434-3p | Expressed | [54] | |
Early lactation | 1 | miR-221 | Expressed | [80] | |
Dry period | 12 | miR-10a, miR-15b, miR-16, miR-21, miR-33b, miR-145, miR-146b, miR-155, miR-181a, miR-205, miR-221, miR-223 | Suppressed | ||
Pregnancy | 1 | miR-146b | Expressed | [67] | |
Sheep | Early, intermediate, late pregnancy; lactation | 2 | miR-21, miR-25 | Suppressed | [86] |
First half of pregnancy | 6 | miR-205, miR-200a, miR-200b, miR-200c, miR-141, miR- 429 | Expressed | ||
Later pregnancy | 1 | miR-205 | Suppressed | ||
Non-lactating, peak-lactation | 136 | Expressed | [76] | ||
Non-lactating | miR-143, miR-21, miR-26a, miR-99a, miR-148a, let-7i, let-7g, let-7f, miR-199a-3p, miR-221, miR-125b, miR-329b-3p, miR-493-5p | Expressed | |||
Peak-lactation | miR-148a, miR-143, miR-26a, let-7f, let-7g, miR-30a-5p, let-7a, miR-21 | Expressed | |||
Goat | Peak lactation | 8 | miR-451, miR-2478, miR-2887 | Expressed | [39] |
Dry period | 12 | miR-25, miR-128, miR-93, miR-98, miR-145, miR-199b, miR-199a-3p, miR-181b, miR-222, miR-221, let-7b, let-7c | Expressed | ||
Peak lactation | 165 | Suppressed | |||
Pregnancy, lactation, dry period | 2988 | miR-148a-3p, miR-30d | Expressed | [67] | |
Dry period | 221 | Expressed | |||
260 | Suppressed | ||||
Late lactation | 185 | Expressed | |||
247 | Suppressed | ||||
Early lactation and dry periods | miR-148a, miR-17-5p | Expressed | [70] | ||
Colostrum lactation | 45 | miR-223-3p, miR-223-5p | Expressed | ||
Colostrum lactation | 86 | Suppressed | |||
Peak lactation | 31 | miR-30e-5p, miR-15a | Expressed | ||
24 | Suppressed | ||||
Lactation | miR-15b | Suppressed | |||
Lactation | miR-135b | Expressed | [81] | ||
Lactation | miR-27a | Expressed | |||
First half of pregnancy | miR-205 | Expressed | [68] | ||
miRNA 200 | Suppressed | ||||
End of pregnancy | Expressed |
Direction | miRNAs | Hormones | Influence | References |
---|---|---|---|---|
Hormone—miRNA | miR-23a, miR-27a, miR-27b, miR-103, miR-200a | Prolactin | Boost | [76,85,95] |
miR-183 | Prolactin | Inhibit | [96] | |
miRNA—hormone | miR-135b | Prolactin | Inhibit | [84] |
miR-138 | Prolactin | Inhibit | [97] | |
miR-135a | Prolactin | Inhibit | ||
Hormone—miRNA | miR-21-5p, miR-25, miR-26a, miR-223, miR-320a, miR-339a, miR-148a | Dexamethasone, bovine insulin, sheep prolactin | Inhibit | [94] |
Hormone—miRNA | miR-15b | Estradiol, progesterone | Inhibit | [83] |
miRNA—hormone | miR-126-3p | Progesterone | Inhibit | [98] |
miRNA—hormone | miRNA-15a | Growth hormone | Inhibit | [101] |
miRNAs | Regulated Genes/Proteins/Pathways | Regulation Matter | References |
---|---|---|---|
miR-103 | AMPKα pathway | The ratio of unsaturated/saturated fatty acids in milk | [110] |
miR-128-1, miR-148a, miR-130b, miR-301b | LDL, LDLR, ABCA1 cholesterol transporter | Cholesterol-lipoprotein trafficking | [111] |
miR-24 | FASN, SREBF1, SCD, GPAM, ACACA | Triacylglycerol content, unsaturated fatty acid concentration | [113] |
miR-200a | ADRP, TIP47 | Fat droplet formation | [95] |
SLC27A6, CD36 | Fatty acid uptake | ||
ACACA, FASN | Fatty acid synthesis | ||
SCD, DGAT1 | Triglyceride synthesis | ||
miR-212-5p, miR-27a, miR-27b, miR-132, miR-191, miR-214 | SCD1, FAS | Triacylglycerol content | [114] |
miR-135b | LATS2 | Triacylglyceride and unsaturated fatty acids synthesis | [84] |
miR-497 | [115] | ||
miR-16a | LATS1 | TAG and cholesterol metabolism | [116] |
miR-375 | ERK1/2, PPARγ | Fat cell formation and differentiation | [117] |
miR-146b | SIRT1 | 3T3-L1 cells adipogenesis | [86] |
miR-204-5p, miR-141 | SIRT1, SREBF1, FASN, PPARγ | Lipid synthesis | [119,120] |
miR-212 | SIRT2, FASN, SREBP1 | Increasing the fat content in mammary epithelial cells | [121] |
miR-106b | ABCA1 | Milk fat synthesis | [122] |
The accumulation of triglycerides and cholesterol in epithelial cells of the mammary gland | [123] | ||
miR-30e-5p, miR-15a | LRP6, YAP1 | Promoting the fat metabolism, mediating adipocytes differentiation | [124] |
miR-126-3p | FASN | Lipid synthesis in the mammary gland | [125] |
miR-150 | Lipogenesis inhibition in mammary epithelial cells | [126] | |
miR-145 | INSIG1 | Facilitates milk fat synthesis | [65] |
miR-15b | FASN | Lipid metabolism suppression | [83] |
miR-34b | FASN, FABP4, C/ EBPα, DCP1A | TAG accumulation inhibition and lipid droplet formation suppression | [127] |
miR-33a | ELOVL5, ELOVL6, SC4MOL | Fatty acid oxidation | [128] |
miR-152 | PTGS2, PRKAA1, CUP3 | Prostaglandin synthesis | |
miR-224 | LPL, GST, ALOX15, PTGS1 | Milk fat metabolism | |
miR-221 | FASN, ACSL1, ElF5, NR1H3 | Lipid droplet formation | [137] |
miR-143 | PPARγ, FASN, SCD1, CEBPβ, SREBP1 | Lipid droplet formation | [138] |
miR-183 | MST1 | Milk fat metabolism | [140] |
IRS1 | [96] | ||
miR-124a | PECR | Fatty acid metabolism | [55] |
miR-193a-5p | FADS1 | Milk fatty acid content | [142] |
miRNAs | Regulated Genes/Proteins/Pathways | Regulation Matter | References |
---|---|---|---|
miR-101a | COX-2 | Mammary gland differentiation and involution | [148] |
miR-200a | Epithelial cell differentiation | [76,149,150] | |
miR-205 | Cell size, cell proliferation | [151] | |
miR-24-3p | MEN1 | Epithelial cell proliferation | [153] |
miR-221 | STAT5a, STAT3 JAK-STAT, IRS1 | Cell proliferation | [80] |
miR-143-3p | Ndfip1 | Mammary epithelial cells apoptosis | [158] |
miR-145 | FSCN1 | Mammary epithelial cell proliferation | [159] |
miR-15a | YAP | Adipocyte growth and apoptosis | [124] |
miR-25 | Kruppel-like factor 4, CCAAT/binding enhancer protein alpha | Adipocyte differentiation | [167] |
miRNAs | Regulated Genes/Proteins/Pathways | Regulation Matter | References |
---|---|---|---|
miR-21, miR-146a, miR-155 | Toll-like receptor, NF-kB | [175] | |
miR-30a-5p, miR-30d-5p | JAK/STAT pathway, IL-10 | [176] | |
miR-22-3P | Development and differentiation of T-lymphocytes | [177] | |
miR-19b, miR-23b-3p, miR-331-5p, miR-664b, miR-2431-3p | GNG2, MAPRE2, CD14, IL17A, S100A9, COL4A1, RAP1B, LDOC1, LDLR | Inflammation and immunity | [186,187,188,189,190,191] |
miR-15a, miR-16a, miR-21-3p, miR-29b, miR-125b, miR-181a, miR-148a, miR-223, miR-375, let-7f | [183,193] | ||
miR-200a, miR-205, miR-122, miR-182 conservative_15_7229 | Toll-like receptor signaling pathway Chemokines signaling pathway T-cell receptor signaling pathway | [197] | |
miR-21 family | CALB, Vitamin D-dependent antimicrobial pathway | Inflammatory response to mastitis | [198,199,201,202,203,204] |
miR-223 | CBLB | Mammary alpha T cells stimulation | [62] |
miR-145 | FSCN1 | Levels of cellular immune cytokines | [208] |
miR-15a | IRAK2 | Inflammation and differentiation of immune cells | [206,207,208] |
miR26a | FGA | Maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing | [58] |
let-7d, let-7b, mir-98, miR-100, mir-130a, miR-193a, miR-210, miR-494, miR-652 | MAPK, JAK-STAT | S. uberis polysaccharide-induced immune response | [210] |
miR-155, miR-146a, miR-222, miR-383, miR-21 | NF-KB and MAPK Signaling Pathways | Mastitis-induced inflammation | [240] |
miR-125b | NFκB (TRAF6 and A20) | Inflammatory response | [203] |
miR-223 | IKKα | ||
miR-29a/miR-29b | IFN-γ | Mastitis-induced inflammation | [210] |
miR-101, miR-142-5p, miR-183, miR-2285g-3p, miR-223, miR-99a-5p | 22 genes | Immune responses with S. aureus infection | [184] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dysin, A.P.; Barkova, O.Y.; Pozovnikova, M.V. The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Non-Coding RNA 2021, 7, 78. https://doi.org/10.3390/ncrna7040078
Dysin AP, Barkova OY, Pozovnikova MV. The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Non-Coding RNA. 2021; 7(4):78. https://doi.org/10.3390/ncrna7040078
Chicago/Turabian StyleDysin, Artem P., Olga Y. Barkova, and Marina V. Pozovnikova. 2021. "The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep" Non-Coding RNA 7, no. 4: 78. https://doi.org/10.3390/ncrna7040078
APA StyleDysin, A. P., Barkova, O. Y., & Pozovnikova, M. V. (2021). The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Non-Coding RNA, 7(4), 78. https://doi.org/10.3390/ncrna7040078