The Role of Genetic Variants in the Long Non-Coding RNA Genes MALAT1 and H19 in the Pathogenesis of Childhood Obesity
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Studied Population
2.2. Genotype of the SNP rs3200401 in the MALAT1 Gene Has a Positive Association with the Obesity Risk
2.3. Genotype of the SNP rs217727 in the H19 Gene Has a Negative Association with the Obesity Risk
3. Materials and methods
3.1. Ethics Statement
3.2. Study Participants and Sample Collection
3.3. Biochemical Analysis and Obesity Assessment
3.4. SNP Selection
3.5. DNA Extraction and Genotyping
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Atherogenic coefficient |
BMI | Body mass index |
CI | Confidence interval |
GWAS | Genome-wide association studies |
HDLc | High-density lipoprotein cholesterol |
HOMAIR | Homeostatic Model Assessment for Insulin Resistance |
IR | Insulin resistance |
LDLc | Low-density lipoprotein cholesterol |
LncRNA | Long non-coding RNA |
References
- Reinehr, T.; Wabitsch, M. Childhood obesity. Curr. Opin. Lipidol. 2011, 22, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis, treatment and prevention of pediatric obesity: Consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef] [Green Version]
- Littleton, S.H.; Berkowitz, R.I.; Grant, S.F.A. Genetic Determinants of Childhood Obesity. Mol. Diagn. Ther. 2020, 24, 653. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Licenziati, M.R.; Manco, M.; Ambruzzi, A.M.; Bacchini, D.; Baraldi, E.; Bona, G.; Bruzzi, P.; Cerutti, F.; Corciulo, N.; et al. Health consequences of obesity in children and adolescents. Minerva Pediatr. 2014, 66, 381–414. [Google Scholar]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J. Am. Coll. Cardiol. 2016, 67, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics 2013, 193, 651–669. [Google Scholar] [CrossRef] [Green Version]
- Ji, E.; Kim, C.; Kim, W.; Lee, E.K. Role of long non-coding RNAs in metabolic control. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194348. [Google Scholar] [CrossRef]
- Wei, S.; Du, M.; Jiang, Z.; Hausman, G.J.; Zhang, L.; Dodson, M.V. Long noncoding RNAs in regulating adipogenesis: New RNAs shed lights on obesity. Cell. Mol. Life Sci. 2016, 73, 2079. [Google Scholar] [CrossRef] [Green Version]
- Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003, 22, 8031–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.C.; Tang, C.; Dong, Y.; Zhang, J.; Yuan, T.; Li, X.L. Targeting LncRNA-MALAT1 suppresses the progression of osteosarcoma by altering the expression and localization of β-catenin. J. Cancer 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Chen, J.; Chen, N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep. 2016, 6, 22640. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, D.; Zhang, Y.; Xu, X.; Bi, L.; Zhang, M.; Yu, B.; Zhang, Y. Association of lncRNA polymorphisms with triglyceride and total cholesterol levels among myocardial infarction patients in Chinese population. Gene 2020, 724, 143684. [Google Scholar] [CrossRef]
- Ding, H.; Wang, F.; Shi, X.; Ma, H.; Du, Y.; Hou, L.; Xing, N. LncRNA MALAT1 induces the dysfunction of β cells via reducing the histone acetylation of the PDX-1 promoter in type 1 diabetes. Exp. Mol. Pathol. 2020, 114, 104432. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, G.; Zhang, H.; Zhou, B.; Bai, L.; Chen, H.; Zhao, Y.; Yan, Y. Association between H19 SNP rs217727 and lung cancer risk in a Chinese population: A case control study. BMC Med. Genet. 2018, 19, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matouk, I.J.; DeGroot, N.; Mezan, S.; Ayesh, S.; Abu-Lail, R.; Hochberg, A.; Galun, E. The H19 Non-Coding RNA Is Essential for Human Tumor Growth. PLoS ONE 2007, 2, e845. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zheng, Y.; Jin, C.; Li, X.; Jia, L.; Li, W. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci. Rep. 2016, 6, 28897. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep. 2015, 5, 11516. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, Z.; Wu, J.; Zhang, L.; Lee, S.; Shin, D.J.; Tran, M.; Wang, L. lncRNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 2018, 67, 1768. [Google Scholar] [CrossRef] [Green Version]
- Wijesinghe, S.N.; Nicholson, T.; Tsintzas, K.; Jones, S.W. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes. Rev. 2021, 22, e13156. [Google Scholar] [CrossRef] [PubMed]
- Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol. 2011, 21, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-W.; Zhang, L.; Wen, L.-Y.; Huang, Q.; Tong, X.; Tao, Y.-J.; Chen, G.-M. Association of tag single nucleotide polymorphisms (SNPs) at lncRNA MALAT1 with type 2 diabetes mellitus susceptibility in the Chinese Han population: A case-control study. Gene 2023, 851, 147008. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, H.; Zare, A.; Omrani, M.D.; Doustimotlagh, A.H.; Meshkani, R.; Alipoor, S.; Alipoor, B. Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an Iranian population. Gene 2018, 675, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Han, Z.; Wu, J.; Ye, H.; Sun, G.; Shi, J.; Zhang, J.; Wang, P. The Relationship between MALAT1 Polymorphism rs3200401 C > T and the Risk of Overall Cancer: A Meta-Analysis. Medicina 2022, 58, 176. [Google Scholar] [CrossRef]
- Li, L.; Huang, Q.; Yan, F.; Wei, W.; Li, Z.; Liu, L.; Deng, J. Association between long non-coding RNA H19 polymorphisms and breast cancer risk: A meta-analysis. Women Health 2022, 62, 565–575. [Google Scholar] [CrossRef]
- Kazakova, Y. Maternal employment and childhood obesity in Russia. Econ. Hum. Biol. 2022, 47, 101187. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [Green Version]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Anderson, L.N.; Carsley, S.; Lebovic, G.; Borkhoff, C.M.; Maguire, J.L.; Parkin, P.C.; Birken, C.S. Misclassification of child body mass index from cut-points defined by rounded percentiles instead of Z-scores. BMC Res. Notes 2017, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Leem, S.; Park, T. An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genom. 2017, 18, 115. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Yang, Z.; Huang, Z.; Zhou, Y.; Cui, Q.; Dong, D. LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 2019, 47, D1034–D1037. [Google Scholar] [CrossRef] [PubMed]
- Giroud, M.; Scheideler, M. Long non-coding RNAs in metabolic organs and energy homeostasis. Int. J. Mol. Sci. 2017, 18, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Ke, S.; Zhong, L.; Wu, J.; Tseng, A.; Morpurgo, B.; Golovko, A.; Wang, G.; Cai, J.J.; Ma, X.; et al. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem. Pharmacol. 2018, 152, 94–103. [Google Scholar] [CrossRef]
- Zhang, N.; Geng, T.; Wang, Z.; Zhang, R.; Cao, T.; Camporez, J.P.; Cai, S.Y.; Liu, Y.; Dandolo, L.; Shulman, G.I.; et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI Insight 2018, 3, e120304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, N.; Tiwary, S.; Kesharwani, D.; Datta, M. Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis. J. Mol. Med. 2019, 97, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.R.; Liu, W.; Zhang, Q.; Guo, A.Y. lncRNASNP2: An updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 2018, 46, D276. [Google Scholar] [CrossRef]
- McCown, P.J.; Wang, M.C.; Jaeger, L.; Brown, J.A. Secondary Structural Model of Human MALAT1 Reveals Multiple Structure-Function Relationships. Int. J. Mol. Sci. 2019, 20, 5610. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hua, Y.; Jin, J.; Wang, H.; Du, M.; Zhu, L.; Chu, H.; Zhang, Z.; Wang, M. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget 2016, 7, 25470. [Google Scholar] [CrossRef] [Green Version]
Control | INS-S | INS-R | p-Value | |
---|---|---|---|---|
n = 50 | n = 50 | n = 50 | ||
Age | 10.46 ± 3.23 | 10.89 ± 3.73 | 13.56 ± 2.43 | |
Gender | ||||
Male | 32 | 28 | 32 | |
Female | 18 | 22 | 18 | |
Total cholesterol | 3.93 ± 0.7 | 3.80 ± 0.8 | 3.84 ± 0.7 | 0.6551 |
HDL | 1.41 ± 0.35 | 1.45 ± 0.39 | 1.15 | 0.0018 |
LDL | 2.24 ± 0.54 | 1.97 ± 0.63 | 1.97 ± 0.61 | 0.0316 |
VLDL | 0.29 | 0.38 | 0.65 ± 0.32 | <0.0001 |
TG | 0.59 | 0.77 | 1.32 ± 0.66 | <0.0001 |
AC | 1.71 | 1.75 | 2.37 ± 0.99 | 0.0138 |
Glucose | 4.84 | 4.83 ± 0.5 | 4.97 ± 0.81 | 0.3045 |
Insulin | 11.68 ± 3.87 | 16.59 ± 4.8 | 37.14 | <0.0001 |
HOMA-IR | 2.51 ± 0.9 | 3.32 | 7.82 | <0.0001 |
Obese n (%) | Controls n (%) | p | OR (95% CI) | ||
---|---|---|---|---|---|
Control vs. Total obese | Genotype | 100 | 50 | 0.0009 | |
CC | 48 (48%) | 40 (80%) | R 1 | ||
CT | 46 (46%) | 9 (18%) | 0.0005 | 4.259 (1.93–10.18) | |
TT | 6 (6%) | 1 (2%) | 0.4251 | 3.128 (0.4844–36.57) | |
CT + TT | 52 | 10 | 0.0002 | 4.333 (1.934–9.319) | |
Alleles | |||||
C | 142 (71%) | 89 (89%) | R | ||
T | 58 (29%) | 11 (11%) | 0.0004 | 3.305 (1.64–6.622) |
INS-S n | Control n | ||||
---|---|---|---|---|---|
Control vs. INS-S | Genotype | 50 | 50 | 0.0002 | |
CC | 20 (40%) | 40 (80%) | R | ||
CT | 29 (58%) | 9 (18%) | <0.0001 | 6.444 (2.61–15.21) | |
TT | 1 (2%) | 1 (2%) | >0.9999 | 1 (0.05168–19.35) | |
CT + TT | 30 | 10 | <0.0001 | 6 (2.529–14.43) | |
Alleles | |||||
C | 69 (69%) | 89 (89%) | R | ||
T | 31 (31%) | 11 (11%) | 0.0008 | 3.635 (1.731–8.025) | |
INS-R n | INS-S n | ||||
INS-S vs. INS-R | Genotype | 50 | 50 | 0.0283 | |
CC | 28 (56%) | 20 (40%) | R | ||
CT | 17 (34%) | 29 (58%) | 0.0422 | 0.4187 (0.1803–0.9964) | |
TT | 5 (10%) | 1 (2%) | 0.2044 | 5.444 (0.6843–65.28) | |
CT + TT | 22 | 30 | 0.1609 | 0.5238 (0.2449–1.173) | |
Alleles | |||||
C | 73 (73%) | 69 (69%) | R | ||
T | 27 (27%) | 31 (31%) | 0.6404 | 0.8232 (0.4536–1.551) |
Obese n | Controls n | p | OR (95% CI) | ||
---|---|---|---|---|---|
Control vs. Total obese | Genotype | 100 | 48 | 0.9547 | |
GG | 56 (56%) | 28 (58.33%) | R | ||
GA | 38 (38%) | 17 (35.42%) | 0.8536 | 1.118 (0.5305–2.317) | |
AA | 6 (6%) | 3 (6.25%) | >0.9999 | 0.9574 (0.255–3.622) | |
GA + AA | 44 | 20 | 0.8601 | 1.1 (0.5542–2.264) | |
Alleles | |||||
G | 150 (75%) | 73 (76.04%) | R | ||
A | 50 (25%) | 23 (23.96%) | 0.8863 | 1.058 (0.604–1.905) | |
INS-S n | Controls n | ||||
Control vs. INS-S | Genotype | 50 | 48 | 0.7967 | |
GG | 26 (52%) | 28 (58.33%) | R | ||
GA | 21 (42%) | 17 (35.42%) | 0.5318 | 1.33 (0.594–3.059) | |
AA | 3 (6%) | 3 (6.25%) | >0.9999 | 0.9574 (0.2148–4.27) | |
GA + AA | 24 | 20 | 0.5492 | 1.292 (0.5659–2.755) | |
Alleles | |||||
G | 73 (73%) | 73 (76.04%) | R | ||
A | 27 (27%) | 23 (23.96%) | 0.7433 | 1.174 (0.6147–2.289) | |
INS-R n | INS-S n | ||||
INS-S vs. INS-R | Genotype | 50 | 50 | 0.7023 | |
GG | 30 (60%) | 26 (52%) | R | ||
GA | 17 (34%) | 21 (42%) | 0.5286 | 0.7016 (0.3081–1.553) | |
AA | 3 (6%) | 3 (6%) | >0.9999 | 1 (0.2244–4.455) | |
GA + AA | 20 | 24 | 0.5459 | 0.7222 (0.341–1.627) | |
Alleles | |||||
G | 77 (77%) | 73 (73%) | R | ||
A | 23 (23%) | 27 (27%) | 0.6245 | 0.8076 (0.4159–1.54) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shkurat, T.P.; Ammar, M.; Bocharova, O.; Teplyakova, E.; Aleksandrova, A.; Ali, R.; Lipovich, L. The Role of Genetic Variants in the Long Non-Coding RNA Genes MALAT1 and H19 in the Pathogenesis of Childhood Obesity. Non-Coding RNA 2023, 9, 22. https://doi.org/10.3390/ncrna9020022
Shkurat TP, Ammar M, Bocharova O, Teplyakova E, Aleksandrova A, Ali R, Lipovich L. The Role of Genetic Variants in the Long Non-Coding RNA Genes MALAT1 and H19 in the Pathogenesis of Childhood Obesity. Non-Coding RNA. 2023; 9(2):22. https://doi.org/10.3390/ncrna9020022
Chicago/Turabian StyleShkurat, Tatiana Pavlovna, Manar Ammar, Olga Bocharova, Elena Teplyakova, Anzhela Aleksandrova, Ruba Ali, and Leonard Lipovich. 2023. "The Role of Genetic Variants in the Long Non-Coding RNA Genes MALAT1 and H19 in the Pathogenesis of Childhood Obesity" Non-Coding RNA 9, no. 2: 22. https://doi.org/10.3390/ncrna9020022
APA StyleShkurat, T. P., Ammar, M., Bocharova, O., Teplyakova, E., Aleksandrova, A., Ali, R., & Lipovich, L. (2023). The Role of Genetic Variants in the Long Non-Coding RNA Genes MALAT1 and H19 in the Pathogenesis of Childhood Obesity. Non-Coding RNA, 9(2), 22. https://doi.org/10.3390/ncrna9020022