Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response
Abstract
:1. Introduction
2. Results and Discussion
2.1. lncRNA Identification
2.2. Annotation of Putative lncRNAs
2.3. Cellular and Subcellular Location
2.4. lncRNA Thermodynamic and Structural Characterization
2.5. Structural Conservation
2.6. Expression and Validation of lncRNA S03
3. Materials and Methods
3.1. Transcriptomic Data and Quality Control
3.2. Putative lncRNA Identification
3.3. Putative lncRNA Annotation
3.4. Subcellular Location
3.5. Thermodynamic Characterization of lncRNAs
3.6. Structural Conservation of Transcripts
3.7. Validation of Differential Expression Patterns by RT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J. Classification and Comparison of Small RNAs from Plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef]
- Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of LncRNAs; Springer: Singapore, 2017; pp. 1–46. [Google Scholar]
- Raza, A.; Charagh, S.; Karikari, B.; Sharif, R.; Yadav, V.; Mubarik, M.S.; Habib, M.; Zhuang, Y.; Zhang, C.; Chen, H.; et al. MiRNAs for Crop Improvement. Plant Physiol. Biochem. 2023, 201, 107857. [Google Scholar] [CrossRef]
- Goff, L.A.; Rinn, J.L. Linking RNA Biology to LncRNAs. Genome Res. 2015, 25, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Jarroux, J.; Morillon, A.; Pinskaya, M. Long Non Coding RNA Biology; Rao, M.R.S., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1008, ISBN 978-981-10-5202-6. [Google Scholar]
- Yu, T.; Zhu, H. Long Non-Coding RNAs: Rising Regulators of Plant Reproductive Development. Agronomy 2019, 9, 53. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Abe, M. Regulation of Reproductive Development by Non-Coding RNA in Arabidopsis: To Flower or Not to Flower. J. Plant Res. 2012, 125, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Zhao, H.; Cui, P.; Albesher, N.; Xiong, L. A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiol. 2017, 175, 1321–1336. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. Functional and Evolutionary Characterization of Flowering-Related Long Non-Coding RNAs; Universität zu Berlin: Berlin, Germany, 2021. [Google Scholar]
- Li, S.; Yu, X.; Lei, N.; Cheng, Z.; Zhao, P.; He, Y.; Wang, W.; Peng, M. Genome-Wide Identification and Functional Prediction of Cold and/or Drought-Responsive LncRNAs in Cassava. Sci. Rep. 2017, 7, 45981. [Google Scholar] [CrossRef]
- Wang, J.; Lin, J.; Kan, J.; Wang, H.; Li, X.; Yang, Q.; Li, H.; Chang, Y. Genome-Wide Identification and Functional Prediction of Novel Drought-Responsive LncRNAs in Pyrus Betulifolia. Genes 2018, 9, 311. [Google Scholar] [CrossRef]
- Kim, E.-D.; Xiong, Y.; Pyo, Y.; Kim, D.-H.; Kang, B.-H.; Sung, S. Spatio-Temporal Analysis of Coding and Long Noncoding Transcripts during Maize Endosperm Development. Sci. Rep. 2017, 7, 3838. [Google Scholar] [CrossRef]
- Chand Jha, U.; Nayyar, H.; Mantri, N.; Siddique, K.H.M. Non-Coding RNAs in Legumes: Their Emerging Roles in Regulating Biotic/Abiotic Stress Responses and Plant Growth and Development. Cells 2021, 10, 1674. [Google Scholar] [CrossRef] [PubMed]
- Khemka, N.; Singh, V.K.; Garg, R.; Jain, M. Genome-Wide Analysis of Long Intergenic Non-Coding RNAs in Chickpea and Their Potential Role in Flower Development. Sci. Rep. 2016, 6, 33297. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lin, W.; Ku, Y.-S.; Wong, F.-L.; Li, M.-W.; Lam, H.-M.; Ngai, S.-M.; Chan, T.-F. Analysis of Soybean Long Non-Coding RNAs Reveals a Subset of Small Peptide-Coding Transcripts. Plant Physiol. 2020, 182, 1359–1374. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Ramos, C.; Vásquez-Regalado, J.; Zolla, G. Closing the Gap in the “ABC” Model in Legumes: A Review. LEGUME Res. Int. J. 2022, 45, 1465–1475. [Google Scholar] [CrossRef]
- Aslam, M.M.; Waseem, M.; Xu, W.; Ying, L.; Zhang, J.; Yuan, W. Global Identification of White Lupin LncRNAs Reveals Their Role in Cluster Roots under Phosphorus Deficiency. Int. J. Mol. Sci. 2022, 23, 9012. [Google Scholar] [CrossRef]
- Gelaw, T.A.; Sanan-Mishra, N. Non-Coding RNAs in Response to Drought Stress. Int. J. Mol. Sci. 2021, 22, 12519. [Google Scholar] [CrossRef]
- Raza, A.; Mubarik, M.S.; Sharif, R.; Habib, M.; Jabeen, W.; Zhang, C.; Chen, H.; Chen, Z.; Siddique, K.H.M.; Zhuang, W.; et al. Developing Drought-smart, Ready-to-grow Future Crops. Plant Genome 2023, 16, e20279. [Google Scholar] [CrossRef]
- Senamhi. 2022. Sierra: Octubre de 2022 Registró un Déficit de Lluvias Similar al Octubre de 1976. Available online: https://www.gob.pe/institucion/senamhi/noticias/670635-sierra-octubre-de-2022-registro-un-deficit-de-lluvias-similar-al-octubre-de-1976 (accessed on 15 August 2023).
- W.H.O. Drought. Available online: https://www.who.int/health-topics/drought?gclid=EAIaIQobChMI0-fMu5ewgAMVUwCtBh1lag17EAAYASAAEgIbuvD_BwE#tab=tab_2 (accessed on 15 August 2023).
- Repo-Carrasco-Valencia, R.; Basilio-Atencio, J.; Luna-Mercado, G.I.; Pilco-Quesada, S.; Vidaurre-Ruiz, J. Andean Ancient Grains: Nutritional Value and Novel Uses. Biol. Life Sci. Forum 2021, 8, 15. [Google Scholar]
- Vera-Vega, M.; Jimenez-Davalos, J.; Zolla, G. The Micronutrient Content in Underutilized Crops: The Lupinus Mutabilis Sweet Case. Sci. Rep. 2022, 12, 15162. [Google Scholar] [CrossRef]
- Hidalgo, M.; Marrufo, P.A.; Asencio, P.L.; Ramos, C.; Tuñoque, C.A.C.; Zolla, G. Evaluation of In Vitro Susceptibility to Spartein in Four Strains of Mycobacterium Tuberculosis. Rev. Peru. Med. Exp. Salud Publica 2022, 39, 77–82. [Google Scholar] [CrossRef]
- Ramos, C. Regulación Del Crecimiento de Yemas Florales En Tarwi (Lupinus Mutabilis Sweet) Por RNA-Seq; Universidad Nacional Agraria La Molina: Lima, Peru, 2021. [Google Scholar]
- Hidalgo, M. Transcriptoma de Lupinus Mutabilis Sometido a Estrés Hídrico; Universidad Nacional Agraria La Molina: Lima, Peru, 2021. [Google Scholar]
- Li, J.; Zhang, X.; Liu, C. The Computational Approaches of LncRNA Identification Based on Coding Potential: Status Quo and Challenges. Comput. Struct. Biotechnol. J. 2020, 18, 3666–3677. [Google Scholar] [CrossRef]
- Pinkney, H.R.; Wright, B.M.; Diermeier, S.D. The LncRNA Toolkit: Databases and In Silico Tools for LncRNA Analysis. Non-Coding RNA 2020, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, Y.; Ye, Z.-Q.; Liu, X.-Q.; Zhao, S.-Q.; Wei, L.; Gao, G. CPC: Assess the Protein-Coding Potential of Transcripts Using Sequence Features and Support Vector Machine. Nucleic Acids Res. 2007, 35, W345–W349. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, W.; Cheng, Y.; Shi, M.; Xia, X.-Q. A Systematic Evaluation of Bioinformatics Tools for Identification of Long Noncoding RNAs. RNA 2021, 27, 80–98. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, X.; Traore, S.M.; Xin, Z.; Ning, L.; Li, K.; Zhao, K.; Li, Z.; He, G.; Yin, D. Genome-Wide Identification and Analysis of Long Noncoding RNAs (LncRNAs) during Seed Development in Peanut (Arachis hypogaea L.). BMC Plant Biol. 2020, 20, 192. [Google Scholar] [CrossRef]
- Guo, J.-C.; Fang, S.-S.; Wu, Y.; Zhang, J.-H.; Chen, Y.; Liu, J.; Wu, B.; Wu, J.-R.; Li, E.-M.; Xu, L.-Y.; et al. CNIT: A Fast and Accurate Web Tool for Identifying Protein-Coding and Long Non-Coding Transcripts Based on Intrinsic Sequence Composition. Nucleic Acids Res. 2019, 47, W516–W522. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Nambeesan, S.U. Full-Length Fruit Transcriptomes of Southern Highbush (Vaccinium Sp.) and Rabbiteye (V. Virgatum Ait.) Blueberry. BMC Genom. 2022, 23, 733. [Google Scholar] [CrossRef]
- Glushkevich, A.; Spechenkova, N.; Fesenko, I.; Knyazev, A.; Samarskaya, V.; Kalinina, N.O.; Taliansky, M.; Love, A.J. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato (Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. Plants 2022, 11, 635. [Google Scholar] [CrossRef]
- Sang, S.; Chen, W.; Zhang, D.; Zhang, X.; Yang, W.; Liu, C. Data Integration and Evolutionary Analysis of Long Non-Coding RNAs in 25 Flowering Plants. BMC Genom. 2021, 22, 739. [Google Scholar] [CrossRef]
- Ma, H.; Yang, T.; Li, Y.; Zhang, J.; Wu, T.; Song, T.; Yao, Y.; Tian, J. The Long Noncoding RNA MdLNC499 Bridges MdWRKY1 and MdERF109 Function to Regulate Early-Stage Light-Induced Anthocyanin Accumulation in Apple Fruit. Plant Cell 2021, 33, 3309–3330. [Google Scholar] [CrossRef]
- Palos, K.; Nelson Dittrich, A.C.; Yu, L.; Brock, J.R.; Railey, C.E.; Wu, H.-Y.L.; Sokolowska, E.; Skirycz, A.; Hsu, P.Y.; Gregory, B.D.; et al. Identification and Functional Annotation of Long Intergenic Non-Coding RNAs in Brassicaceae. Plant Cell 2022, 34, 3233–3260. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Liang, Y.; Ma, Q.; Xu, Y.; Zhang, Y.; Du, W.; Wang, C.; Li, Y. LncFinder: An Integrated Platform for Long Non-Coding RNA Identification Utilizing Sequence Intrinsic Composition, Structural Information and Physicochemical Property. Brief. Bioinform. 2019, 20, 2009–2027. [Google Scholar] [CrossRef] [PubMed]
- Moh, N.M.M.; Zhang, P.; Chen, Y.; Chen, M. Computational Identification of MiRNAs and Temperature-Responsive LncRNAs From Mango (Mangifera indica L.). Front. Genet. 2021, 12, 607248. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Chen, H.; Hu, B. Genome-Wide Identification, Characterization, and Functional Analysis of LncRNAs in Hevea Brasiliensis. Front. Plant Sci. 2022, 13, 1012576. [Google Scholar] [CrossRef]
- Xing, J.; Liu, H.; Jiang, W.; Wang, L. LncRNA-Encoded Peptide: Functions and Predicting Methods. Front. Oncol. 2021, 10, 622294. [Google Scholar] [CrossRef]
- Hezroni, H.; Koppstein, D.; Schwartz, M.G.; Avrutin, A.; Bartel, D.P.; Ulitsky, I. Principles of Long Noncoding RNA Evolution Derived from Direct Comparison of Transcriptomes in 17 Species. Cell Rep. 2015, 11, 1110–1122. [Google Scholar] [CrossRef]
- Khoei, M.A.; Karimi, M.; Karamian, R.; Amini, S.; Soorni, A. Identification of the Complex Interplay Between Nematode-Related LncRNAs and Their Target Genes in Glycine max L. Front. Plant Sci. 2021, 12, 779597. [Google Scholar] [CrossRef]
- Corona-Gomez, J.A.; Garcia-Lopez, I.J.; Stadler, P.F.; Fernandez-Valverde, S.L. Splicing Conservation Signals in Plant Long Noncoding RNAs. RNA 2020, 26, 784–793. [Google Scholar] [CrossRef]
- Deng, P.; Liu, S.; Nie, X.; Weining, S.; Wu, L. Conservation Analysis of Long Non-Coding RNAs in Plants. Sci. China Life Sci. 2018, 61, 190–198. [Google Scholar] [CrossRef]
- Liu, J.; Jung, C.; Xu, J.; Wang, H.; Deng, S.; Bernad, L.; Arenas-Huertero, C.; Chua, N.-H. Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in Arabidopsis. Plant Cell 2012, 24, 4333–4345. [Google Scholar] [CrossRef]
- Li, L.; Eichten, S.R.; Shimizu, R.; Petsch, K.; Yeh, C.-T.; Wu, W.; Chettoor, A.M.; Givan, S.A.; Cole, R.A.; Fowler, J.E.; et al. Genome-Wide Discovery and Characterization of Maize Long Non-Coding RNAs. Genome Biol. 2014, 15, R40. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Dou, Y.; Tan, P.; Ni, Z.; Liu, T.; Wang, D.; Huang, Y.; Cai, K.; Zhao, X.; Xu, D.; et al. RNALocate v2.0: An Updated Resource for RNA Subcellular Localization with Increased Coverage and Annotation. Nucleic Acids Res. 2022, 50, D333–D339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Y.; Sun, Z.-J.; Yang, Y.-H.; Lin, H. Towards a Better Prediction of Subcellular Location of Long Non-Coding RNA. Front. Comput. Sci. 2022, 16, 165903. [Google Scholar] [CrossRef]
- Zeng, M.; Wu, Y.; Lu, C.; Zhang, F.; Wu, F.-X.; Li, M. DeepLncLoc: A Deep Learning Framework for Long Non-Coding RNA Subcellular Localization Prediction Based on Subsequence Embedding. Brief. Bioinform. 2022, 23, bbab360. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Pan, X.; Shen, H.-B. LncLocator 2.0: A Cell-Line-Specific Subcellular Localization Predictor for Long Non-Coding RNAs with Interpretable Deep Learning. Bioinformatics 2021, 37, 2308–2316. [Google Scholar] [CrossRef]
- Noh, J.H.; Kim, K.M.; McClusky, W.G.; Abdelmohsen, K.; Gorospe, M. Cytoplasmic Functions of Long Noncoding RNAs. WIREs RNA 2018, 9, e1471. [Google Scholar] [CrossRef]
- Jin, J.; Meng, L.; Chen, K.; Xu, Y.; Lu, P.; Li, Z.; Tao, J.; Li, Z.; Wang, C.; Yang, X.; et al. Analysis of Herbivore-Responsive Long Noncoding Ribonucleic Acids Reveals a Subset of Small Peptide-Coding Transcripts in Nicotiana Tabacum. Front. Plant Sci. 2022, 13, 971400. [Google Scholar] [CrossRef]
- Shin, J.-H.; Wang, H.-L.V.; Lee, J.; Dinwiddie, B.L.; Belostotsky, D.A.; Chekanova, J.A. The Role of the Arabidopsis Exosome in SiRNA–Independent Silencing of Heterochromatic Loci. PLoS Genet. 2013, 9, e1003411. [Google Scholar] [CrossRef]
- Chekanova, J.A. Long Non-Coding RNAs and Their Functions in Plants. Curr. Opin. Plant Biol. 2015, 27, 207–216. [Google Scholar] [CrossRef]
- Grover, N. (Ed.) Fundamentals of RNA Structure and Function; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-90213-1. [Google Scholar]
- Herschlag, D.; Bonilla, S.; Bisaria, N. The Story of RNA Folding, as Told in Epochs. Cold Spring Harb. Perspect. Biol. 2018, 10, a032433. [Google Scholar] [CrossRef]
- Mathews, D.H.; Sabina, J.; Zuker, M.; Turner, D.H. Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure. J. Mol. Biol. 1999, 288, 911–940. [Google Scholar] [CrossRef]
- Trotta, E. On the Normalization of the Minimum Free Energy of RNAs by Sequence Length. PLoS ONE 2014, 9, e113380. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, H.; Deng, D.; Zhao, K.; Liu, K.; Hendrix, D.A.; Mathews, D.H. LinearFold: Linear-Time Approximate RNA Folding by 5′-to-3′ Dynamic Programming and Beam Search. Bioinformatics 2019, 35, i295–i304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, L.; Mathews, D.H.; Huang, L. LinearPartition: Linear-Time Approximation of RNA Folding Partition Function and Base-Pairing Probabilities. Bioinformatics 2020, 36, i258–i267. [Google Scholar] [CrossRef] [PubMed]
- Steffen, P.; Voß, B.; Rehmsmeier, M.; Reeder, J.; Giegerich, R. RNAshapes: An Integrated RNA Analysis Package Based on Abstract Shapes. Bioinformatics 2006, 22, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Mohammadin, S.; Edger, P.P.; Pires, J.C.; Schranz, M.E. Positionally-Conserved but Sequence-Diverged: Identification of Long Non-Coding RNAs in the Brassicaceae and Cleomaceae. BMC Plant Biol. 2015, 15, 217. [Google Scholar] [CrossRef]
- Weeks, K.M. SHAPE Directed Discovery of New Functions in Large RNAs. Acc. Chem. Res. 2021, 54, 2502–2517. [Google Scholar] [CrossRef]
- O’Leary, C.A.; Tompkins, V.S.; Rouse, W.B.; Nam, G.; Moss, W.N. Thermodynamic and Structural Characterization of an EBV Infected B-Cell Lymphoma Transcriptome. NAR Genom. Bioinforma 2022, 4, lqac082. [Google Scholar] [CrossRef]
- Mailler, E.; Paillart, J.; Marquet, R.; Smyth, R.P.; Vivet-Boudou, V. The Evolution of RNA Structural Probing Methods: From Gels to Next-generation Sequencing. WIREs RNA 2019, 10, e1518. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, Y.; Kwok, C.K.; Zhang, Y.; Bevilacqua, P.C.; Assmann, S.M. In Vivo Genome-Wide Profiling of RNA Secondary Structure Reveals Novel Regulatory Features. Nature 2014, 505, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Bugnon, L.A.; Edera, A.A.; Prochetto, S.; Gerard, M.; Raad, J.; Fenoy, E.; Rubiolo, M.; Chorostecki, U.; Gabaldón, T.; Ariel, F.; et al. Secondary Structure Prediction of Long Noncoding RNA: Review and Experimental Comparison of Existing Approaches. Brief. Bioinform. 2022, 23, bbac205. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.E.; Pyle, A.M. The Molecular Interactions That Stabilize RNA Tertiary Structure: RNA Motifs, Patterns, and Networks. Acc. Chem. Res. 2011, 44, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.J.; Ulitsky, I. Discovering Functional Motifs in Long Noncoding RNAs. WIREs RNA 2022, 13, e1708. [Google Scholar] [CrossRef]
- Ganser, L.R.; Kelly, M.L.; Herschlag, D.; Al-Hashimi, H.M. The Roles of Structural Dynamics in the Cellular Functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019, 20, 474–489. [Google Scholar] [CrossRef]
- Spitale, R.C.; Incarnato, D. Probing the Dynamic RNA Structurome and Its Functions. Nat. Rev. Genet. 2023, 24, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Mustoe, A.M.; Brooks, C.L.; Al-Hashimi, H.M. Hierarchy of RNA Functional Dynamics. Annu. Rev. Biochem. 2014, 83, 441–466. [Google Scholar] [CrossRef]
- Shaath, H.; Vishnubalaji, R.; Elango, R.; Kardousha, A.; Islam, Z.; Qureshi, R.; Alam, T.; Kolatkar, P.R.; Alajez, N.M. Long Non-Coding RNA and RNA-Binding Protein Interactions in Cancer: Experimental and Machine Learning Approaches. Semin. Cancer Biol. 2022, 86, 325–345. [Google Scholar] [CrossRef]
- Li, R.; Zhu, H.; Luo, Y. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. Int. J. Mol. Sci. 2016, 17, 702. [Google Scholar] [CrossRef]
- Svoboda, P.; Cara, A.D. Hairpin RNA: A Secondary Structure of Primary Importance. Cell. Mol. Life Sci. 2006, 63, 901–908. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Zhang, L.; Peng, J.; Huang, T.; Yang, X.; Jeong, B.R.; Yang, Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. Front. Plant Sci. 2022, 13, 804368. [Google Scholar] [CrossRef] [PubMed]
- Mix, H.; Lobanov, A.V.; Gladyshev, V.N. SECIS Elements in the Coding Regions of Selenoprotein Transcripts Are Functional in Higher Eukaryotes. Nucleic Acids Res. 2007, 35, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Mita, Y.; Uchida, R.; Yasuhara, S.; Kishi, K.; Hoshi, T.; Matsuo, Y.; Yokooji, T.; Shirakawa, Y.; Toyama, T.; Urano, Y.; et al. Identification of a Novel Endogenous Long Non-Coding RNA That Inhibits Selenoprotein P Translation. Nucleic Acids Res. 2021, 49, 6893–6907. [Google Scholar] [CrossRef]
- Fajardo, D.; Schlautman, B.; Steffan, S.; Polashock, J.; Vorsa, N.; Zalapa, J. The American Cranberry Mitochondrial Genome Reveals the Presence of Selenocysteine (TRNA-Sec and SECIS) Insertion Machinery in Land Plants. Gene 2014, 536, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Gulewicz, P.; Martínez-Villaluenga, C.; Pilarski, R.; Blazquez, E.; Jiménez, B.; Gulewicz, K.; Vidal-Valverde, C. Influence of Germination with Different Selenium Solutions on Nutritional Value and Cytotoxicity of Lupin Seeds. J. Agric. Food Chem. 2009, 57, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Ishitani, M.; Lee, H.; Zhu, J.-K. The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. Plant Cell 2001, 13, 2063–2083. [Google Scholar] [CrossRef]
- Watanabe, S.; Sato, M.; Sawada, Y.; Tanaka, M.; Matsui, A.; Kanno, Y.; Hirai, M.Y.; Seki, M.; Sakamoto, A.; Seo, M. Arabidopsis Molybdenum Cofactor Sulfurase ABA3 Contributes to Anthocyanin Accumulation and Oxidative Stress Tolerance in ABA-Dependent and Independent Ways. Sci. Rep. 2018, 8, 16592. [Google Scholar] [CrossRef]
- Ramasamy, S.; Ganesh Thiruvengadam Nandagopal, J.; Balasubramanian, M.; Girija, S. Effect of Abscisic Acid and Selenium Foliar Sprays on Drought Mitigation in Tomato (Solanum lycopersicum L.). Mater. Today Proc. 2022, 48, 191–195. [Google Scholar] [CrossRef]
- Fichman, Y.; Koncz, Z.; Reznik, N.; Miller, G.; Szabados, L.; Kramer, K.; Nakagami, H.; Fromm, H.; Koncz, C.; Zilberstein, A. SELENOPROTEIN O Is a Chloroplast Protein Involved in ROS Scavenging and Its Absence Increases Dehydration Tolerance in Arabidopsis Thaliana. Plant Sci. 2018, 270, 278–291. [Google Scholar] [CrossRef]
- Sanbonmatsu, K. Getting to the Bottom of LncRNA Mechanism: Structure–Function Relationships. Mamm. Genome 2022, 33, 343–353. [Google Scholar] [CrossRef]
- Delli Ponti, R.; Armaos, A.; Marti, S.; Tartaglia, G.G. A Method for RNA Structure Prediction Shows Evidence for Structure in LncRNAs. Front. Mol. Biosci. 2018, 5, 111. [Google Scholar] [CrossRef] [PubMed]
- Ponti, R.D.; Armaos, A.; Vandelli, A.; Tartaglia, G.G. CROSSalive: A Web Server for Predicting the in Vivo Structure of RNA Molecules. Bioinformatics 2020, 36, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, K.; Gribskov, M. Accurate Classification of RNA Structures Using Topological Fingerprints. PLoS ONE 2016, 11, e0164726. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Feng, S.; Zhang, Q.; Han, S.; Du, W. Capsule-LPI: A LncRNA–Protein Interaction Predicting Tool Based on a Capsule Network. BMC Bioinform. 2021, 22, 246. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Chen, X.; Chen, Y. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu. Rev. Cell Dev. Biol. 2019, 35, 407–431. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar Patel, M.; Kumar, N.; Bajpai, A.B.; Siddique, K.H.M. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar] [CrossRef]
- Ashraf, M. Inducing Drought Tolerance in Plants: Recent Advances. Biotechnol. Adv. 2010, 28, 169–183. [Google Scholar] [CrossRef]
- Poveda, G.; Espinoza, J.C.; Zuluaga, M.D.; Solman, S.A.; Garreaud, R.; van Oevelen, P.J. High Impact Weather Events in the Andes. Front. Earth Sci. 2020, 8, 162. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Sies, H. Selenium Homeostasis and Antioxidant Selenoproteins in Brain: Implications for Disorders in the Central Nervous System. Arch. Biochem. Biophys. 2013, 536, 152–157. [Google Scholar] [CrossRef]
- Ahmad, R.; Waraich, E.A.; Nawaz, F.; Ashraf, M.Y.; Khalid, M. Selenium (Se) Improves Drought Tolerance in Crop Plants—A Myth or Fact?: Selenium (Se) and Drought Tolerance in Crop Plants. J. Sci. Food Agric. 2016, 96, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Jampala, P.; Garhewal, A.; Lodha, M. Functions of Long Non-Coding RNA in Arabidopsis thaliana. Plant Signal. Behav. 2021, 16, 1925440. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, X.; Niu, F.; Sun, X.; Hu, Z.; Gao, F.; Zhang, H.; Jiang, Q. Overexpression of LncRNA77580 Regulates Drought and Salinity Stress Responses in Soybean. Plants 2023, 12, 181. [Google Scholar] [CrossRef] [PubMed]
- Leggett, R.M.; Ramirez-Gonzalez, R.H.; Clavijo, B.J.; Waite, D.; Davey, R.P. Sequencing Quality Assessment Tools to Enable Data-Driven Informatics for High Throughput Genomics. Front. Genet. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Hane, J.K.; Ming, Y.; Kamphuis, L.G.; Nelson, M.N.; Garg, G.; Atkins, C.A.; Bayer, P.E.; Bravo, A.; Bringans, S.; Cannon, S.; et al. A Comprehensive Draft Genome Sequence for Lupin (Lupinus angustifolius), an Emerging Health Food: Insights into Plant-Microbe Interactions and Legume Evolution. Plant Biotechnol. J. 2017, 15, 318–330. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Yang, D.-C.; Kong, L.; Hou, M.; Meng, Y.-Q.; Wei, L.; Gao, G. CPC2: A Fast and Accurate Coding Potential Calculator Based on Sequence Intrinsic Features. Nucleic Acids Res. 2017, 45, W12–W16. [Google Scholar] [CrossRef]
- Jin, J.; Lu, P.; Xu, Y.; Li, Z.; Yu, S.; Liu, J.; Wang, H.; Chua, N.H.; Cao, P. PLncDB V2.0: A Comprehensive Encyclopedia of Plant Long Noncoding RNAs. Nucleic Acids Res. 2021, 49, D1489–D1495. [Google Scholar] [CrossRef]
- Paytuví Gallart, A.; Hermoso Pulido, A.; Anzar Martínez de Lagrán, I.; Sanseverino, W.; Aiese Cigliano, R. GREENC: A Wiki-Based Database of Plant LncRNAs. Nucleic Acids Res. 2016, 44, D1161–D1166. [Google Scholar] [CrossRef]
- Szcześniak, M.W.; Bryzghalov, O.; Ciomborowska-Basheer, J.; Makałowska, I. CANTATAdb 2.0: Expanding the Collection of Plant Long Noncoding RNAs. In Plant Long Non-Coding RNAs: Methods and Protocols; Humana Press: New York, NY, USA, 2019; pp. 415–429. [Google Scholar]
- Sweeney, B.A.; Petrov, A.I.; Ribas, C.E.; Finn, R.D.; Bateman, A.; Szymanski, M.; Karlowski, W.M.; Seemann, S.E.; Gorodkin, J.; Cannone, J.J.; et al. RNAcentral 2021: Secondary Structure Integration, Improved Sequence Search and New Member Databases. Nucleic Acids Res. 2021, 49, D212–D220. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2019, 48, D682–D688. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Song, Y.; Li, Y.; Mao, Y.; Du, G.; Tan, B.; Zhang, H. Integrative Analyses of Prognosis, Tumor Immunity, and CeRNA Network of the Ferroptosis-Associated Gene FANCD2 in Hepatocellular Carcinoma. Front. Genet. 2022, 13, 955225. [Google Scholar] [CrossRef] [PubMed]
- Linares, S. Identificación de Genes de Referencia En Lupinus Mutabilis Sweet Para Estudios Cuantitativos de Expresión Génica; Universidad Nacional Agraria La Molina: Lima, Peru, 2022. [Google Scholar]
Transcript ID | Code | RNALOCATE | iLoc-LncRNA 2.0 | DeepLncLoc | lncLocator 2.0 | Predicted Location | Predicted Sublocation |
---|---|---|---|---|---|---|---|
TRINITY_DN19379_c1_g3_i10 | S01 | Ribosome (0.99) | Ribosome (0.99) | Cytoplasm (0.56) | Nucleus (−1.04) | Cytoplasm | Ribosome |
TRINITY_DN19379_c1_g3_i12 | S02 | Ribosome (0.58) | Ribosome (0.58) | Cytoplasm (0.49) | Nucleus (−1.11) | Cytoplasm | Ribosome |
TRINITY_DN19379_c1_g3_i8 | S03 | Cytoplasm. Cytosol (0.70) | Cytoplasm. Cytosol (0.70) | Cytoplasm (0.62) | Nucleus (−0.56) | Cytoplasm | Cytosol |
TRINITY_DN19675_c1_g1_i4 | S04 | Cytoplasm. Cytosol (0.99) | Cytoplasm. Cytosol (0.99) | Cytoplasm (0.67) | Nucleus (−1.31) | Cytoplasm | Cytosol |
TRINITY_DN22973_c0_g1_i1 | S05 | Ribosome (0.53) | Ribosome (0.53) | Cytoplasm (0.67) | Nucleus (−0.62) | Cytoplasm | Ribosome |
TRINITY_DN22973_c0_g1_i11 | S06 | Ribosome (0.72) | Ribosome (0.72) | Cytoplasm (0.76) | Nucleus (−1.20) | Cytoplasm | Ribosome |
TRINITY_DN22973_c0_g1_i4 | S07 | Ribosome (0.82) | Ribosome (0.82) | Cytoplasm (0.63) | Nucleus (−1.18) | Cytoplasm | Ribosome |
TRINITY_DN22973_c0_g1_i5 | S08 | Exosome (0.83) | Exosome (0.83) | Cytoplasm (0.64) | Nucleus (−1.16) | Exosome | Exosome |
TRINITY_DN22973_c0_g1_i7 | S09 | Exosome (0.67) | Exosome (0.67) | Cytoplasm (0.65) | Nucleus (−1.14) | Exosome | Exosome |
TRINITY_DN22973_c1_g1_i4 | S10 | Exosome (0.77) | Exosome (0.77) | Cytoplasm (0.48) | Nucleus (1.32) | Exosome | Exosome |
TRINITY_DN22973_c1_g2_i2 | S11 | Exosome (0.59) | Exosome (0.59) | Cytoplasm (0.71) | Nucleus (−1.05) | Exosome | Exosome |
TRINITY_DN22973_c1_g3_i10 | S12 | Ribosome (0.83) | Ribosome (0.83) | Cytoplasm (0.68) | Nucleus (−1.04) | Cytoplasm | Ribosome |
Gene Name (L. mutabilis Transcript ID) | Sequence (5′–3′) | Product Size (bp) | Annealing Temperature (°C) |
---|---|---|---|
OEP24k (TRINITY_DN20247_c5_g3_i3) | Forward: GTCTAAGAACTCGTGGGACTTTG Reverse: CATGTGGTCTCTGCACTAAGTTT | 201 | 60.9 |
S03 (TRINITY_DN19379_c1_g3_i8) | Forward: TCACTACTAGGCTGAGCAACC Reverse: TGTTCCCTGCTTCTTCTTGTG | 111 | 60.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, M.; Ramos, C.; Zolla, G. Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response. Non-Coding RNA 2023, 9, 48. https://doi.org/10.3390/ncrna9050048
Hidalgo M, Ramos C, Zolla G. Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response. Non-Coding RNA. 2023; 9(5):48. https://doi.org/10.3390/ncrna9050048
Chicago/Turabian StyleHidalgo, Manuel, Cynthia Ramos, and Gaston Zolla. 2023. "Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response" Non-Coding RNA 9, no. 5: 48. https://doi.org/10.3390/ncrna9050048
APA StyleHidalgo, M., Ramos, C., & Zolla, G. (2023). Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response. Non-Coding RNA, 9(5), 48. https://doi.org/10.3390/ncrna9050048