Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters
Abstract
:1. Introduction
2. Biomass-Based Activated Carbons
2.1. Dye Removal
2.1.1. Orange, Mandarin, Banana Husks
2.1.2. Orange Peels AC
2.1.3. Orange Peel/Watermelon Rind AC
2.1.4. Cactus Fruit Peels AC
2.1.5. Pineapple Peel AC
- Hydrogen bonding between the oxygen atom of the dye and the hydroxyl groups of the PiPAC;
- Electrostatic interactions between the aromatic ring of dye and the oxygen on the surface of the PiPAC;
- π–π interactions between the π–electrons of carbonaceous PiPAC and in the aromatic ring of the dye [50].
2.1.6. Pomegranate Peel AC
2.2. Pharmaceuticals Removal
2.2.1. Jackfruit Peels AC
2.2.2. Pomegranate Peels AC
2.2.3. Plantain Peels AC
2.2.4. Mangosteen Peel AC
2.2.5. Dillenia Indica Peels AC
2.2.6. Banana Peels as AC
2.3. Heavy Metals Removal
2.3.1. Pea Peel AC
2.3.2. Navel Orange Peel AC
2.3.3. Orange Peels-TiO2 Modified AC
2.3.4. Pea Peel AC
2.3.5. Banana Peel AC
2.4. Fluoride Removal
2.4.1. Sweet Lime Peel AC
2.4.2. Banana Peel AC
2.4.3. Pea Peel AC
3. Peels as Natural Adsorbents
3.1. Organic Pollutant Removal
3.1.1. Pharmaceuticals Removal
3.1.2. Dye Removal
3.2. Inorganic Pollytants Removal
3.2.1. Heavy Metals Removal
3.2.2. Fluoride Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wasewar, K.L.; Singh, S.; Kansal, S.K. Process Intensification of Treatment of Inorganic Water Pollutants. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128189658. [Google Scholar]
- Chalaris, M.; Gkika, D.A.; Tolkou, A.K.; Kyzas, G.Z. Advancements and Sustainable Strategies for the Treatment and Management of Wastewaters from Metallurgical Industries: An Overview. Environ. Sci. Pollut. Res. Int. 2023, 30, 119627–119653. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of Pharmaceutical Effluents on Aquatic Ecosystems. Sci. Afr. 2022, 17, e01288. [Google Scholar] [CrossRef]
- Dago-Serry, Y.; Maroulas, K.N.; Tolkou, A.K.; AbdelAll, N.; Alodhayb, A.N.; Khouqeer, G.A.; Kyzas, G.Z. Composite Super-Adsorbents of Chitosan/Activated Carbon for the Removal of Nonsteroidal Anti-Inflammatory Drug from Wastewaters. J. Mol. Struct. 2024, 1298, 137044. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Banihani, Q.; León, G.; Khatri, C.; Field, J.A.; Sierra-Alvarez, R. Toxicity of Fluoride to Microorganisms in Biological Wastewater Treatment Systems. Water Res. 2009, 43, 3177–3186. [Google Scholar] [CrossRef]
- World Health Organization. European Standards for Drinking-Water. Am. J. Med. Sci. 1970, 242, 56. [Google Scholar]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Ikhlaq, A.; Zafar, M.; Javed, F.; Yasar, A.; Akram, A.; Shabbir, S.; Qi, F. Catalytic Ozonation for the Removal of Reactive Black 5 (RB-5) Dye Using Zeolites Modified with CuMn2O4/GC3N4 in a Synergic Electro Flocculation-Catalytic Ozonation Process. Water Sci. Technol. 2021, 84, 1943–1953. [Google Scholar] [CrossRef]
- Vavouraki, A.; Bartzas, G.; Komnitsas, K. Synthesis of Zeolites from Greek Fly Ash and Assessment of Their Copper Removal Capacity. Minerals 2020, 10, 844. [Google Scholar] [CrossRef]
- 14. Anush, S.M.; Chandan, H.R.; Gayathri, B.H.; Asma; Manju, N.; Vishalakshi, B.; Kalluraya, B. Graphene Oxide Functionalized Chitosan-Magnetite Nanocomposite for Removal of Cu(II) and Cr(VI) from Waste Water. Int. J. Biol. Macromol. 2020, 164, 4391–4402. [Google Scholar] [CrossRef]
- Subedi, N.; Lähde, A.; Abu-Danso, E.; Iqbal, J.; Bhatnagar, A. A Comparative Study of Magnetic Chitosan (Chi@Fe3O4) and Graphene Oxide Modified Magnetic Chitosan (Chi@Fe3O4GO) Nanocomposites for Efficient Removal of Cr(VI) from Water. Int. J. Biol. Macromol. 2019, 137, 948–959. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Trikkaliotis, D.G.; Kyzas, G.Z.; Katsoyiannis, I.A.; Deliyanni, E.A. Simultaneous Removal of As(III) and Fluoride Ions from Water Using Manganese Oxide Supported on Graphene Nanostructures (GO-MnO2). Sustainability 2023, 15, 1179. [Google Scholar] [CrossRef]
- Shahrin, S.; Lau, W.J.; Goh, P.S.; Jaafar, J.; Ismaila, A.F. Adsorptive Removal of Cr(VI) and Cu(II) Ions from Water Solution Using Graphene Oxide–Manganese Ferrite (GMF) Nanomaterials. Int. J. Eng. Trans. B Appl. 2018, 31, 1341–1346. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Kyzas, G.Z. Magnesium/Silica/Lanthanum@Activated Carbon for the Remediation of As(III) from Water. Environments 2023, 10, 171. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Trikalioti, S.; Makrogianni, O.; Trikkaliotis, D.G.; Deliyanni, E.A.; Kyzas, G.Z.; Katsoyiannis, I.A. Magnesium Modified Activated Carbons Derived from Coconut Shells for the Removal of Fluoride from Water. Sustain. Chem. Pharm. 2023, 31, 100898. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Meiczinger, M.; Somogyi, V.; Al-Juboori, R.A.; Grmasha, R.A.; Stenger-Kovács, C.; Jakab, M.; Hashim, K.S. Removal of Emerging Pollutants from Water Using Enzyme-Immobilized Activated Carbon from Coconut Shell. J. Environ. Chem. Eng. 2023, 11, 109803. [Google Scholar] [CrossRef]
- Tsoutsa, E.K.; Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. An Update on Agricultural Wastes Used as Natural Adsorbents or Coagulants in Single or Combined Systems for the Removal of Dyes from Wastewater. Water Air Soil Pollut. 2024, 235, 178. [Google Scholar] [CrossRef]
- Hussain, H.; Mamadalieva, N.Z.; Hussain, A.; Hassan, U.; Rabnawaz, A.; Ahmed, I.; Green, I.R. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr. Issues Mol. Biol. 2022, 44, 1960–1994. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Trikalioti, S.; Makrogianni, O.; Xanthopoulou, M.; Deliyanni, E.A.; Kyzas, G.Z.; Katsoyiannis, I.A. Lanthanum Modified Activated Carbon from Coconut Shells for Chromium (VI) Removal from Water. Nanomaterials 2022, 12, 1067. [Google Scholar] [CrossRef]
- Sukla Baidya, K.; Kumar, U. Adsorption of Brilliant Green Dye from Aqueous Solution onto Chemically Modified Areca Nut Husk. South Afr. J. Chem. Eng. 2021, 35, 33–43. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Tsoutsa, E.K.; Kyzas, G.Z.; Katsoyiannis, I.A. Sustainable Use of Low—Cost Adsorbents Prepared from Waste Fruit Peels for the Removal of Selected Reactive and Basic Dyes Found in Wastewaters. Environ. Sci. Pollut. Res. 2024, 31, 14662–14689. [Google Scholar] [CrossRef] [PubMed]
- Munagapati, V.S.; Wen, J.C.; Pan, C.L.; Gutha, Y.; Wen, J.H. Enhanced Adsorption Performance of Reactive Red 120 Azo Dye from Aqueous Solution Using Quaternary Amine Modified Orange Peel Powder. J. Mol. Liq. 2019, 285, 375–385. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S. Removal of Anionic Dyes (Reactive Black 5 and Congo Red) from Aqueous Solutions Using Banana Peel Powder as an Adsorbent. Ecotoxicol. Environ. Saf. 2018, 148, 601–607. [Google Scholar] [CrossRef]
- Farias, K.C.S.; Guimarães, R.C.A.; Oliveira, K.R.W.; Nazário, C.E.D.; Ferencz, J.A.P.; Wender, H. Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater. Toxics 2023, 11, 664. [Google Scholar] [CrossRef]
- Joshi, V.; Jindal, M.K.; Sar, S.K. Approaching a Discussion on the Detachment of Chlorpyrifos in Contaminated Water Using Different Leaves and Peels as Bio Adsorbents. Sci. Rep. 2023, 13, 11186. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Li, W.; Pei, S.; Ren, Y.; Li, X.; Qu, C.; Wu, C.; Liu, J. Efficient and Selective Adsorption of Cationic Dye Malachite Green by Kiwi-Peel-Based Biosorbents. Molecules 2023, 28, 5310. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Tsoutsa, E.K.; Katsoyiannis, I.A.; Kyzas, G.Z. Colloids and Surfaces A: Physicochemical and Engineering Aspects Simultaneous Removal of Anionic and Cationic Dyes on Quaternary Mixtures by Adsorption onto Banana, Orange and Pomegranate Peels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133176. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Cignolo, D.; Fini, P.; Fanelli, F.; Cosma, P. From Agricultural Wastes to a Resource: Kiwi Peels, as Long-Lasting, Recyclable Adsorbent, to Remove Emerging Pollutants from Water. The Case of Ciprofloxacin Removal. Sustain. Chem. Pharm. 2022, 29, 100749. [Google Scholar] [CrossRef]
- Sarangi, B.; Mishra, S.P. A Glance at the Potential of Artocarpus Genus Fruit Peels and Its Derivatives as Adsorbent. Bioresour. Technol. Rep. 2023, 21, 101363. [Google Scholar] [CrossRef]
- Mishra, L.; Paul, K.K.; Jena, S. Adsorption Isotherm, Kinetics and Optimization Study by Box Behnken Design on Removal of Phenol from Coke Wastewater Using Banana Peel (Musa Sp.) Biosorbent. Theor. Found. Chem. Eng. 2022, 56, 1189–1203. [Google Scholar] [CrossRef]
- Ma, J.; Huang, D.; Zou, J.; Li, L.; Kong, Y.; Komarneni, S. Adsorption of Methylene Blue and Orange II Pollutants on Activated Carbon Prepared from Banana Peel. J. Porous Mater. 2015, 22, 301–311. [Google Scholar] [CrossRef]
- Maia, L.S.; Duizit, L.D.; Pinhatio, F.R.; Mulinari, D.R. Valuation of Banana Peel Waste for Producing Activated Carbon via NaOH and Pyrolysis for Methylene Blue Removal. Carbon Lett. 2021, 31, 749–762. [Google Scholar] [CrossRef]
- Gunay Gurer, A.; Aktas, K.; Ozkaleli Akcetin, M.; Erdem Unsar, A.; Asilturk, M. Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water. Air. Soil Pollut. 2021, 232, 138. [Google Scholar] [CrossRef]
- Kayiwa, R.; Kasedde, H.; Lubwama, M.; Kirabira, J.B. Active Pharmaceutical Ingredients Sequestrated from Water Using Novel Mesoporous Activated Carbon Optimally Prepared from Cassava Peels. Water 2022, 14, 3371. [Google Scholar] [CrossRef]
- Tao, X.; Wu, Y.; Cha, L. Shaddock Peels-Based Activated Carbon as Cost-Saving Adsorbents for Efficient Removal of Cr (VI) and Methyl Orange. Environ. Sci. Pollut. Res. 2019, 26, 19828–19842. [Google Scholar] [CrossRef]
- Wahyuhadi, M.E.; Kusumadewi, R.A.; Hadisoebroto, R. Effect of Contact Time on the Adsorption Process of Activated Carbon from Banana Peel in Reducing Heavy Metal Cd and Dyes Using a Stirring Tub (Pilot Scale). IOP Conf. Ser. Earth Environ. Sci. 2023, 1203, 0212035. [Google Scholar] [CrossRef]
- Nasrullah, A.; Khan, A.S.; Bhat, A.H.; Din, I.U.; Inayat, A.; Muhammad, N.; Bakhsh, E.M.; Khan, S.B. Effect of Short Time Ball Milling on Physicochemical and Adsorption Performance of Activated Carbon Prepared from Mangosteen Peel Waste. Renew. Energy 2021, 168, 723–733. [Google Scholar] [CrossRef]
- Saadi, W.; Rodríguez-Sánchez, S.; Ruiz, B.; Najar-Souissi, S.; Ouederni, A.; Fuente, E. From Pomegranate Peels Waste to One-Step Alkaline Carbonate Activated Carbons. Prospect as Sustainable Adsorbent for the Renewable Energy Production. J. Environ. Chem. Eng. 2022, 10, 107010. [Google Scholar] [CrossRef]
- De Rose, E.; Bartucci, S.; Poselle Bonaventura, C.; Conte, G.; Agostino, R.G.; Policicchio, A. Effects of Activation Temperature and Time on Porosity Features of Activated Carbons Derived from Lemon Peel and Preliminary Hydrogen Adsorption Tests. Colloids Surf. A Physicochem. Eng. Asp. 2023, 672, 131727. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, Z.; Huang, J.; Hu, W.; Xie, D.; Qiao, Y. Efficient Adsorption of Ammonia on Activated Carbon from Hydrochar of Pomelo Peel at Room Temperature: Role of Chemical Components in Feedstock. J. Clean. Prod. 2023, 406, 137076. [Google Scholar] [CrossRef]
- Meng, J.; Cui, J.; Yu, S.; Jiang, H.; Zhong, C.; Hongshun, J. Preparation of Aminated Chitosan Microspheres by One-Pot Method and Their Adsorption Properties for Dye Wastewater. R. Soc. Open Sci. 2019, 6, 182226. [Google Scholar] [CrossRef] [PubMed]
- Hashem, F.S.; Amin, M.S. Adsorption of Methylene Blue by Activated Carbon Derived from Various Fruit Peels. Desalin. Water Treat. 2016, 57, 22573–22584. [Google Scholar] [CrossRef]
- Deshmukh, S.; Topare, N.S.; Raut-Jadhav, S.; Thorat, P.V.; Bokil, S.A.; Khan, A. Orange Peel Activated Carbon Produced from Waste Orange Peels for Adsorption of Methyl Red. Aqua Water Infrastruct. Ecosyst. Soc. 2022, 71, 1351–1363. [Google Scholar] [CrossRef]
- Hanafi, N.A.M.; Abdulhameed, A.S.; Jawad, A.H.; ALOthman, Z.A.; Yousef, T.A.; Al Duaij, O.K.; Alsaiari, N.S. Optimized Removal Process and Tailored Adsorption Mechanism of Crystal Violet and Methylene Blue Dyes by Activated Carbon Derived from Mixed Orange Peel and Watermelon Rind Using Microwave-Induced ZnCl2 Activation. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Akkari, I.; Graba, Z.; Bezzi, N.; Kaci, M.M.; Merzeg, F.A.; Bait, N.; Ferhati, A.; Dotto, G.L.; Benguerba, Y. Effective Removal of Cationic Dye on Activated Carbon Made from Cactus Fruit Peels: A Combined Experimental and Theoretical Study. Environ. Sci. Pollut. Res. 2023, 30, 3027–3044. [Google Scholar] [CrossRef] [PubMed]
- Rosli, N.A.; Ahmad, M.A.; Noh, T.U. Nature’s Waste Turned Savior: Optimizing Pineapple Peel–Based Activated Carbon for Effective Remazol Brilliant Violet Dye Adsorption Using Response Surface Methodology. Inorg. Chem. Commun. 2023, 153, 110844. [Google Scholar] [CrossRef]
- Thamer, B.M.; Al-aizari, F.A.; Abdo, H.S. Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study. Molecules 2023, 28, 7712. [Google Scholar] [CrossRef]
- Malesic-Eleftheriadou, N.; Liakos, E.V.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Low-Cost Agricultural Wastes (Orange Peels) for the Synthesis and Characterization of Activated Carbon Biosorbents in the Removal of Pharmaceuticals in Multi-Component Mixtures from Aqueous Matrices. J. Mol. Liq. 2022, 368, 120795. [Google Scholar] [CrossRef]
- Magesh, N.; Renita, A.A.; Siva, R.; Harirajan, N.; Santhosh, A. Adsorption Behavior of Fluoroquinolone (Ciprofloxacin) Using Zinc Oxide Impregnated Activated Carbon Prepared from Jack Fruit Peel: Kinetics and Isotherm Studies. Chemosphere 2022, 290, 133227. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghoul, N.E.; Awad, G.; Rozan, A.; Qandeel, G. Activated Carbon-Based Pomegranate Peels as an Efficient Removal Method for Carbamazepine. Environ. Monit. Assess. 2023, 195, 821. [Google Scholar] [CrossRef] [PubMed]
- Dada, A.O.; Inyinbor, A.A.; Bello, O.S.; Tokula, B.E. Novel Plantain Peel Activated Carbon–Supported Zinc Oxide Nanocomposites (PPAC-ZnO-NC) for Adsorption of Chloroquine Synthetic Pharmaceutical Used for COVID-19 Treatment. Biomass Convers. Biorefinery 2023, 13, 9181–9193. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Do, T.H.; Ha, X.L.; Nguyen, H.P.; Nguyen, A.T.; Ngo, T.C.Q.; Chau, H.D. Study of the Ciprofloxacin Adsorption of Activated Carbon Prepared from Mangosteen Peel. Appl. Sci. 2022, 12, 8770. [Google Scholar] [CrossRef]
- Fadzail, F.; Hasan, M.; Mokhtar, Z.; Ibrahim, N. Removal of Naproxen Using Low-Cost Dillenia Indica Peels as an Activated Carbon. Mater. Today Proc. 2022, 57, 1108–1115. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Grmasha, R.A.; Meiczinger, M.; Al-juboori, R.A.; Somogyi, V.; Hashim, K.S. A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. Materials 2024, 17, 1032. [Google Scholar] [CrossRef]
- Nuryanti, S.; Rahmawati, S.; Amalia, M.; Santoso, T.; Muhtar, H. Langmuir and Freundlich Isotherm Equation Test on the Adsorption Process of Cu (II) Metal Ions by Cassava Peel Waste (Manihot Esculenta Crantz). J. Phys. Conf. Ser. 2021, 2126, 12022. [Google Scholar] [CrossRef]
- Sahu, N.; Bhan, C.; Singh, J. Removal of Fluoride from an Aqueous Solution by Batch and Column Process Using Activated Carbon Derived from Iron Infused Pisum Sativum Peel: Characterization, Isotherm, Kinetics Study. Environ. Eng. Res. 2021, 26, 200241. [Google Scholar] [CrossRef]
- Xiao, B.; Huang, L.; Huang, W.; Zhang, D.; Zeng, X.; Yao, X. Glycine Functionalized Activated Carbon Derived from Navel Orange Peel for Enhancement Recovery of Gd(III). J. Rare Earths 2022, 40, 1794–1802. [Google Scholar] [CrossRef]
- Neisan, R.S.; Saady, N.M.C.; Bazan, C.; Zendehboudi, S.; Albayati, T.M. Adsorption of Copper from Water Using TiO2-Modified Activated Carbon Derived from Orange Peels and Date Seeds: Response Surface Methodology Optimization. Heliyon 2023, 9, e21420. [Google Scholar] [CrossRef] [PubMed]
- Sahlabji, T.; El-Nemr, M.A.; El Nemr, A.; Ragab, S.; Alghamdi, M.M.; El-Zahhar, A.A.; Idris, A.M.; Said, T.O. High Surface Area Microporous Activated Carbon from Pisum Sativum Peels for Hexavalent Chromium Removal from Aquatic Environment. Toxin Rev. 2022, 41, 639–649. [Google Scholar] [CrossRef]
- Ramutshatsha-Makhwedzha, D.; Mbaya, R.; Mavhungu, M.L. Application of Activated Carbon Banana Peel Coated with Al2O3-Chitosan for the Adsorptive Removal of Lead and Cadmium from Wastewater. Materials 2022, 15, 860. [Google Scholar] [CrossRef]
- Siddique, A.; Nayak, A.K.; Singh, J. Synthesis of FeCl3-Activated Carbon Derived from Waste Citrus Limetta Peels for Removal of Fluoride: An Eco-Friendly Approach for the Treatment of Groundwater and Bio-Waste Collectively. Groundw. Sustain. Dev. 2020, 10, 100339. [Google Scholar] [CrossRef]
- Getachew, T.; Hussen, A.; Rao, V.M. Defluoridation of Water by Activated Carbon Prepared from Banana (Musa Paradisiaca) Peel and Coffee (Coffea Arabica) Husk. Int. J. Environ. Sci. Technol. 2015, 12, 1857–1866. [Google Scholar] [CrossRef]
- Bouallegue, M.C.; Trifi, B.; Marzouk Trifi, I.; Zahraa, O.; Alatrache, A. Removal of an Emerging Pharmaceutical Pollutant, Sulfasalazine, by Adsorption onto Pomegranate Peels. Chem. Eng. Commun. 2022, 209, 957–966. [Google Scholar] [CrossRef]
- Ribeiro, A.V.F.N.; da Silva, A.R.; da Cunha, T.P.; dos Santos, R.T.L.; de Oliveira, J.P.; Pereira, E.V.; Licinio, M.V.V.J.; de Pereira, M.G.; dos Santos, A.V.; Ribeiro, J.N. Banana Peel for Acetylsalicylic Acid Retention. J. Environ. Prot. 2016, 7, 1850–1859. [Google Scholar] [CrossRef]
- Mondal, N.K.; Kar, S. Potentiality of Banana Peel for Removal of Congo Red Dye from Aqueous Solution: Isotherm, Kinetics and Thermodynamics Studies. Appl. Water Sci. 2018, 8, 157. [Google Scholar] [CrossRef]
- Ahmed, A.E.; Majewska-Nowak, K. Removal of Reactive Dye from Aqueous Solutions Using Banana Peel and Sugarcane Bagasse as Biosorbents. Environ. Prot. Eng. 2020, 46, 121–135. [Google Scholar] [CrossRef]
- Hajeeth, T.; Sudha, P.N.; Vijayalakshmi, K.; Gomathi, T. Sorption Studies on Cr (VI) Removal from Aqueous Solution Using Cellulose Grafted with Acrylonitrile Monomer. Int. J. Biol. Macromol. 2014, 66, 295–301. [Google Scholar] [CrossRef]
- Awang, N.A.; Salleh, W.N.W.; Ahmad, S.Z.N.; Ismail, N.H.; Rosman, N.; Sazali, N.; Ibrahim, H.; Ismail, A.F. Acrylonitrile-Grafted Recycled Papers for Ni(II) Ions Removal. Mater. Today Proc. 2021, 46, 1831–1836. [Google Scholar] [CrossRef]
- Ali, A.; Saeed, K.; Mabood, F. Removal of Chromium (VI) from Aqueous Medium Using Chemically Modified Banana Peels as Efficient Low-Cost Adsorbent. Alex. Eng. J. 2016, 55, 2933–2942. [Google Scholar] [CrossRef]
- Phuengphai, P.; Singjanusong, T.; Kheangkhun, N.; Wattanakornsiri, A. Removal of Copper(II) from Aqueous Solution Using Chemically Modified Fruit Peels as Efficient Low-Cost Biosorbents. Water Sci. Eng. 2021, 14, 286–294. [Google Scholar] [CrossRef]
- Canpolat, M.; Altunkaynak, Y. Use of Low-Cost Processed Orange Peel for Effective Removal of Cobalt (II) and Manganese (II) from Aqueous Solutions. Ionics 2023, 30, 591–605. [Google Scholar] [CrossRef]
- Bhaumik, R.; Mondal, N.K. Optimizing Adsorption of Fluoride from Water by Modified Banana Peel Dust Using Response Surface Modelling Approach. Appl. Water Sci. 2016, 6, 115–135. [Google Scholar] [CrossRef]
- Aryal, R.L.; Poudel, B.R.; Pokhrel, M.R.; Paudyal, H.; Ghimire, K.N. Effectiveness of Zr(IV)-Loaded Banana Peels Biomass for the Uptake of Fluoride Anion from Water. J. Inst. Sci. Technol. 2021, 26, 67–78. [Google Scholar] [CrossRef]
- Poudel, B.R.; Ale, D.S.; Aryal, R.L.; Ghimire, K.N.; Gautam, S.K.; Paudyal, H.; Pokhrel, M.R. Zirconium Modified Pomegranate Peel for Efficient Removal of Arsenite from Water. Bibechana 2022, 19, 1–13. [Google Scholar] [CrossRef]
Material | Peels | Modification Agent | Dye | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
BOS | Banana | H2SO4 | MB | 9 | 1000 | 1 | 1140 | 810.00 | 81 | [46] |
OPAC | Orange | ZnCl2 | MR | 11 | 100 | 1 | 60 | 111.11 | 93 | [47] |
OPWRAC | Orange/watermelon | ZnCl2 | CV | 10 | 20 | 1 | 35 | 137 | 91 | [48] |
OPWRAC | Orange/watermelon | ZnCl2 | MB | 200 | 200 | 1 | 35 | 200.00 | 94 | [48] |
ACCP | Cactus | H3PO4 | BR46 | 6 | 20–1000 | 1 | 180 | 806.38 | 90 | [49] |
PiPAC | Pineapple | KOH/CO2 | RBV | 2 | 100 | 1 | 360 | 74.86 | 72 | [50] |
S-PPAC | Pomegranate | KOH | CV | 10 | 300 | 0.5 | 210 | 785.53 | 100 | [51] |
Material | Peels | Modification Agent | Pharmaceutical | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
ZJFP | Jackfruit | H3PO4 | Ciprofloxacin | 6 | 50 | 0.3 | 120 | 70.12 | 99.8 | [53] |
AC-PGPs | Pomegranate | NaOH | Carbamazepine | 6.7 | 20 | 8 | 60 | - | 98 | [54] |
PPAC-ZnO | Plantain | H3PO4 | Chloroquine | 7.02 | 10 | 1 | 120 | 50.5 | 78.8 | [55] |
ACMP | Mangosteen | ZnCl2 | Ciprofloxacin | 6 | 50 | 3 | 60 | 29.78 | 98 | [56] |
DI-AC | Dillenia Indica | H3PO4 | Naproxen | 5 | - | 0.4 | 480 | 10.76 | - | [57] |
BPAC | Banana | H3PO4 | Amoxicillin | 5 | 25 | 1.2 | 120 | 393.70 | 82.3 | [58] |
BPAC | Banana | H3PO4 | Carbamazepine | 5 | 25 | 1.2 | 120 | 338.98 | 81.5 | [58] |
Material | Peels | Modification Agent | Heavy Metal | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
MPAC-600 | Pea | Pyrolysis | As(III) | 7 | 0.5 | 3.0 | 300 | 1.33 | 87.6 | [60] |
MPAC-600 | Pea | Pyrolysis | As(V) | 7 | 0.5 | 2.5 | 300 | 0.80 | 99.7 | [60] |
NOPAC-Gly-60 | Navel orange | H3PO4 | Gd (III) | 7 | 50 | 0.6 | 90 | 48.5 | 99 | [61] |
OP-TiO2 | Orange | Pyrolysis-CO2 | Cu (II) | 5 | 24.6 | 4.9 | 216 | 13.34 | 99.9 | [62] |
AC | Pea | ZnCl2 | Cr (VI) | 1.55 | 400 | 0.75 | 180 | 480.05 | 99.5 | [63] |
BPAC-Al3O2@chitosan | Banana | H2SO4/KOH | Cd(II) | 6 | 20 | 5.0 | 40 | 46.9 | 99.9 | [64] |
BPAC-Al3O2@chitosan | Banana | H2SO4/KOH | Pb(II) | 6 | 20 | 5.0 | 40 | 57.1 | 99.9 | [64] |
Material | Peels | Modification Agent | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|
AC-CLP500 | Lime | Pyrolysis | 6.6 | 5–30 | 1 | 240 | 9.70 | 94.8 | [65] |
Banana-AC | Banana | H2SO4 | 2 | 10 | 96 | 780 | 0.39 | 85 | [66] |
MPPAC-500 | Lime | FeCl3 | 7 | 5 | 4 | 420 | 4.71 | 99 | [60] |
Material | Peels | Modification Agent | Organic Pollutant | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PG | Pomegranate | Untreated | Sulfasalazine | 4.8 | 50 | 0.5 | 60 | 64.04 | 100 | [67] |
BP | Banana | Untreated | Acetylsalicylic acid | 7.0 | 100 | 1.5 | 15 | 2.29 | 48 | [68] |
BP | Banana | Untreated | Congo Red | 10.0 | 20 | 18.8 | 90 | 1.73 | 75 | [69] |
OP | Orange | Untreated | Crystal Violet | 8.0 | 50 | 2.0 | 70 | 138.90 | 87 | [70] |
BP | Banana | Untreated | Anionic dyes | 2.0 | 300 | 5.0 | 90 | 58.1 | 100 | [25] |
OP | Orange | Untreated | Anionic dyes | 2.0 | 300 | 6.0 | 90 | 40.1 | 92 | [25] |
PP | Pomegranate | Untreated | Methylene Blue | 9.0 | 300 | 6.0 | 90 | 98.1 | 98 | [25] |
KP | Kiwi | Untreated | Malachite green | - | 50 | 0.05 | - | 297.15 | - | [30] |
NA-KP | Kiwi | HNO3 | Malachite green | - | 50 | 0.05 | - | 580.61 | - | [30] |
Material | Peels | Modification Agent | Heavy Metal | pH | Initial Conc. (mg/L) | Dosage (g/L) | Contact Time (min) | Adsorption Capacity (mg/g) | R% | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Acrylonitrile grafted banana peels | Banana | Acrylonitrile (grafting) | Cr(VI) | 3 | 400 | 4 | 120 | 6.17 | 99.7 | [73] |
H2SO4 treated dragon/passion fruit peels | Dragon fruit | H2SO4 | Cu(II) | 4 | 100 | 0.25 | 180 | 92.59 | 99.2 | [74] |
Passion fruit | H2SO4 | Cu(II) | 4 | 100 | 0.25 | 180 | 121.95 | 99.6 | ||
Orange peels | Orange | NaOH and CaCl2 | Mn(II) | 5 | 200 | 0.2 | 100 | 25.25 | [75] | |
Co(II) | 6 | 250 | 0.2 | 100 | 25.91 | |||||
Ca-impregnated banana peel dust | Banana | Ca2+ | F− | 6 | 10 | 1 | 180 | 39.5 | 99 | [76] |
Zr (IV) loaded banana peels | Banana | ZrOCl2 8H2O | F− | 3 | 10 | 2 | 300 | 36.02 | 99 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolkou, A.K.; Maroulas, K.N.; Theologis, D.; Katsoyiannis, I.A.; Kyzas, G.Z. Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C 2024, 10, 22. https://doi.org/10.3390/c10010022
Tolkou AK, Maroulas KN, Theologis D, Katsoyiannis IA, Kyzas GZ. Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C. 2024; 10(1):22. https://doi.org/10.3390/c10010022
Chicago/Turabian StyleTolkou, Athanasia K., Konstantinos N. Maroulas, Dimitrios Theologis, Ioannis A. Katsoyiannis, and George Z. Kyzas. 2024. "Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters" C 10, no. 1: 22. https://doi.org/10.3390/c10010022
APA StyleTolkou, A. K., Maroulas, K. N., Theologis, D., Katsoyiannis, I. A., & Kyzas, G. Z. (2024). Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters. C, 10(1), 22. https://doi.org/10.3390/c10010022