A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of δ-FeOOH
2.3. Carbon Felt Electrode Preparation
2.4. Synthesis of PB-FeOOH Film
2.5. Electrochemical Measurement
3. Results and Discussion
PB PW
(b) Fe(III)(surf)(H2O2) + e− → Fe(II)(surf) + HOO• + H+
(c) Fe(II)(surf) + HOO• + H+ → Fe(III)(surf) + H2O + ½ O2
(d) H2O2 + 2e− → 2OH−
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattos, I.L.d.; Shiraishi, K.A.; Braz, A.D.; Fernandes, J.R. Peróxido de hidrogênio: Importância e determinação. Quim. Nova 2003, 26, 373–380. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.W.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Geraskevich, A.V.; Solomonenko, A.N.; Dorozhko, E.V.; Korotkova, E.I.; Barek, J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit. Rev. Anal. Chem. 2022, 54, 742–774. [Google Scholar] [CrossRef]
- Xing, L.J.; Zhang, W.G.; Fu, L.J.; Lorenzo, J.M.; Hao, Y.J. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef]
- Thatikayala, D.; Ponnamma, D.; Sadasivuni, K.K.; Cabibihan, J.-J.; Al-Ali, A.K.; Malik, R.A.; Min, B. Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors 2020, 10, 151. [Google Scholar] [CrossRef]
- Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials 2023, 13, 1247. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Guardia, M.d.l. Current advancement in electrochemical analysis of neurotransmitters in biological fluids. TrAC Trends Anal. Chem. 2017, 86, 107. [Google Scholar] [CrossRef]
- Chen, X.M.; Wu, G.H.; Cai, Z.X.; Oyama, M.; Chen, X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 2014, 181, 689–705. [Google Scholar] [CrossRef]
- Zhao, C.L.; Zhang, H.F.; Zheng, J.B. Synthesis of silver decorated sea urchin-like FeOOH nanocomposites and its application for electrochemical detection of hydrogen peroxide. J. Mater. Sci. Mater. Electron. 2017, 28, 14369–14376. [Google Scholar] [CrossRef]
- Lim, H.C.; Cho, Y.J.; Han, D.H.; Kim, T.H. Enhancing electrocatalytic performance and Stability: A novel Prussian Blue-Graphene quantum dot nanoarchitecture for H2O2 reduction. Appl. Surf. Sci. 2024, 646, 158920. [Google Scholar] [CrossRef]
- Rani, K.K.; Liu, Y.X.; Devasenathipathy, R.; Yang, C.; Wang, S.F. Simple preparation of gold nanoparticle-decorated copper cross-linked pectin for the sensitive determination of hydrogen peroxide. Ionics 2019, 25, 309–317. [Google Scholar] [CrossRef]
- Yin, J.W.; Zhang, H.T.; Wang, Y.; Laurindo, M.B.J.; Zhao, J.F.; Hasebe, Y.; Zhang, Z.Q. Crab gill-derived nanorod-like carbons as bifunctional electrochemical sensors for detection of hydrogen peroxide and glucose. Ionics 2024, 30, 3541–3552. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.X.; Fan, C.; Guo, X.; Bei, J.L.; Chen, T.T.; Yang, J.; Yao, Y. Ultrasensitive and specific photoelectrochemical sensor for hydrogen peroxide detection based on pillar 5 arene-functionalized Au nanoparticles and MWNTs hybrid BiOBr heterojunction. Microchim. Acta 2024, 191, 266. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Shi, J.C.; Wang, X.F.; Xu, P.C.; Li, X.X. A Non-Enzymatic Electrochemical Sensor Based on Cerium Oxide Nanocubes for the Rapid Detection of Hydrogen Peroxide Residues in Food Samples. IEEJ Trans. Electr. Electron. Eng. 2024, 19, 1573–1578. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhao, D.; Sun, T.Q.; Cai, C.R.; Dong, Y.M. The preparation of MoS2/8-FeOOH and degradation of RhB under visible light. J. Environ. Chem. Eng. 2023, 11, 110353. [Google Scholar] [CrossRef]
- Campos, P.T.B.; Vaiss, V.S.; Ramalho, T.C. The high potential of the pure and Nb-doped 6-FeOOH (001) surface in the adsorption and degradation of a neurotoxic agent. Surf. Sci. 2024, 746, 122491. [Google Scholar] [CrossRef]
- de Meira, F.H.A.; Resende, S.F.; Monteiro, D.S.; Pereira, M.C.; Mattoso, L.H.C.; Faria, R.C.; Afonso, A.S. A Non-enzymatic Ag/δ-FeOOH Sensor for Hydrogen Peroxide Determination using Disposable Carbon-based Electrochemical Cells. Electroanalysis 2020, 32, 2231–2236. [Google Scholar] [CrossRef]
- Melo, W.E.R.d.; Nantes, K.S.; Ferreira, A.L.H.K.; Pereira, M.C.; Mattoso, L.H.C.; Faria, R.C.; Afonso, A.S. A Disposable Carbon-Based Electrochemical Cell Modified with Carbon Black and Ag/δ-FeOOH for Non-Enzymatic H2O2 Electrochemical Sensing. Electrochem 2023, 4, 523–536. [Google Scholar] [CrossRef]
- Jin, E.; Lu, X.F.; Cui, L.L.; Chao, D.M.; Wang, C. Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim. Acta 2010, 55, 7230–7234. [Google Scholar] [CrossRef]
- Farah, A.M.; Shooto, N.D.; Thema, F.T.; Modise, J.S.; Dikio, E.D. Fabrication of Prussian Blue/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode for Electrochemical Detection of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2012, 7, 4302–4313. [Google Scholar] [CrossRef]
- Han, L.J.; Tricard, S.; Fang, J.; Zhao, J.H.; Shen, W.G. Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: Application as hydrogen peroxide sensor. Biosens. Bioelectron. 2013, 43, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Husmann, S.; Nossol, E.; Zarbin, A.J.G. Carbon nanotube/Prussian blue paste electrodes: Characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sens. Actuator B Chem. 2014, 192, 782–790. [Google Scholar] [CrossRef]
- Ma, L.T.; Cui, H.L.; Chen, S.M.; Li, X.L.; Dong, B.B.; Zhi, C.Y. Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy 2021, 81, 105632. [Google Scholar] [CrossRef]
- Pajerowski, D.M.; Watanabe, T.; Yamamoto, T.; Einaga, Y. Electronic conductivity in Berlin green and Prussian blue. Phys. Rev. B 2011, 83, 153202. [Google Scholar] [CrossRef]
- Yi, H.C.; Qin, R.Z.; Ding, S.X.; Wang, Y.T.; Li, S.N.; Zhao, Q.H.; Pan, F. Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Adv. Funct. Mater. 2021, 31, 2006970. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yang, H.K.; Gao, B.W.; Tong, Y.; Zhang, X.J.; Su, L. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Analyst 2014, 139, 1127–1133. [Google Scholar] [CrossRef]
- Scholz, F.; Schwudke, D.; Stösser, R.; Bohácek, J. The interaction of Prussian blue and dissolved hexacyanoferrate ions with goethite (α-FeOOH) studied to assess the chemical stability and physical mobility of Prussian blue in soils. Ecotox. Environ. Saf. 2001, 49, 245–254. [Google Scholar] [CrossRef]
- Yang, Y.R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Avila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Guo, C.A.Y.; Chen, C.F.; Lu, J.Y.; Fu, D.; Yuan, C.Z.; Wu, X.L.; Hui, K.N.; Chen, J.R. Stable and recyclable Fe3C@CN catalyst supported on carbon felt for efficient activation of peroxymonosulfate. J. Colloid Interface Sci. 2021, 599, 219–226. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Chemical modification of graphite electrode materials for vanadium redox flow battery application—Part II. Acid treatments. Electrochim. Acta 1992, 37, 2459–2465. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta 1992, 37, 1253–1260. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Ying, M.; Fu, Y.B.; Chen, W. Improving Electrochemical Performance of Carbon Felt Anode by Modifying with Akaganeite in Marine Benthic Microbial Fuel Cells. Fuel Cells 2019, 19, 190–199. [Google Scholar] [CrossRef]
- Pereira, M.C.; Garcia, E.M.; da Silva, A.C.; Lorençon, E.; Ardisson, J.D.; Murad, E.; Fabris, J.D.; Matencio, T.; Ramalho, T.D.; Rocha, M.V.J. Nanostructured δ-FeOOH: A novel photocatalyst for water splitting. J. Mater. Chem. 2011, 21, 10280–10282. [Google Scholar] [CrossRef]
- de Mattos, I.L.; Gorton, L.; Ruzgas, T.; Karyakin, A.A. Sensor for hydrogen peroxide based on Prussian blue modified electrode: Improvement of the operational stability. Anal. Sci. 2000, 16, 795–798. [Google Scholar] [CrossRef]
- Vieira, T.A.; Souza, J.R.; Gimenes, D.T.; Munoz, R.A.A.; Nossol, E. Tuning electrochemical and morphological properties of Prussian blue/carbon nanotubes films through scan rate in cyclic voltammetry. Solid State Ion. 2019, 338, 5–11. [Google Scholar] [CrossRef]
- Matos-Peralta, Y.; Antuch, M. Review-Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J. Electrochem. Soc. 2019, 167, 037510. [Google Scholar] [CrossRef]
- Elshorbagy, M.H.; Ramadan, R.; Abdelhady, I. Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik 2017, 129, 130–139. [Google Scholar] [CrossRef]
- Coros, M.; Varodi, C.; Pogacean, F.; Gal, E.; Pruneanu, S.M. Nitrogen-Doped Graphene: The Influence of Doping Level on the Charge-Transfer Resistance and Apparent Heterogeneous Electron Transfer Rate. Sensors 2020, 20, 1815. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Wei, Y.X.; Liu, W.M.; Li, J.Y.; Li, J.M.; Ma, Y.B.; Zhang, X.F.; Yan, Y. Investigation of electrochromic device based on multi-step electrodeposited PB films. Ionics 2021, 27, 4419–4427. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chen, Y.H.; Fang, X.F.; Feng, X. Hydrogen peroxide sensor based on electrodeposited Prussian blue film. J. Appl. Electrochem. 2017, 47, 1261–1271. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Karyakina, E.E.; Gorton, L. On the mechanism of H2O2 reduction at Prussian blue modified electrodes. Electrochem. Commun. 1999, 1, 78–82. [Google Scholar] [CrossRef]
- Du, S.; Ren, Z.; Wu, J.; Xi, W.; Fu, H. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Res. 2016, 9, 2260–2269. [Google Scholar] [CrossRef]
- Rattanopas, S.; Schulte, A.; Teanphonkrang, S. Prussian Blue/Carbon Nanotube Sensor Spread with Gelatin/Zein Glaze: A User-Friendly Modification for Stable Interference-Free H2O2 Amperometry. Anal. Chem. 2022, 94, 4919–4923. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Zhang, X.J.; Zheng, J.B. One-pot fabrication of AuNPs-Prussian blue-Graphene oxide hybrid nanomaterials for non-enzymatic hydrogen peroxide electrochemical detection. Microchem. J. 2021, 160, 105595. [Google Scholar] [CrossRef]
- Uzunçar, S.; Özdogan, N.; Ak, M. Amperometric detection of glucose and H2O2 using peroxide selective electrode based on carboxymethylcellulose/polypyrrole and Prussian Blue nanocomposite. Mater. Today Commun. 2021, 26, 101839. [Google Scholar] [CrossRef]
- Li, N.; Zhou, H.Y.; Liu, Y.H.; Yu, X.J.; Cao, L.; Xu, Y.J.; Xi, L.X.; Zhao, G.; Ban, X.X. Prussian blue@Au nanoparticles/SiO2 cavity/ITO electrodes: Application as a hydrogen peroxide sensor. New J. Chem. 2024, 48, 1300–1306. [Google Scholar] [CrossRef]
- Phung, V.D.; Jung, W.S.; Nguyen, T.A.; Kim, J.H.; Lee, S.W. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. Nanoscale 2018, 10, 22493–22503. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, Z.; Lu, B.; Wen, J.; Ye, Z.; Chen, L.L.; He, M.; Tao, X.M.; Zhang, W.W.; Huang, Y.; et al. Serum uric acid level and its association with metabolic syndrome and carotid atherosclerosis in patients with type 2 diabetes. Cardiovasc. Diabetol. 2011, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, L.A.; García-Bailo, B.; Borchers, C.H.; Badawi, A.; El-Sohemy, A. Association between the plasma proteome and serum ascorbic acid concentrations in humans. J. Nutr. Biochem. 2013, 24, 842–847. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, J.J.S. Fetal bovine serum—A cell culture dilemma. Science 2022, 375, 143–144. [Google Scholar] [CrossRef]
- Jiang, T.; Zhan, D.P.; Chen, Y. Preparation of carbon nanotube arrays nanocomposites filled with Prussian blue and electrochemical sensing of hydrogen peroxide. Ferroelectrics 2021, 580, 42–54. [Google Scholar] [CrossRef]
Sample | Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|
1 | 5 | 4.66 | 93 |
2 | 15 | 14.30 | 95 |
3 | 30 | 30.28 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nantes, K.S.; Ferreira, A.L.H.K.; Pereira, M.C.; Nogueira, F.G.E.; Afonso, A.S. A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode. C 2024, 10, 82. https://doi.org/10.3390/c10030082
Nantes KS, Ferreira ALHK, Pereira MC, Nogueira FGE, Afonso AS. A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode. C. 2024; 10(3):82. https://doi.org/10.3390/c10030082
Chicago/Turabian StyleNantes, Karoline S., Ana L. H. K. Ferreira, Marcio C. Pereira, Francisco G. E. Nogueira, and André S. Afonso. 2024. "A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode" C 10, no. 3: 82. https://doi.org/10.3390/c10030082
APA StyleNantes, K. S., Ferreira, A. L. H. K., Pereira, M. C., Nogueira, F. G. E., & Afonso, A. S. (2024). A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode. C, 10(3), 82. https://doi.org/10.3390/c10030082