Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of GO and N-Doped rGO (NG)
2.2. Characterization Methods
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.1.1. SEM Study
3.1.2. XRD Study
3.1.3. Raman Spectroscopy Study
3.2. Electrochemical Properties
3.3. XPS Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.F.; Tang, C.; Sun, Q.; Han, Y.L.; Wang, Z.J.; Xie, L.; Zhang, S.C.; Su, F.Y.; Chen, C.M. Effect of N-Doping-Derived Solvent Adsorption on Electrochemical Double Layer Structure and Performance of Porous Carbon. J. Energy Chem. 2023, 80, 120–127. [Google Scholar] [CrossRef]
- Ajravat, K.; Pandey, O.P.; Brar, L.K. Significance of N Bonding Configurations in N-Doped Graphene for Enhanced Supercapacitive Performance: A Comparative Study in Aqueous Electrolytes. FlatChem 2024, 43, 100588. [Google Scholar] [CrossRef]
- Li, X.; Cao, J.; Chen, J.; Zhu, Y.; Xia, H.; Xu, Z.; Gu, C.; Xie, J.; Jones, M.; Lyu, C.; et al. UV-Induced Synthesis of Graphene Supported Iridium Catalyst with Multiple Active Sites. Adv. Func. Mater. 2024, 34, 2313530. [Google Scholar] [CrossRef]
- Fan, Y.F.; Yi, Z.L.; Song, G.; Wang, Z.F.; Chen, C.J.; Xie, L.J.; Sun, G.H.; Su, F.Y.; Chen, C.M. Self-Standing Graphitized Hybrid Nanocarbon Electrodes towards High-Frequency Supercapacitors. Carbon 2021, 185, 630–640. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Zhang, M.; Chen, Y. Nitrogen-Doped Graphene Materials for Supercapacitor Applications. J. Nanosci. Nanotechnol. 2014, 14, 1134–1144. [Google Scholar] [CrossRef]
- Jing, M.; Wu, T.; Zhou, Y.; Li, X.; Liu, Y. Nitrogen-Doped Graphene via In-Situ Alternating Voltage Electrochemical Exfoliation for Supercapacitor Application. Front. Chem. 2020, 8, 428. [Google Scholar] [CrossRef]
- Nolan, H.; Mendoza-Sanchez, B.; Ashok Kumar, N.; McEvoy, N.; O’Brien, S.; Nicolosi, V.; Duesberg, G.S. Nitrogen-Doped Reduced Graphene Oxide Electrodes for Electrochemical Supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 2280–2284. [Google Scholar] [CrossRef]
- Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W.X.; Fu, Q.; Ma, X.; Xue, Q.; et al. Toward N-Doped Graphene via Solvothermal Synthesis. Chem. Mater. 2011, 23, 1188–1193. [Google Scholar] [CrossRef]
- Jeong, H.M.; Lee, J.W.; Shin, W.H.; Choi, Y.J.; Shin, H.J.; Kang, J.K.; Choi, J.W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11, 2472–2477. [Google Scholar] [CrossRef]
- Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-Doped Reduced-Graphene Oxide as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kumar, R.; Yadav, K.; Thomas, N.; Mishra, M.; Sahoo, B. Synthesis, Characterization and Insights into the Supercapacitive and Electrocatalytic (OER) Bi-Functional Properties of Nitrogen-Doped Reduced Graphene Oxide Using Dicyandiamide Precursor. Solid State Sci. 2024, 147, 107377. [Google Scholar] [CrossRef]
- Hasan, S.A.; Tsekoura, E.K.; Sternhagen, V.; Strømme, M. Evolution of the Composition and Suspension Performance of Nitrogen-Doped Graphene. J. Phys. Chem. C 2012, 116, 6530–6536. [Google Scholar] [CrossRef]
- Fan, X.; Yu, C.; Yang, J.; Ling, Z.; Qiu, J. Hydrothermal Synthesis and Activation of Composite for High-Performance Supercapacitors. Carbon 2014, 70, 130–141. [Google Scholar] [CrossRef]
- Lee, J.W.; Ko, J.M.; Kim, J.D. Hydrothermal Preparation of Nitrogen-Doped Graphene Sheets via Hexamethylenetetramine for Application as Supercapacitor Electrodes. Electrochim. Acta 2012, 85, 459–466. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375. [Google Scholar] [CrossRef]
- Wang, D.; Min, Y.; Yu, Y.; Peng, B. A General Approach for Fabrication of Nitrogen-Doped Graphene Sheets and Its Application in Supercapacitors. J. Colloid Interface Sci. 2014, 417, 270–277. [Google Scholar] [CrossRef]
- Lei, Z.; Lu, L.; Zhao, X.S. The Electrocapacitive Properties of Graphene Oxide Reduced by Urea. Energy Environ. Sci. 2012, 5, 6391–6399. [Google Scholar] [CrossRef]
- Lee, Y.H.; Chang, K.H.; Hu, C.C. Differentiate the Pseudocapacitance and Double-Layer Capacitance Contributions for Nitrogen-Doped Reduced Graphene Oxide in Acidic and Alkaline Electrolytes. J. Power Sources 2013, 227, 300–308. [Google Scholar] [CrossRef]
- Wang, T.; Wang, L.; Wu, D.; Xia, W.; Zhao, H.; Jia, D. Hydrothermal Synthesis of Nitrogen-Doped Graphene Hydrogels Using Amino Acids with Different Acidities as Doping Agents. J. Mater. Chem. A 2014, 2, 8352–8361. [Google Scholar] [CrossRef]
- Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S.H. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir 2010, 26, 16096–16102. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H. Nitrogen-Doped Graphene with High Nitrogen Level via a One-Step Hydrothermal Reaction of Graphene Oxide with Urea for Superior Capacitive Energy Storage. RSC Adv. 2012, 2, 4498–4506. [Google Scholar] [CrossRef]
- Śliwak, A.; Grzyb, B.; Díez, N.; Gryglewicz, G. Nitrogen-Doped Reduced Graphene Oxide as Electrode Material for High Rate Supercapacitors. Appl. Surf. Sci. 2017, 399, 265–271. [Google Scholar] [CrossRef]
- Lai, L.; Chen, L.; Zhan, D.; Sun, L.; Liu, J.; Lim, S.H.; Poh, C.K.; Shen, Z.; Lin, J. One-Step Synthesis of NH2-Graphene from in Situ Graphene-Oxide Reduction and Its Improved Electrochemical Properties. Carbon 2011, 49, 3250–3257. [Google Scholar] [CrossRef]
- Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 2009, 9, 1593–1597. [Google Scholar] [CrossRef]
- Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir 2010, 26, 3208–3213. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Moses, K.; Govindaraj, A.; Rao, C.N.R. Supercapacitors Based on Nitrogen-Doped Reduced Graphene Oxide and Borocarbonitrides. Solid State Commun. 2013, 175–176, 43–50. [Google Scholar] [CrossRef]
- Jiang, B.; Tian, C.; Wang, L.; Sun, L.; Chen, C.; Nong, X.; Qiao, Y.; Fu, H. Highly Concentrated, Stable Nitrogen-Doped Graphene for Supercapacitors: Simultaneous Doping and Reduction. Appl. Surf. Sci. 2012, 258, 3438–3443. [Google Scholar] [CrossRef]
- Mayyas, M.; Li, H.; Kumar, P.; Ghasemian, M.B.; Yang, J.; Wang, Y.; Lawes, D.J.; Han, J.; Saborio, M.G.; Tang, J.; et al. Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. Adv. Mater. 2020, 32, 2001997. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lyu, D.; Merlet, C.; Leesmith, M.J.A.; Hua, X.; Xu, Z.; Grey, C.P.; Forse, A.C. Structural Disorder Determines Capacitance in Nanoporous Carbons. Science 2024, 384, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kumar, R.; Sahoo, B. Exploring Supercapacitance of Solvothermally Synthesized N-RGO Sheet: Role of N-Doping and the Insight Mechanism. Phys. Chem. Chem. Phys. 2022, 24, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, R.; Kumar, S.; Sahoo, B. Mechanistic Insights into the Roles of Precursor Content, Synthesis Time, and Dispersive Solvent in Maximizing Supercapacitance of N-RGO Sheets. J. Alloys Compd. 2024, 971, 172648. [Google Scholar] [CrossRef]
- Saraf, M.; Natarajan, K.; Mobin, S.M.; Natarajan, K.; Mobin, S.M. Robust Nanocomposite of Nitrogen-Doped Reduced Graphene Oxide and MnO2 Nanorods for High-Performance Supercapacitors and Nonenzymatic Peroxide Sensors. ACS Sustain. Chem. Eng. 2018, 6, 10489–10504. [Google Scholar] [CrossRef]
- Sun, Q.; Yi, Z.; Fan, Y.; Xie, L.; Wang, Z.; Sun, G.; Wang, Z.; Huang, X.; Liu, Z.; Su, F.; et al. Whole Landscape of the Origin and Evolution of Gassing in Supercapacitors at a High Voltage. ACS Appl. Mater. Interfaces 2023, 15, 54386. [Google Scholar] [CrossRef]
- Chen, W.; Yan, L. Preparation of Graphene by a Low-Temperature Thermal Reduction at Atmosphere Pressure. Nanoscale 2010, 2, 559–563. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte Selection for Supercapacitive Devices: A Critical Review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Furtado, C.A.; Kim, U.J.; Gutierrez, H.R.; Pan, L.; Dickey, E.C.; Eklund, P.C. Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents. J. Am. Chem. Soc. 2004, 126, 6095–6105. [Google Scholar] [CrossRef]
- Ausman, K.D.; Piner, R.; Lourie, O.; Ruoff, R.S.; Korobov, M. Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes. J. Phys. Chem. B 2000, 104, 8911–8915. [Google Scholar] [CrossRef]
- Li, X.; Zang, X.; Li, Z.; Li, X.; Li, P.; Sun, P.; Lee, X. Large-Area Flexible Core–Shell Graphene / Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes. Adv. Func. Mater. 2013, 23, 4862–4869. [Google Scholar] [CrossRef]
- Qu, D. Studies of the Activated Mesocarbon Microbeads Used in Double-Layer Supercapacitors. J. Power Sources 2002, 109, 403–411. [Google Scholar] [CrossRef]
- Chen, W.-C.; Wen, T.-C.; Teng, H. Polyaniline-Deposited Porous Carbon Electrode for Supercapacitor. Electrochim. Acta 2003, 48, 641–649. [Google Scholar] [CrossRef]
- Mandal, B.; Saha, S.; Das, D.; Panda, J.; Das, S.; Sarkar, R.; Tudu, B. Supercapacitor Performance of Nitrogen Doped Graphene Synthesized via DMF Assisted Single-Step Solvothermal Method. FlatChem 2022, 34, 100400. [Google Scholar] [CrossRef]
- Ajravat, K.; Rajput, S.; Brar, L.K. Microwave Assisted Hydrothermal Synthesis of N Doped Graphene for Supercapacitor Applications. Diam. Relat. Mater. 2022, 129, 109373. [Google Scholar] [CrossRef]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Ficek, M.; Gazda, M.; Weiss, Z.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. Small 2023, 19, 2208265. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maksimova, T.A.; Stoyanovskii, V.O.; Gerasimov, E.Y.; Vedyagin, A.A. One-Pot Functionalization of Catalytically Derived Carbon Nanostructures with Heteroatoms for Toxic-Free Environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Wang, M.; Duong, L.D.; Mai, N.T.; Kim, S.; Kim, Y.; Seo, H.; Kim, Y.C.; Jang, W.; Lee, Y.; Suhr, J.; et al. All-Solid-State Reduced Graphene Oxide Supercapacitor with Large Volumetric Capacitance and Ultralong Stability Prepared by Electrophoretic Deposition Method. ACS Appl. Mater. Interfaces 2015, 7, 1348–1354. [Google Scholar] [CrossRef]
- Kumar, M.P.; Kesavan, T.; Kalita, G.; Ragupathy, P.; Narayanan, T.N.; Pattanayak, D.K. On the Large Capacitance of Nitrogen Doped Graphene Derived by a Facile Route. RSC Adv. 2014, 4, 38689–38697. [Google Scholar] [CrossRef]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Song, M.; Xu, C. Highly Conductive Carbon-Nanotube/Graphite-Oxide Hybrid Films. Adv. Mater. 2008, 20, 1706–1709. [Google Scholar] [CrossRef]
- Cai, D.; Song, M. Preparation of Fully Exfoliated Graphite Oxide Nanoplatelets in Organic Solvents. J. Mater. Chem. 2007, 17, 3678–3680. [Google Scholar] [CrossRef]
- Pawlyta, M.; Rouzaud, J.N.; Duber, S. Raman Microspectroscopy Characterization of Carbon Blacks: Spectral Analysis and Structural Information. Carbon 2015, 84, 479–490. [Google Scholar] [CrossRef]
- Caņado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Hassan, F.M.; Chabot, V.; Li, J.; Kim, B.K.; Ricardez-Sandoval, L.; Yu, A. Pyrrolic-Structure Enriched Nitrogen Doped Graphene for Highly Efficient next Generation Supercapacitors. J. Mater. Chem. A 2013, 1, 2904–2912. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Y.; Sun, L.; Zhao, Q.; Zhang, X.; Wan, P.; Qiu, J. N/P-Codoped Thermally Reduced Graphene for High-Performance Supercapacitor Applications. J. Phys. Chem. C 2013, 117, 14912–14919. [Google Scholar] [CrossRef]
- Wang, P.; He, H.; Xu, X.; Jin, Y. Significantly Enhancing Supercapacitive Performance of Nitrogen-Doped Graphene Nanosheet Electrodes by Phosphoric Acid Activation. ACS Appl. Mater. Interfaces 2014, 6, 1563–1568. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, F.; Zhang, T.; Leng, K.; Zhang, L.; Yang, X.; Ma, Y.; Huang, Y.; Zhang, M.; Chen, Y. Synthesis and Supercapacitor Performance Studies of N-Doped Graphene Materials Using o-Phenylenediamine as the Double-N Precursor. Carbon 2013, 63, 508–516. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor. Adv. Mater. 2012, 24, 5610–5616. [Google Scholar] [CrossRef]
Solvent (80 mL) | Boiling Point (°C) | Viscosity (cP) (25 °C) | Dipole Moment (Debye) | Dielectric Constant | Temp. (°C) | Sample Name |
---|---|---|---|---|---|---|
THF | 66 | 0.48 | 1.75 | 7.52 | 60 | NG-3-THF-60 |
120 | NG-3-THF-120 | |||||
150 | NG-3-THF-150 | |||||
180 | NG-3-THF-180 | |||||
Ethanol | 78.6 | 0.98 | 1.69 | 24 | 75 | NG-3-EtOH-75 |
120 | NG-3-EtOH-120 | |||||
150 | NG-3-EtOH-150 | |||||
180 | NG-3-EtOH-180 | |||||
Acetonitrile (ACN) | 82 | 0.33 | 3.92 | 36.6 | 75 | NG-3-ACN-75 |
120 | NG-3-ACN-120 | |||||
150 | NG-3-ACN-150 | |||||
180 | NG-3-ACN-180 | |||||
H2O | 100 | 0.89 | 1.85 | 78.4 | 95 | NG-3-H2O-95 |
120 | NG-3-H2O-120 | |||||
150 | NG-3-H2O-150 | |||||
180 | NG-3-H2O-180 | |||||
DMF | 153 | 0.80 | 3.82 | 38.25 | 120 | NG-3-DMF-120 |
150 | NG-3-DMF-150 | |||||
180 | NG-3-DMF-180 | |||||
Ethylene Glycol (EG) | 197.6 | 16.1 | 2.31 | 37.7 | 120 | NG-3-EG-120 |
150 | NG-3-EG-150 | |||||
180 | NG-3-EG-180 | |||||
195 | NG-3-EG-195 | |||||
NMP | 202 | 1.89 | 3.75 | 32 | 120 | NG-3-NMP-120 |
150 | NG-3-NMP-150 | |||||
180 | NG-3-NMP-180 | |||||
195 | NG-3-NMP-195 |
Solvent | Temp (°C) | Careal (mF/cm2) | Csp (F/g) |
---|---|---|---|
THF | 60 | 6.38 | 22.28 |
120 | 16.33 | 58.31 | |
150 | 72.70 | 259.35 | |
180 | 45.77 | 164.48 | |
Ethanol | 75 | 5.44 | 19.55 |
120 | 16.88 | 60.82 | |
150 | 69.42 | 249.82 | |
180 | 75.53 | 268.88 | |
Acetonitrile | 75 | 4.79 | 19.05 |
120 | 28.57 | 101.12 | |
150 | 51.23 | 185 | |
180 | 75.26 | 270.58 | |
H2O | 95 | 35.72 | 102.64 |
120 | 91.03 | 327.58 | |
150 | 103.44 | 371.87 | |
180 | 67.58 | 241.03 | |
DMF | 120 | 24.49 | 85.78 |
150 | 141.60 | 513.86 | |
180 | 64.10 | 234.7 | |
Ethylene | 120 | 16.49 | 59.36 |
Glycol | 150 | 21.13 | 76.08 |
180 | 58.98 | 208.85 | |
195 | 23.25 | 83.85 | |
NMP | 120 | 8.60 | 30.32 |
150 | 33.56 | 119.92 | |
180 | 59.76 | 214.03 | |
195 | 19.44 | 68.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, A.; Kumar, R.; Joseph, D.; Thomas, N.; Yan, F.; Sahoo, B. Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide. C 2024, 10, 89. https://doi.org/10.3390/c10040089
Yadav A, Kumar R, Joseph D, Thomas N, Yan F, Sahoo B. Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide. C. 2024; 10(4):89. https://doi.org/10.3390/c10040089
Chicago/Turabian StyleYadav, Ankit, Rajeev Kumar, Deepu Joseph, Nygil Thomas, Fei Yan, and Balaram Sahoo. 2024. "Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide" C 10, no. 4: 89. https://doi.org/10.3390/c10040089
APA StyleYadav, A., Kumar, R., Joseph, D., Thomas, N., Yan, F., & Sahoo, B. (2024). Impact of Dispersive Solvent and Temperature on Supercapacitor Performance of N-Doped Reduced Graphene Oxide. C, 10(4), 89. https://doi.org/10.3390/c10040089