The Advances in Biomedical Applications of Carbon Nanotubes
Abstract
:1. Introduction
2. Structure, Synthesis, and Surface Functionalization
3. Carbon Nanotubes and Bio-Sensing Technology
4. Carbon Nanotubes in Cancer Treatment
5. Hyperthermia and Photo-Thermal Therapy
6. Antibacterial Therapy
7. Carbon Nanotubes and Stem Cells
8. Toxicity Studies of Carbon Nanotubes
9. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Ramalingame, R.; Lakshmanan, A.; Muller, F.; Thomas, U.; Kanoun, O. Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite. J. Sens. Sens. Syst. 2019, 8, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.N.; Yeh, C.Y.; Pan, Y.N.; Lin, M.C.; Fan, F.Y. Effect of carbon nanotubes on in vitro cellular responses for bioglass application. Mater. Lett. 2019, 235, 141–143. [Google Scholar] [CrossRef]
- Filatzikioti, A.; Glezos, N.; Kantarelou, V.; Kyriakis, A.; Pilatos, G.; Romanos, G.; Speliotis, T.; Stathopoulou, D.J. Carbon nanotube Schottky type photodetectors for UV applications. Solid State Electron. 2019, 151, 27–35. [Google Scholar] [CrossRef]
- Muhulet, A.; Miculescu, F.; Voicu, S.I.; Schutt, F.; Thakur, V.K.; Mishra, Y.K. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 2018, 9, 154–186. [Google Scholar] [CrossRef]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.; Mian, S.; Ali, G. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C 2019, 5, 3. [Google Scholar] [CrossRef]
- Kong, Y.; Cui, D.X.; Ozkan, C.S.; Gao, H.J. Modelling carbon nanotube based bio-nano systems: A molecular dynamics study. Biomicroelectromech. Syst. (Biomems) 2003, 773, 111–116. [Google Scholar]
- Guo, Q.; Shen, X.T.; Li, Y.Y.; Xu, S.Q. Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci. 2017, 37, 635–641. [Google Scholar] [CrossRef]
- Chou, S.G.; Dresselhaus, M.S.; Humphreys, E.; Chung, S.Y.; VanderSande, J.; Ciang, Y.M.; Swan, A.K.; Unlu, M.S.; Goldberg, B.B. Raman analysis of carbon nanotube bundles for bio-electronic applications. Quantum Confin. Semicond. Nanostruct. 2003, 737, 395–400. [Google Scholar] [CrossRef]
- He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.L.; Zuo, P.L.; Pham-Huy, C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res. Int. 2013, 2013, 578290. [Google Scholar] [CrossRef]
- Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016, 59, 8149–8167. [Google Scholar] [CrossRef]
- Li, H.P.; Sun, X.W.; Li, Y.J.; Li, B.E.; Liang, C.Y.; Wang, H.S. Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater. Sci. Eng. C 2019, 97, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.P.; Li, Q.; Wang, J.L.; Du, J.L.; Gao, Y.D.; Zhang, L.; Chen, L.; Yang, Y.Z.; Liu, X.G. A targeted drug delivery system based on carbon nanotubes loaded with lobaplatin toward liver cancer cells. J. Mater. Res. 2018, 33, 2565–2575. [Google Scholar] [CrossRef]
- Miao, R.; Wu, D.X.; Wang, Q.Y.; Zhao, H.X.; Li, X.; Xiu, Y.; Liu, S.Y. Rapid Separation of Ginsenosides Based on Multi-walled Carbon Nanotubes. Chem. J. Chin. Univ. Chin. 2018, 39, 2178–2184. [Google Scholar]
- Um, J.E.; Song, S.G.; Yoo, P.J.; Song, C.; Kim, W.J. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry. Appl. Surf. Sci. 2018, 429, 278–283. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Saliev, T.; Akhmetova, A.; Kulsharova, G. Multifunctional hybrid nanoparticles for theranostics. In Core-Shell Nanostructures for Drug Delivery and Theranostics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–244. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Maser, W.K.; Munoz, E.; Benito, A.M.; Martinez, M.T.; de la Fuente, G.F.; Anglaret, E.; Righi, A.; Sauvajol, J.L. Single-wall carbon nanotubes: Study of production parameters using cw CO2-laser ablation technique. Electron. Prop. Nov. Mater. Mol. Nanostruct. 2000, 544, 213–216. [Google Scholar]
- Fahlman, B.D. Chemical vapor deposition of carbon nanotubes—An experiment in materials chemistry. J. Chem. Educ. 2002, 79, 203–206. [Google Scholar] [CrossRef]
- Okamoto, A.; Kawakubo, T.; Hiraoka, T.; Okazaki, T.; Sugai, T.; Shinohara, H. Diameter control of single-wall carbon nanotubes by the catalytic chemical vapor deposition method. Struct. Electron. Prop. Mol. Nanostruct. 2002, 633, 194–197. [Google Scholar]
- Merchan-Merchan, W.; Saveliev, A.V.; Kennedy, L.; Jimenez, W.C. Combustion synthesis of carbon nanotubes and related nanostructures. Prog. Energy Combust. Sci. 2010, 36, 696–727. [Google Scholar] [CrossRef]
- Xu, Z.W.; Zhao, H.B. Simultaneous measurement of internal and external properties of nanoparticles in flame based on thermophoresis. Combust. Flame 2015, 162, 2200–2213. [Google Scholar] [CrossRef]
- Vander Wal, R.L. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chem. Phys. Lett. 2000, 324, 217–223. [Google Scholar] [CrossRef]
- Parasuram, B.; Sundaram, S.; Sathiskumar, C.; Karthikeyan, S. Synthesis of multi-walled carbon nanotubes using tire pyrolysis oil as a carbon precursor by spray pyrolysis method. Inorg. Nano Met. Chem. 2018, 48, 103–106. [Google Scholar] [CrossRef]
- Annu, A.; Bhattacharya, B.; Singh, P.K.; Shukla, P.K.; Rhee, H.W. Carbon nanotube using spray pyrolysis: Recent scenario. J. Alloy. Compd. 2017, 691, 970–982. [Google Scholar] [CrossRef]
- Norfazlinayati, O.; Talib, Z.A.; Salleh, N.G.N.; Shaari, A.H.; Hamzah, H.M. Synthesis and Characterization of Polyvinyl alcohol/Polyaniline/Functionalized Multiwalled Carbon Nanotube Composite by Gamma Radiation Method. Int. J. Nanoelectron. Mater. 2018, 11, 435–448. [Google Scholar]
- Ahmad, A.; Razali, M.H.; Kassim, K.; Amin, K.A.M. Synthesis of multiwalled carbon nanotubes supported on M/MCM-41 (M = Ni, Co and Fe) mesoporous catalyst by chemical vapour deposition method. J. Porous Mater. 2018, 25, 433–441. [Google Scholar] [CrossRef]
- Scott, L.T. Methods for the chemical synthesis of carbon nanotubes: An approach based on hemispherical polyarene templates. Pure Appl. Chem. 2017, 89, 809–820. [Google Scholar] [CrossRef]
- Costa, L.; Al-Hashimi, M.; Lansford, K.; Terekhov, A.; Hofmeister, W.; Jeyakumar, R.; Verma, A. Novel Method for the Synthesis of Conjugated Polymer Single-Wall Carbon Nanotube Nanowires. In Proceedings of the 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, PA, USA, 25–28 July 2017; pp. 942–945. [Google Scholar]
- Teoh, W.C.; Yeoh, W.M.; Mohamed, A.R. Evaluation of Different Oxidizing Agents on Effective Covalent Functionalization of Multiwalled Carbon Nanotubes. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 846–850. [Google Scholar] [CrossRef]
- Jafer, A.C.; Veetil, V.T.; Prabhavathi, G.; Yamuna, R. Covalent functionalization and characterization of multi-walled carbon nanotubes using 5,10,15,20-tetra(4-aminophenyl)porphyrinatonickel(II). Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 739–745. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef]
- Ali-Boucetta, H.; Kostarelos, K. Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation. Adv. Drug Deliv. Rev. 2013, 65, 2111–2119. [Google Scholar] [CrossRef]
- Iannazzo, D.; Pistone, A.; Galvagno, S.; Ferro, S.; De Luca, L.; Monforte, A.M.; Da Ros, T.; Hadad, C.; Prato, M.; Pannecouque, C. Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon 2015, 82, 548–561. [Google Scholar] [CrossRef]
- Baldo, S.; Buccheri, S.; Ballo, A.; Camarda, M.; La Magna, A.; Castagna, M.E.; Romano, A.; Iannazzo, D.; Di Raimondo, F.; Neri, G.; et al. Carbon nanotube-based sensing devices for human Arginase-1 detection. Sens. Bio-Sens. Res. 2016, 7, 168–173. [Google Scholar] [CrossRef]
- Liu, P. Modifications of carbon nanotubes with polymers. Eur. Polym. J. 2005, 41, 2693–2703. [Google Scholar] [CrossRef]
- Gribov, E.N.; Kuznetsov, A.N.; Golovin, V.A.; Krasnikov, D.V.; Kuznetsov, V.L. Effect of modification of multi-walled carbon nanotubes with nitrogen-containing polymers on the electrochemical performance of Pt/CNT catalysts in PEMFC. Mater. Renew. Sustain. Energy 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Lee, E.C. Highly selective, reusable electrochemical impedimetric DNA sensors based on carbon nanotube/polymer composite electrode without surface modification. Biosens. Bioelectron. 2018, 118, 16–22. [Google Scholar] [CrossRef]
- Arrigo, R.; Teresi, R.; Gambarotti, C.; Parisi, F.; Lazzara, G.; Dintcheva, N.T. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials 2018, 11, 383. [Google Scholar] [CrossRef]
- Nemeth, K.; Reti, B.; Hernadi, K.; Bata, A.; Adamne, A.M.; Belina, K. Modification of mechanical properties of polymers by SiO2—MgO coated multiwalled carbon nanotubes. In Proceedings of the 2015 IEEE 15th International Conference on Nanotechnology (IEEE-Nano), Rome, Italy, 27–30 July 2015; pp. 296–299. [Google Scholar]
- Buber, E.; Kesik, M.; Soylemez, S.; Toppare, L. A bio-sensing platform utilizing a conjugated polymer, carbon nanotubes and PAMAM combination. J. Electroanal. Chem. 2017, 799, 370–376. [Google Scholar] [CrossRef]
- Del Bonis-O’Donnell, J.T.; Beyene, A.; Chio, L.D.; Demirer, G.; Yang, D.W.; Landry, M.P. Engineering Molecular Recognition with Bio-mimetic Polymers on Single Walled Carbon Nanotubes. JOVE J. Vis. Exp. 2017, e55030. [Google Scholar] [CrossRef]
- Nuzzo, A.; Bilotti, E.; Peijs, T.; Aciern, D.; Filippone, G. Nanoparticle-induced co-continuity in immiscible polymer blends—A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer 2014, 55, 4908–4919. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Zhao, Y.L. Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 2014, 6, 6245–6266. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.Q.; Qiu, C.Y.; Liu, Z.; Yang, H.C.; Hu, L.J.; Liu, J.; Yang, H.F.; Gu, C.Z.; Sun, L.F. Thickness-Dependent Morphologies of Gold on N-Layer Graphenes. J. Am. Chem. Soc. 2010, 132, 944–946. [Google Scholar] [CrossRef]
- Bajpai, R.; Roy, S.; Kulshrestha, N.; Rafiee, J.; Koratkar, N.; Misra, D.S. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. Nanoscale 2012, 4, 926–930. [Google Scholar] [CrossRef]
- Son, J.Y.; Shin, Y.H.; Kim, H.; Jang, H.M. NiO Resistive Random Access Memory Nanocapacitor Array on Graphene. ACS Nano 2010, 4, 2655–2658. [Google Scholar] [CrossRef]
- Kirschner, A.N.; Richardson, C.F.; Wilson, S.R. Biosensor for fullerenes and carbon nanotubes. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2001; Volume 221, p. U590. [Google Scholar]
- Cai, H.; Cao, X.N.; Jiang, Y.; He, P.G.; Fang, Y.Z. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 2003, 375, 287–293. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Lutfi, M.; Gupta, V.K.; Ensafi, A.A. A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind. Eng. Chem. Res. 2015, 54, 3634–3639. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Salimian, R.; Kalhor, H.R. A simple label-free electrochemical DNA biosensor based on carbon nanotube-DNA interaction. RSC Adv. 2016, 6, 15592–15598. [Google Scholar] [CrossRef]
- Zribi, B.; Roy, E.; Pallandre, A.; Chebil, S.; Koubaa, M.; Mejri, N.; Gomez, H.M.; Sola, C.; Korri-Youssoufi, H.; Haghiri-Gosnet, A.M. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics 2016, 10, 014115. [Google Scholar] [CrossRef]
- Ozkan-Ariksoysal, D.; Kayran, Y.U.; Yilmaz, F.F.; Ciucu, A.A.; David, I.G.; David, V.; Hosgor-Limoncu, M.; Ozsoz, M. DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta 2017, 166, 27–35. [Google Scholar] [CrossRef]
- Chen, Y.H.; Guo, S.L.; Zhao, M.; Zhang, P.; Xin, Z.L.; Tao, J.; Bai, L.J. Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens. Bioelectron. 2018, 119, 215–220. [Google Scholar] [CrossRef]
- Same, S.; Samee, G. Carbon Nanotube Biosensor for Diabetes Disease. Crescent J. Med. Biol. 2018, 5, 1–6. [Google Scholar]
- Deo, R.P.; Wang, J.; Block, I.; Mulchandani, A.; Joshi, K.A.; Trojanowicz, M.; Scholz, F.; Chen, W.; Lin, Y.H. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta 2005, 530, 185–189. [Google Scholar] [CrossRef]
- Shi, Q.C.; Peng, T.Z.; Cheng, J.Y. A cholesterol biosensor based on cholesterol oxidase immobilized in a sol-gel on a platinum-decorated carbon nanotubes modified electrode. Chin. J. Anal. Chem. 2005, 33, 329–332. [Google Scholar]
- Mai, Z.B.; Tan, X.C.; Zou, X.Y. A hydrogen peroxide amperometric biosensor based on carbon nanotubes. Chin. J. Anal. Chem. 2006, 34, 801–804. [Google Scholar]
- Pereira, A.C.; Aguiar, M.R.; Kisner, A.; Macedo, D.V.; Kubota, L.T. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sens. Actuators B Chem. 2007, 124, 269–276. [Google Scholar] [CrossRef]
- Shobha, B.N.; Muniraj, N.J.R. Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst. Technol. 2015, 21, 791–800. [Google Scholar] [CrossRef]
- Ghrera, A.S.; Pandey, C.M.; Malhotra, B.D. Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sens. Actuators. B Chem. 2018, 266, 329–336. [Google Scholar] [CrossRef]
- Paul, K.B.; Panigrahi, A.K.; Singh, V.; Singh, S.G. A multi-walled carbon nanotube-zinc oxide nanofiber based flexible chemiresistive biosensor for malaria biomarker detection. Analyst 2017, 142, 2128–2135. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, J.; Park, M.K.; Oh, J.H. Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of Staphylococcus aureus. J. Food Qual. 2017, 2017, 5239487. [Google Scholar] [CrossRef]
- Taei, M.; Salavati, H.; Hasanpour, F.; Shafiei, A. Biosensor Based on ds-DNA-Decorated Fe2O3/SnO2-Chitosan Modified Multiwalled Carbon Nanotubes for Biodetection of Doxorubicin. IEEE Sens. J. 2016, 16, 24–31. [Google Scholar] [CrossRef]
- Karimi, A.; Erfan, M.; Mortazavi, S.A.; Ghorbani-Bidkorbeh, F.; Kobarfard, F.; Shirazi, F.H. Functionalisation of carbon nanotubes by methotrexate and study of synchronous photothermal effect of carbon nanotube and anticancer drug on cancer cell death. IET Nanobiotechnol. 2019, 13, 52–57. [Google Scholar] [CrossRef]
- Sheikh, A.H.; Khalid, A.; Khan, F.; Begum, A. Fluorescent Gadolinium(III)-Oligopeptide Complexes and Carbon Nanotube Composite as Dual Modality Anticancer Agents. Chemistryselect 2019, 4, 228–235. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, R.Z.; Hu, Y.; Sun, R.Y.; Song, T.; Shi, X.Y.; Yin, S.M. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018, 25, 1607–1616. [Google Scholar] [CrossRef]
- Le, C.M.Q.; Cao, X.T.; Kim, D.W.; Ban, U.H.; Lee, S.H.; Lim, K.T. Preparation of poly(styrene-alt-maleic anhydride) grafted multi-walled carbon nanotubes for pH-responsive release of doxorubicin. Mol. Cryst. Liq. Cryst. 2017, 654, 181–189. [Google Scholar] [CrossRef]
- Lee, Y.K.; Choi, J.; Wang, W.; Lee, S.; Nam, T.H.; Choi, W.S.; Kim, C.J.; Lee, J.K.; Kim, S.H.; Kang, S.S.; et al. Nullifying tumor efflux by prolonged endolysosome vesicles: Development of low dose anticancer-carbon nanotube drug. ACS Nano 2013, 7, 8484–8497. [Google Scholar] [CrossRef]
- Pistone, A.; Iannazzo, D.; Ansari, S.; Milone, C.; Salamo, M.; Galvagno, S.; Cirmi, S.; Navarra, M. Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. Int. J. Pharm. 2016, 515, 30–36. [Google Scholar] [CrossRef]
- Wang, D.Q.; Ren, Y.B.; Shao, Y.P.; Yu, D.M.; Meng, L.J. Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo Photothermal Cancer Treatment. Bioconjug. Chem. 2017, 28, 2815–2822. [Google Scholar] [CrossRef]
- Oh, Y.; Jin, J.O.; Oh, J. Photothermal-triggered control of subcellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology 2017, 28, 125101. [Google Scholar] [CrossRef]
- Jeyamohan, P.; Hasumura, T.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomed. 2013, 8, 2653–2667. [Google Scholar] [Green Version]
- Zhang, P.; Yi, W.H.; Hou, J.; Yoo, S.; Jin, W.Q.; Yang, Q.S. A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer. Int. J. Nanomed. 2018, 13, 3069–3080. [Google Scholar] [CrossRef]
- Mehrjouei, E.; Akbarzadeh, H.; Shamichali, A.N.; Abbaspour, M.; Salemi, S.; Abdi, P. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study. Mol. Pharm. 2017, 14, 2273–2284. [Google Scholar] [CrossRef]
- Jogi, H.; Maheshwari, R.; Raval, N.; Kuche, K.; Tambe, V.; Mak, K.K.; Pichika, M.R.; Tekade, R.K. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine 2018, 13, 1187–1220. [Google Scholar] [CrossRef]
- Francis, A.P.; Devasena, T.; Ganapathy, S.; Palla, V.R.; Murthy, P.B.; Ramaprabhu, S. Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate. Nanomed. Nanotechnol. 2018, 14, 1809–1822. [Google Scholar] [CrossRef]
- Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide Functionalized Single Walled Carbon Nanotubes as Nanocarriers for Delivery of Curcumin in Lung Cancer Cells. J. Nanosci. Nanotechnol. 2018, 18, 1534–1541. [Google Scholar] [CrossRef]
- Rathod, V.; Tripathi, R.; Joshi, P.; Jha, P.K.; Bahadur, P.; Tiwari, S. Paclitaxel Encapsulation into Dual-Functionalized Multi-Walled Carbon Nanotubes. AAPS PharmSciTech 2019, 20, 51. [Google Scholar] [CrossRef]
- Karnati, K.R.; Wang, Y.X. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2018, 20, 9389–9400. [Google Scholar] [CrossRef]
- Panahi, F.H.; Peighambardoust, S.J.; Davaran, S.; Salehi, R. Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. Polymer 2017, 117, 117–131. [Google Scholar] [CrossRef]
- Garcia-Hevia, L.; Fernandez, F.; Gravalos, C.; Garcia, A.; Villegas, J.C.; Fanarraga, M.L. Nanotube interactions with microtubules: Implications for cancer medicine. Nanomedicine 2014, 9, 1581–1588. [Google Scholar] [CrossRef]
- Ren, Q.Q.; Wu, J.; Zhang, W.C.; Wang, C.; Qin, X.; Liu, G.C.; Li, Z.X.; Yu, Y. Real-time in vitro detection of cellular H2O2 under camptothecin stress using horseradish peroxidase, ionic liquid, and carbon nanotube-modified carbon fiber ultramicroelectrode. Sens. Actuators B Chem. 2017, 245, 615–621. [Google Scholar] [CrossRef]
- Permana, B.; Ohba, T.; Itoh, T.; Kanoh, H. Systematic sorption studies of camptothecin on oxidized single-walled carbon nanotubes. Colloids Surf. A 2016, 490, 121–132. [Google Scholar] [CrossRef]
- Dar, R.A.; Brahman, P.K.; Tiwari, S.; Pitre, K.S. Adsorptive stripping voltammetric determination of podophyllotoxin, an antitumour herbal drug, at multi-walled carbon nanotube paste electrode. J. Appl. Electrochem. 2011, 41, 1311–1321. [Google Scholar] [CrossRef]
- Daneshmehr, S. Carbon Nanotubes for Delivery of Quercetin as Anticancer Drug: Theoretical Study. Proc. Mater. Sci. 2015, 11, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.J.; Li, A. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group. J. Nanomater. 2016, 2016, 3439419. [Google Scholar] [CrossRef]
- Oskoueian, A.; Matori, K.A.; Bayat, S.; Oskoueian, E.; Ostovan, F.; Toozandehjani, M. Fabrication, Characterization, and Functionalization of Single-Walled Carbon Nanotube Conjugated with Tamoxifen and Its Anticancer Potential against Human Breast Cancer Cells. J. Nanomater. 2018, 2018, 8417016. [Google Scholar] [CrossRef]
- Yuan, S.P.; Zeng, L.Z.; Zhuang, Y.Y.; Hou, Q.; Song, M.Y. Functionalized single-walled carbon nanotubes for the improved solubilization and delivery of curcumin. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 13–19. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, N.; Hao, Y.W.; Wang, Y.L.; Jia, S.S.; Zhang, H.L.; Zhang, Y.; Zhang, Z.Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: Characteristics and anticancer effects in vitro. Drug Deliv. 2014, 21, 379–387. [Google Scholar] [CrossRef]
- Virani, N.A.; Davis, C.; McKernan, P.; Hauser, P.; Hurst, R.E.; Slaton, J.; Silvy, R.P.; Resasco, D.E.; Harrison, R.G. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology 2018, 29, 035101. [Google Scholar] [CrossRef]
- Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: Noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomed. 2015, 10, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Madani, S.Y.; Tan, A.; Naderi, N.; Seifalian, A.M. Application of OctaAmmonium-POSS functionalized single walled carbon nanotubes for thermal treatment of cancer. J. Nanosci. Nanotechnol. 2012, 12, 9018–9028. [Google Scholar] [CrossRef]
- Raza, K.; Kumar, D.; Kiran, C.; Kumar, M.; Guru, S.K.; Kumar, P.; Arora, S.; Sharma, G.; Bhushan, S.; Katare, O.P. Conjugation of Docetaxel with Multiwalled Carbon Nanotubes and Codelivery with Piperine: Implications on Pharmacokinetic Profile and Anticancer Activity. Mol. Pharm. 2016, 13, 2423–2432. [Google Scholar] [CrossRef]
- Tian, Z.; Yin, M.; Ma, H.M.; Zhu, L.Z.; Shen, H.B.; Jia, N.Q. Supramolecular Assembly and Antitumor Activity of Multiwalled Carbon Nanotube-Camptothecin Complexes. J. Nanosci. Nanotechnol. 2011, 11, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Suo, N.; Wang, M.W.; Jin, Y.; Ding, J.; Gao, X.P.; Sun, X.L.; Zhang, H.Y.; Cui, M.; Zheng, J.L.; Li, N.L.; et al. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer. Int. J. Nanomed. 2019, 14, 1241–1254. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Liu, M.F.; Meng, Y.; Liu, R.Q.; Yan, Y.; Dong, J.Y.; Guo, Z.Z.; Ye, C.S. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer. Med. Sci. Monit. 2016, 22, 2363–2373. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B 2012, 89, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mashal, A.; Sitharaman, B.; Li, X.; Avti, P.K.; Sahakian, A.V.; Booske, J.H.; Hagness, S.C. Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment of Breast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials. IEEE Trans Biomed. Med. Eng. 2010, 57, 1831–1834. [Google Scholar] [CrossRef] [Green Version]
- Al Faraj, A.; Shaik, A.S.; Halwani, R.; Alfuraih, A. Magnetic Targeting and Delivery of Drug-Loaded SWCNTs Theranostic Nanoprobes to Lung Metastasis in Breast Cancer Animal Model: Noninvasive Monitoring Using Magnetic Resonance Imaging. Mol. Imaging Biol. 2016, 18, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, J.J.; Hao, Y.W.; Zhang, P.P.; Zhao, Y.L.; Meng, D.H.; Li, D.; Chang, J.B.; Zhang, Z.Z. Magnetic Multi-Walled Carbon Nanotubes for Tumor Theranostics. J. Biomed. Nanotechnol. 2015, 11, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Torti, S.V. Carbon nanotubes in hyperthermia therapy. Adv. Drug Deliv. Rev. 2013, 65, 2045–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murali, V.S.; Wang, R.H.; Mikoryak, C.A.; Pantano, P.; Draper, R.K. The impact of subcellular location on the near infrared-mediated thermal ablation of cells by targeted carbon nanotubes. Nanotechnology 2016, 27, 425102. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.T.; Wu, F.; Yuan, P.; Chi, C.; Zhou, N.L. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 2017, 123, 70–83. [Google Scholar] [CrossRef]
- Peci, T.; Dennis, T.J.S.; Baxendale, M. Iron-filled multiwalled carbon nanotubes surface-functionalized with paramagnetic Gd(III): A candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure. Carbon 2015, 87, 226–232. [Google Scholar] [CrossRef]
- Zuo, X.D.; Wu, C.W.; Zhang, W.; Gao, W. Magnetic carbon nanotubes for self-regulating temperature hyperthermia. RSC Adv. 2018, 8, 11997–12003. [Google Scholar] [CrossRef] [Green Version]
- Shiue, R.J.; Gao, Y.D.; Tan, C.; Peng, C.; Zheng, J.B.; Efetov, D.K.; Kim, Y.D.; Hone, J.; Englund, D. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun. 2019, 10, 109. [Google Scholar] [CrossRef]
- Saliev, T.; Baiskhanova, D.M.; Akhmetova, A.; Begimbetova, D.A.; Akishev, M.; Kulsharova, G.; Molkenov, A.; Nurgozhin, T.; Alekseyeva, T.; Mikhalovsky, S. Impact of electromagnetic fields on in vitro toxicity of silver and graphene nanoparticles. Electromagn. Biol. Med. 2019, 38, 21–31. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Van Puyvelde, S.; Deborggraeve, S.; Jacobs, J. Why the antibiotic resistance crisis requires a One Health approach. Lancet Infect. Dis. 2018, 18, 132–134. [Google Scholar] [CrossRef]
- Carver, J.; McCampbell, N.; Simpson, A.; Ellison, M. Interaction of antibiotic-functionalized carbon nanotubes with antibiotic-resistant bacteria. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2018; Volume 256. [Google Scholar]
- Rathi, R.; Maley, C.; Ellison, M. Single-walled carbon nanotubes as a delivery agent to antibiotic-resistant bacteria. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2017; Volume 254. [Google Scholar]
- Liu, C.M.; Shi, H.C.; Yang, H.W.; Yan, S.J.; Luan, S.F.; Li, Y.C.; Teng, M.Y.; Khan, A.F.; Yin, J.H. Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Mater. Des. 2017, 120, 128–134. [Google Scholar] [CrossRef]
- Rehman, A.; Patrick, W.M.; Lamont, I.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. J. Med. Microbiol. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Kuang, D.; Zhang, J.; Xu, X.; Shi, W.; Chen, S.; Yang, X.; Su, X.; Shi, X.; Meng, J. Emerging high-level ciprofloxacin resistance and molecular basis of resistance in Salmonella enterica from humans, food and animals. Int. J. Food Microbiol. 2018, 280, 1–9. [Google Scholar] [CrossRef]
- Assali, M.; Zaid, A.N.; Abdallah, F.; Almasri, M.; Khayyat, R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: Strategy to improve ciprofloxacin antibacterial activity. Int. J. Nanomed. 2017, 12, 6647–6659. [Google Scholar] [CrossRef] [PubMed]
- Pruthi, J.; Mehra, N.K.; Jain, N.K. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J. Drug Target. 2012, 20, 593–604. [Google Scholar] [CrossRef]
- Prajapati, V.K.; Awasthi, K.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J. Infect. Dis. 2012, 205, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.A.; Joshi, S.; Vig, K.; Sahu, R.; Dixit, S.; Baganizi, R.; Dennis, V.A.; Singh, S.R.; Pillai, S. A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. J. Biomater. Appl. 2019, 33, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.; Cao, J.; Wei, J.; Chang, F.; Yang, Y.; Xiao, Z. Facile Synthesis of Silver Nanoparticles with High Antibacterial Activity. Materials 2018, 11, 2498. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, e1701503. [Google Scholar] [CrossRef]
- Mogrovejo-Valdivia, A.; Rahmouni, O.; Tabary, N.; Maton, M.; Neut, C.; Martel, B.; Blanchemain, N. In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system. Int. J. Pharm. 2019, 556, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhou, X.; Gao, Z.; Shi, X.; Wang, Z.; Wang, Y.; Zhang, P. Preparation and Characterization of Silver Sulfadiazine-Loaded Polyvinyl Alcohol Hydrogels as an Antibacterial Wound Dressing. J. Pharm. Sci. 2018, 107, 2377–2384. [Google Scholar] [CrossRef]
- Bellingeri, R.; Mulko, L.; Molina, M.; Picco, N.; Alustiza, F.; Grosso, C.; Vivas, A.; Acevedo, D.F.; Barbero, C.A. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties. Mater. Sci. Eng. C 2018, 90, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Joo, S.H.; Su, C.M. Antibacterial effect of multi walled-carbon nanotubes-based nanohybrids. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2018; Volume 256. [Google Scholar]
- Liu, M.; Liu, T.; Chen, X.; Yang, J.; Deng, J.; He, W.; Zhang, X.; Lei, Q.; Hu, X.; Luo, G.; et al. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J. Nanobiotechnol. 2018, 16, 89. [Google Scholar] [CrossRef]
- Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015, 73, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Park, C.; Son, J.; Lee, K.; Hwang, J.; Jo, Y.; Lee, D.; Khan, M.S.; Chavan, S.G.; Choi, Y.; et al. Synthesis of Multi-walled Carbon Nanotubes Modified with Silver Nanoparticles and Evaluation of Their Antibacterial Activities and Cytotoxic Properties. JOVE J. Vis. Exp. 2018, 135, e57384. [Google Scholar] [CrossRef]
- Ma, Y.J.; Liu, J.L.; Yin, H.; Xu, X.L.; Xie, Y.; Chen, D.; Wang, Z.Y.; Hui, D.; Zhou, Z.W. Remarkably Improvement in Antibacterial Activity of Carbon Nanotubes by Hybridizing with Silver Nanodots. J. Nanosci. Nanotechnol. 2018, 18, 5704–5710. [Google Scholar] [CrossRef] [PubMed]
- Al Aani, S.; Gomez, V.; Wright, C.J.; Hilal, N. Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chem. Eng. J. 2017, 326, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Q.; Wang, W.X. Dominant Role of Silver Ions in Silver Nanoparticle Toxicity to a Unicellular Alga: Evidence from Luminogen Imaging. Environ. Sci. Technol. 2019, 53, 494–502. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lee, Y.H. The applicability of zebra fish animal models for acute toxicity testing of silver nanoparticle. Toxicol. Lett. 2018, 295, S204. [Google Scholar] [CrossRef]
- Nie, C.X.; Cheng, C.; Peng, Z.H.; Ma, L.; He, C.; Xia, Y.; Zhao, C.S. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: Bactericidal activity and mammal cell toxicity. J. Mater. Chem. B 2016, 4, 2749–2756. [Google Scholar] [CrossRef]
- Nie, C.X.; Yang, Y.; Cheng, C.; Ma, L.; Deng, J.; Wang, L.R.; Zhao, C.S. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 2017, 51, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, F.; Nie, C.X.; Yang, Y.; Ji, H.F.; He, C.; Cheng, C.; Zhao, C.S. Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag-Graphene 2D Nanoagents for Versatile Bacterial Disinfections. ACS Appl. Mater. Interfaces 2018, 10, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Coulombe, S.; Kietzig, A.M.; Stein, R.S.; van de Ven, T. Interaction of oxygen functionalized multi-walled carbon nanotube nanofluids with copper. Carbon 2018, 140, 201–209. [Google Scholar] [CrossRef]
- Abu-Elala, N.M.; AbuBakr, H.O.; Khattab, M.S.; Mohamed, S.H.; El-hady, M.A.; Ghandour, R.A.; Morsi, R.E. Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int. J. Biol. Macromol. 2018, 113, 1105–1115. [Google Scholar] [CrossRef]
- Palza, H.; Saldias, N.; Arriagada, P.; Palma, P.; Sanchez, J. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures. JOM 2017, 69, 1319–1324. [Google Scholar] [CrossRef]
- Francis, E.; Kearney, L.; Clover, J. The effects of stem cells on burn wounds: A review. Int. J. Burns Trauma 2019, 9, 1–12. [Google Scholar]
- Ramotowski, C.; Qu, X.; Villa-Diaz, L.G. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review. Stem Cells Transl. Med. 2019. [Google Scholar] [CrossRef]
- Crupi, M.J.F.; Bell, J.C.; Singaravelu, R. Concise Review: Targeting cancer stem cells and their supporting niche using oncolytic viruses. Stem Cells 2019. [Google Scholar] [CrossRef]
- Lee, J.R.; Ryu, S.; Kim, S.; Kim, B.S. Behaviors of stem cells on carbon nanotube. Biomater. Res. 2015, 19, 3. [Google Scholar] [CrossRef]
- Choi, G.; Lee, J.W.; Cha, J.Y.; Kim, Y.J.; Choi, Y.S.; Schulz, M.J.; Moon, C.K.; Lim, K.T.; Kim, S.Y.; Kang, I. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring. Sensors 2016, 16, 1171. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Chen, J.; Koziol, K.K.; Hallam, K.R.; Janas, D.; Patil, A.J.; Strachan, A.; Hanley, J.G.; Rahatekar, S.S. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale 2016, 8, 8288–8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, E.; Kotov, N.A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano. Lett. 2007, 7, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Agrawal, A.; Murali, K.; Varshney, R.; Beniwal, S.; Manhas, S.; Roy, P.; Lahiri, D. Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. Mater. Sci. Eng. C 2019, 97, 539–551. [Google Scholar] [CrossRef]
- Simonovic, J.; Toljic, B.; Nikolic, N.; Peric, M.; Vujin, J.; Panajotovic, R.; Gajic, R.; Bekyarova, E.; Cataldi, A.; Parpura, V.; et al. Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. J. Biomed. Mater. Res. Part A 2018, 106, 2653–2661. [Google Scholar] [CrossRef]
- Brunner, E.W.; Jurewicz, I.; Heister, E.; Fahimi, A.; Bo, C.; Sear, R.P.; Donovan, P.J.; Dalton, A.B. Growth and Proliferation of Human Embryonic Stem Cells on Fully Synthetic Scaffolds Based on Carbon Nanotubes. ACS Appl. Mater. Interfaces 2014, 6, 2598–2603. [Google Scholar] [CrossRef] [PubMed]
- Sebaa, M.; Nguyen, T.Y.; Paul, R.K.; Mulchandani, A.; Liu, H.N. Graphene and carbon nanotube-graphene hybrid nanomaterials for human embryonic stem cell culture. Mater. Lett. 2013, 92, 122–125. [Google Scholar] [CrossRef]
- Zang, R.; Yang, S.T. Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells. J. Mater. Chem. B 2013, 1, 646–653. [Google Scholar] [CrossRef]
- Pouladzadeh, F.; Katbab, A.A.; Haghighipour, N.; Kashi, E. Carbon nanotube loaded electrospun scaffolds based on thermoplastic urethane (TPU) with enhanced proliferation and neural differentiation of rat mesenchymal stem cells: The role of state of electrical conductivity. Eur. Polym. J. 2018, 105, 286–296. [Google Scholar] [CrossRef]
- Garnica-Gutierrez, R.L.; Lara-Martinez, L.A.; Palacios, E.; Masso, F.; Contreras, A.; Hernandez-Gutierrez, S.; Cervantes-Sodi, F. Effect of Functionalized Carbon Nanotubes and their Citric Acid Polymerization on Mesenchymal Stem Cells In Vitro. J. Nanomater. 2018, 2018. [Google Scholar] [CrossRef]
- Lalwani, G.; D’agati, M.; Gopalan, A.; Patel, S.C.; Talukdar, Y.; Sitharaman, B. Three-dimensional carbon nanotube scaffolds for long-term maintenance and expansion of human mesenchymal stem cells. J. Biomed. Mater. Res. Part A 2017, 105, 1927–1939. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.Y.; Ju, Y.; Cui, Y.B.; Song, G.B. Carbon nanotube array inducing osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C 2015, 51, 182–188. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.Y.; Yang, S.H.; Lee, E.J.; Kim, H.W. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater. 2014, 10, 4425–4436. [Google Scholar] [CrossRef]
- Park, S.Y.; Kang, B.S.; Hong, S. Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds. Nanomedicine 2013, 8, 715–723. [Google Scholar] [CrossRef]
- Yan, X.X.; Yang, W.; Shao, Z.W.; Yang, S.H.; Liu, X.Z. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway. Int. J. Nanomed. 2016, 11, 5473–5484. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Castro, N.J.; Li, J.; Keidar, M.; Zhang, L.G. Greater Osteoblast and Mesenchymal Stem Cell Adhesion and Proliferation on Titanium with Hydrothermally Treated Nanocrystalline Hydroxyapatite/Magnetically Treated Carbon Nanotubes. J. Nanosci. Nanotechnol. 2012, 12, 7692–7702. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Tian, L.L.; An, W.Z.; Wu, Q.; Liu, J.L.; Jiang, C.; Yang, J.; Tang, B.; Zhang, Y.F.; Xie, K.J.; et al. Curing the Toxicity of Multi-Walled Carbon Nanotubes through Native Small-molecule Drugs. Sci. Rep. 2017, 7, 2815. [Google Scholar] [CrossRef]
- Francis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health 2018, 34, 200–210. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Chang, S.W.; Long, J.M.; Li, J.; Li, X.Q.; Cao, Y. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Food Chem. Toxicol. 2019, 126, 169–177. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, L.; Oliva, M.; Freitas, R.; Neto, V.; Figueira, E.; Chiellini, F.; Morelli, A.; Soares, A.M.V.M.; Pretti, C. Toxicity evaluation of carboxylated carbon nanotubes to the reef-forming tubeworm Ficopomatus enigmaticus (Fauvel, 1923). Mar. Environ. Res. 2019, 143, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.H.; Tan, L.J.; Wang, J.T. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ. Sci. Pollut. Res. 2018, 25, 13127–13133. [Google Scholar] [CrossRef]
- Knudsen, K.B.; Berthing, T.; Jackson, P.; Poulsen, S.S.; Mortensen, A.; Jacobsen, N.R.; Skaug, V.; Szarek, J.; Hougaard, K.S.; Wolff, H.; et al. Physicochemical predictors of Multi-Walled Carbon Nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled Carbon Nanotubes in mice. Basic Clin. Pharm. 2019, 124, 211–227. [Google Scholar] [CrossRef]
- Gernand, J.M.; Casman, E.A. A meta-analysis of carbon nanotube pulmonary toxicity studies--how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Anal. Off. Publ. Soc. Risk Anal. 2014, 34, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Kasai, T.; Umeda, Y.; Ohnishi, M.; Kondo, H.; Takeuchi, T.; Aiso, S.; Nishizawa, T.; Matsumoto, M.; Fukushima, S. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology 2015, 9, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.A.; Carreira, V.S.; Birch, M.E.; Yadav, J.S. Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice. Toxicol. Pathol. 2016, 44, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Li, S.; Zhao, G.; Fu, X.; Xie, X.; Huang, Y.; Cheng, X.; Wei, J.; Liu, H.; Lai, Z. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway. Int. J. Nanomed. 2017, 12, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Siivola, K.M.; Nymark, P.; Lindberg, H.; Suhonen, S.; Jarventaus, H.; Koivisto, A.J.; Moreno, C.; Vanhala, E.; Wolff, H.; et al. In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes. Nanotoxicology 2016, 10, 794–806. [Google Scholar] [CrossRef]
- Kasai, T.; Umeda, Y.; Ohnishi, M.; Mine, T.; Kondo, H.; Takeuchi, T.; Matsumoto, M.; Fukushima, S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part. Fibre Toxicol. 2016, 13, 53. [Google Scholar] [CrossRef]
- Sargent, L.M.; Porter, D.W.; Staska, L.M.; Hubbs, A.F.; Lowry, D.T.; Battelli, L.; Siegrist, K.J.; Kashon, M.L.; Mercer, R.R.; Bauer, A.K.; et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part. Fibre Toxicol. 2014, 11, 3. [Google Scholar] [CrossRef]
- Johansson, H.K.L.; Hansen, J.S.; Elfving, B.; Lund, S.P.; Kyjovska, Z.O.; Loft, S.; Barfod, K.K.; Jackson, P.; Vogel, U.; Hougaard, K.S. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part. Fibre Toxicol. 2017, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Liu, Q.; Liu, H.; Zhang, C.L.; Shao, W.T.; Gu, A.H. Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells. Oncotarget 2016, 7, 39270–39278. [Google Scholar] [CrossRef]
- Facciola, A.; Visalli, G.; La Maestra, S.; Ceccarelli, M.; D’Aleo, F.; Nunnari, G.; Pellicano, G.F.; Di Pietro, A. Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives. Environ. Toxicol. Pharm. 2019, 65, 23–30. [Google Scholar] [CrossRef]
- Ma, X.W.; Zhong, L.; Guo, H.B.; Wang, Y.F.; Gong, N.Q.; Wang, Y.Q.; Cai, J.; Liang, X.J. Multiwalled Carbon Nanotubes Induced Hypotension by Regulating the Central Nervous System. Adv. Funct. Mater. 2018, 28, 1705479. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Chen, R.L.; Shao, Y.; Wang, H.L.; Liu, Z.G. Effects of exposure of adult mice to multi-walled carbon nanotubes on the liver lipid metabolism of their offspring. Toxicol. Res. UK 2018, 7, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.P.; Su, X.D.; Du, J.L.; Wang, J.L.; Gao, Y.D.; Zhang, L.; Chen, L.; Yang, Y.Z.; Liu, X.G. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells. New Carbon Mater. 2018, 33, 36–46. [Google Scholar] [CrossRef]
- Goornavar, V.; Biradar, S.; Pradhan, A.K.; Ramesh, G.T. Biological impact of as-produced and purified Single Wall Carbon Nanotube in Kidney epithelial cells. FASEB J. 2013, 27. [Google Scholar]
- Adeli, M.; Mirab, N.; Alavidjeh, M.S.; Sobhani, Z.; Atyabi, F. Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine. Polymer 2009, 50, 3528–3536. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Chattopadhyay, D.; Jaggi, J.S.; Finn, R.D.; Zanzonico, P.B.; Villa, C.; Rey, D.; Mendenhall, J.; Batt, C.A.; Njardarson, J.T.; et al. PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice. PLoS ONE 2007, 2, e907. [Google Scholar] [CrossRef] [PubMed]
- Asghar, W.; Shafiee, H.; Velasco, V.; Sah, V.R.; Guo, S.R.; El Assal, R.; Inci, F.; Rajagopalan, A.; Jahangir, M.; Anchan, R.M.; et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016, 6, 30270. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Long, J.M.; Wu, Y.; Yan, B.; Ma, P.; Cao, Y. The toxicity of hydroxylated and carboxylated multi-walled carbon nanotubes to human endothelial cells was not exacerbated by ER stress inducer. Chin. Chem. Lett. 2019, 30, 582–586. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, S.H.; Lee, I.C.; Moon, C.; Shin, D.H.; Kim, H.C.; Kim, J.C. Evaluation of Maternal Toxicity in Rats Exposed to Multi-Wall Carbon Nanotubes during Pregnancy. Environ. Health Toxicol. 2011, 26, e2011006. [Google Scholar] [CrossRef]
- Pantarotto, D.; Briand, J.P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 1, 16–17. [Google Scholar] [CrossRef]
- Al Faraj, A. SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: Towards safe translation to the clinics. Nanomedicine 2016, 11, 1431–1445. [Google Scholar] [CrossRef]
- Gao, F.Q.; Xie, S.X.; Sitharaman, B.; Booske, J.H.; Hagness, S.C. Functionalized Carbon Nanotube Theranostic Agents for Microwave Diagnostic Imaging and Thermal Therapy of Tumors. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 691–693. [Google Scholar]
- Demirci, O.; Hasimi, N.; Kilinc, E.; Tolan, V. Evaluation of Genotoxic Effects of C-60 Fullerene-gamma-Fe2O3 and Multi-Wall Carbon Nanotubes-gamma-Fe2O3 Nanoparticles. Kafkas Univ. Vet. Fak. 2018, 24, 799–805. [Google Scholar]
- Moller, P.; Jacobsen, N.R. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit. Rev. Toxicol. 2017, 47, 871–888. [Google Scholar] [CrossRef] [PubMed]
Method of CNTs Synthesis | Details | Type of CNTs | Ref. |
---|---|---|---|
Carbon arc-discharge method | CNTs growth on the negative end of the carbon electrode in an argon-filled vessel | Single-walled CNTs | [17] |
Laser-ablation technique | Fabrication of CNTs using continuous wave 10.6 μm CO2-laser in the presence of metals (Ni and Co) | Single-walled CNTs | [18] |
Chemical vapor deposition | CNTs growth was achieved at temperature 1000 C in the presence of iron-doped alumina catalyst particles | Single-walled and double-walled CNTs | [19] |
Flame synthesis method | Co-flow diffusion flame type. Catalysts: metal nitrate + TiO2 | Multi-walled CNTs | [23] |
Spray pyrolysis method | Synthesis of CNTs using tire pyrolysis oil as a carbon precursor with ferrocene as a catalyst at 950 °C | Multi-walled CNTs | [24] |
Type of CNTs | Model/Cell Line | CNTs Dosage | Results | References |
---|---|---|---|---|
Single-Walled CNTs | human breast cancer cells (MCF-7) | 12.67 and 5.49 μg/mL | Higher cytotoxic action towards cancer cells | [89] |
Single-Walled CNTs | MDA-MB-231 human breast cancer cells | 3.125, 6.25, 12.5, and 25 μg/mL | Induction of death of cancer cells under NIR-irradiation | [73] |
Single-Walled CNTs | A549 and NIH 3T3 cells | 4, 8, 12, 16, and 20 μg/mL | Delivery of Curcumin to cancer cells; induction death and apoptosis in cancer cells | [79] |
Single-Walled CNTs | splenic lymphocytes | 36.8 and 123 μg/L | Delivery of Curcumin to splenic lymphocytes | [90] |
Single-Walled CNTs | PC-3 tumor cells | 5, 15, 40 μM | Enhancement of curcumin anti-tumor activity; inhibition of cancer cells | [91] |
Single-Walled CNTs | mice with bladder cancer | 0.1 mg SWCNT per kg body weight | Effective photothermal ablation of bladder cancer | [92] |
Single-Walled CNTs | murine breast cancer cells | 2.5, 5, 7.5, and 10 μg/mL | Delivery of Doxorubicin to cancer cells | [93] |
Single-Walled CNTs | human colorectal cancer cells (HT-29) | 1 mg/mL | Destruction of cancer cells under NIR-irradiation | [94] |
Multi-Walled CNTs | HeLa cells/mice | 5 mg/kg | In vitro and in vivo cancer cell inhibition | [68] |
Multi-Walled CNTs | MCF-7 and MDA-MB-231 human breast cancer cells/rats | 0.1, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL | Effective delivery of Docetaxel and its release | [95] |
Multi-Walled CNTs | HeLa cells | 1.67 μg/mL | Enhancement of antitumor activity of Camptothecin | [96] |
Multi-Walled CNTs | HepG-2 cells | 1.875, 3.75, 6.25, 12.5, 25, 50, 100, and 200 μg/mL | Enhancement of antitumor activity of Oridonin | [88] |
Multi-Walled CNTs | bladder cancer 5637 and T24 cells | 2.5, 40 µg/mL | Enhancing cytotoxicity of epirubicin and inhibiting proliferation in vitro and in vivo | [97] |
Multi-Walled CNTs | breast cancer cells of EMT-6 mice | 2.5, 25 µg/mL | Inhibition in lymph node metastases to EMT-6 breast cancer cells | [98] |
Multi-Walled CNTs | U87 human glioblastoma cells | 0.001–1000 μg/mL | Targeted delivery of Doxorubicin | [99] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliev, T. The Advances in Biomedical Applications of Carbon Nanotubes. C 2019, 5, 29. https://doi.org/10.3390/c5020029
Saliev T. The Advances in Biomedical Applications of Carbon Nanotubes. C. 2019; 5(2):29. https://doi.org/10.3390/c5020029
Chicago/Turabian StyleSaliev, Timur. 2019. "The Advances in Biomedical Applications of Carbon Nanotubes" C 5, no. 2: 29. https://doi.org/10.3390/c5020029
APA StyleSaliev, T. (2019). The Advances in Biomedical Applications of Carbon Nanotubes. C, 5(2), 29. https://doi.org/10.3390/c5020029