Atmospheric Pressure Plasma-Treated Carbon Nanowalls’ Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (CNW-SALDI-MS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNWs Substrate
2.2. Arginine Sample Preparation
2.3. SALDI Setup
2.4. Surface Characterization
3. Results and Discussion
CNWs-SALDI-MS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karas, M.; Kruger, R. Ion formation in MALDI: The cluster ionization mechanism. Chem. Rev. 2002, 103, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Sunner, J.; Dratz, E.; Chen, Y.-C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335–4342. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.S. Marix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom. Rev. 2007, 26, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, R.; Kawasaki, H. Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2010, 26, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-K.; Chen, W.-T.; Chang, H.-T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Anal. Chem. Soc. Rev. 2011, 40, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Law, K.P.; Larkin, J.R. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal. Bioanal. Chem. 2011, 399, 2597–2622. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Yonezawa, T.; Watanabe, T.; Arakawa, R. Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Phys. Chem. C 2007, 111, 16278–16283. [Google Scholar] [CrossRef]
- Yonezawa, T.; Kawasaki, H.; Tarui, A.; Watanabe, T.; Arakawa, R.; Shimada, T.; Mafune, F. Detailed investigation on the possibility of nanoparticles of carious metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2009, 25, 339. [Google Scholar] [CrossRef]
- Kawasaki, H.; Yao, T.; Suganuma, T.; Okumura, K.; Iwaki, Y.; Yonezawa, T.; Kikuchi, T.; Arakawa, R. Platinum nanoflowers on scratched silicon by galvanic displacement for an effective SALDI substrate. Chem. Eur. J. 2010, 16, 10832–10843. [Google Scholar] [CrossRef]
- Yao, T.; Kawasaki, H.; Watanabe, T.; Arakawa, R. Effectiveness of platinum particle deposition on silicon surfaces for surface-assisted laser desorption/ionization mass spectrometry of peptides. Int. J. Mass Spectrom. 2010, 291, 145–151. [Google Scholar] [CrossRef]
- Nitta, S.; Kawasaki, H.; Suganuma, T.; Shigeri, Y.; Arakawa, R. Desorption/ionization efficiency of common amino acids in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with Nanostructured Platinum. J. Phys. Chem. C 2013, 117, 238–245. [Google Scholar] [CrossRef]
- Lo, C.-Y.; Lin, J.-Y.; Chen, W.-Y.; Chen, C.-T.; Chen, Y.-C. Surface-assisted laser desorption/ionization mass spectrometry on titania nanotube arrays. J. Am. Soc. Mass Spectrom. 2008, 19, 1014–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, H.; Okumura, K.; Arakawa, R. Influence of crystalline forms of titania on desorption/ionization efficiency in titania-based surface-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. Soc. Jpn. 2010, 58, 221–228. [Google Scholar] [CrossRef]
- Sonderegger, H.; Rameshan, C.; Lorenz, H.; Klauser, F.; Klerks, M.; Rainer, M.; Bakry, R.; Huck, C.W.; Bonn, G.K. Surface-assisted laser desorption/ionization-mass spectrometry using TiO2-coated steel targets for the analysis of small molecules. Anal. Bioanal. Chem. 2011, 401, 1963. [Google Scholar] [CrossRef] [PubMed]
- Osaka, I.; Okumura, K.; Miyake, N.; Watanabe, T.; Nozaki, K.; Kawasaki, H.; Arakawa, R. Quantitative analysis of an antioxidant additive in insoluble plastics by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using TiO2 nanoparticles. J. Mass Spectrom. Soc. Jpn. 2010, 58, 123–127. [Google Scholar] [CrossRef]
- Popovic, I.; Nesic, M.; Vranjes, M.; Saponjic, Z.; Petkovic, M. TiO2 nanocrystals–assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. RSC Adv. 2016, 6, 1027–1036. [Google Scholar] [CrossRef]
- Gao, C.; Zhen, D.; He, N.; An, Z.; Zhou, Q.; Li, C.; Grimes, C.A.; Cai, Q. Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes and their metabolites) in complex environments. Talanta 2019, 196, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, Y.; Kawasaki, H.; Arakawa, R. Human serum albumin-modified Fe3O4 magnetic nanoparticles for affinity-SALDI-MS of small-molecule drugs in biological liquids. Anal. Sci. 2012, 28, 893–900. [Google Scholar] [CrossRef]
- Kusano, M.; Kawabata, S.; Tamura, Y.; Mizoguchi, D.; Murouchi, M.; Kawasaki, H.; Arakawa, R.; Tanaka, K. Laser desorption/ionization mass spectrometry (LDI-MS) of lipids with iron oxide nanoparticle-coated targets. Mass Spectrom. 2014, 3, A0026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Teng, F.; Wang, Z.; Wang, Y.; Lu, N. Superhydrophobic glass substrates coated with fluorosilane-coated silica nanoparticles and silver nanoparticles for surface-assisted laser desorption/ionization mass spectrometry. ACS Appl. Nano Mater. 2019, 2, 3813–3818. [Google Scholar] [CrossRef]
- Go, E.P.; Prenni, J.E.; Wei, J.; Jones, A.; Hall, S.C.; Witkowska, H.E.; Shen, Z.; Siuzdak, G. Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 2504–2506. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.R.; Stopka, S.A.; Morris, N.; Razunguzwa, T.; Vertes, A. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal. Chem. 2016, 388, 8989–8996. [Google Scholar] [CrossRef] [PubMed]
- Aminlashgari, N.; Hakkarainen, M. Surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) for analysis of polyester degradation products. J. Am. Soc. Mass Spectrom. 2012, 23, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.Y.; Ma, J.; Boey, Y.C.F. Development of nanomaterials for SALDI-MS analysis in forensics. Adv. Mater. 2012, 24, 4211–4216. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Chiang, C.-K.; Lee, C.-H.; Chang, H.-T. Using surface-assisted laser desorption/ionization mass spectrometry to detect proteins and protein−protein complexes. Anal. Chem. 2012, 84, 1924–1930. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Chang, H.-T. Tea identification through surface-assisted laser desorption/ionization mass spectrometry. Int. J. Anal. Mass Spectrom. Chromatogr. 2013, 1, 11. [Google Scholar] [CrossRef]
- Fujita, T.; Shibamoto, K. Surface-assisted laser desorption-ionization mass spectrometry of oligosaccharides. Chem. Lett. 2013, 42, 852. [Google Scholar] [CrossRef]
- Grechnikov, A.A. Analytical capabilities of surface-assisted laser desorption/ionization in the determination of low-molecular-weight volatile compounds. J. Anal. Chem. 2015, 70, 1047–1054. [Google Scholar] [CrossRef]
- Amini, N.; Shariatgorji, M.; Thorsén, G. SALDI-MS signal enhancement using oxidized graphitized carbon black nanoparticles. J. Am. Soc. Mass Spectrom. 2009, 20, 1207–1213. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Na, H.-K.; Kwack, S.-J.; Ryoo, S.-R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D.-H. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 2011, 5, 4550–4561. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Li, Z.; Zhang, C.; Feng, B.; Zhou, Z.; Bai, Y.; Liu, H. Graphite-coated paper as substrate for high sensitivity analysis in ambient surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2012, 84, 3296–3301. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-W.; Chien, M.-W.; Su, C.-Y.; Chen, H.-Y.; Li, L.-J.; Lai, C.-C. Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2012, 137, 5809–5816. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Olesik, V. Electrospun nanofibers as substrates for surface-assisted laser desorption/ionization and matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2013, 85, 4384–4391. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Lu, M.; Ding, L.; Ju, H.; Cai, Z. Surface-assisted laser desorption/ionization mass spectrometric detection of biomolecules by using functional single-walled carbon nanohorns as the matrix. Chem. Eur. J. 2013, 19, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Min, D.-H. Mechanistic study of laser desorption/ionization of small molecules on graphene oxide multilayer films. Langmuir 2014, 30, 12675–12683. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-H.; Fu, C.-P.; Liu, W.-L.; Lin, C.-H.; Huang, H.-Y.; Ma, S. Nanoporous carbons derived from metal-organic frameworks as novel matrices for surface-assisted laser desorption/ionization mass spectrometry. Small 2016, 12, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Sorokina, E.A.; Ul’yanovskii, N.V.; Varakin, E.A.; Chukhchin, D.G.; Gorbova, N.S. Carbon nanocoatings: A new approach to recording mass spectra of low-molecular compounds using surface-assisted laser desorption/ionization mass spectrometry. J. Anal. Chem. 2016, 71, 1221–1227. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Liang, Y.; Jiang, G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 2861–2873. [Google Scholar] [CrossRef]
- Bian, J.; Olesik, S.V. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst 2017, 142, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, G.; Zhang, H.; Liu, S.; Niu, H.; Peng, J.; Wu, J.; Wu, R. A homogeneous carbon nanosphere film-spot: For highly efficient laser desorption/ionization of small biomolecules. Carbon 2017, 121, 343–352. [Google Scholar] [CrossRef]
- Feng, D.; Xia, Y. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry. Anal. Chim. Acta 2018, 1014, 58–63. [Google Scholar] [CrossRef]
- Lu, W.; Li, R.; Shuang, S.; Dong, C.; Cai, Z. Reduced carbon nanodots as a novel substrate for direct analysis of bisphenol analogs in surface assisted laser desorption/ionization time of flight mass spectrometry. Talanta 2018, 190, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Zhu, Q.; Wang, Y.; Du, J.; Lu, N. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot. Talanta 2018, 179, 583–587. [Google Scholar] [CrossRef]
- Wang, S.; Niu, H.; Cao, D.; Cai, Y. Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals. Talanta 2019, 194, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Coffinier, Y.; Boukherroub, R.; Szunerits, S. Carbon-based nanostructures for matrix-free mass spectrometry. In Carbon Nanoparticles and Nanostructures; Yang, N., Jiang, X., Pang, D.W., Eds.; Springer: Berlin, Germany, 2016; pp. 331–356. [Google Scholar] [CrossRef]
- Hosu, I.S.; Sobaszek, M.; Ficek, M.; Bogdanowicz, R.; Drobecq, H.; Boussekey, L.; Barras, A.; Melnyk, O.; Boukherrouba, R.; Coffinier, Y. Carbon nanowalls: A new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples. Nanoscale 2017, 9, 9701–9715. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, M.; Hori, M. Carbon Nanowalls; Springer: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Kondo, H.; Hori, M. Graphene Nanowalls. In New Progress on Graphene Research; BoD–Books on Demand: Norderstedt, Germany, 2013; pp. 235–260. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Aleksandrov, A.; Orlando, T.M. Roles of water, acidity, and surface morphology in surface-assisted laser desorption/ionization of amino acids. J. Phys. Chem. C 2008, 112, 6953–6960. [Google Scholar] [CrossRef]
- Cho, H.J.; Kondo, H.; Ishikawa, K.; Sekine, M.; Hiramatsu, H.; Hori, M. Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 2014, 68, 380–388. [Google Scholar] [CrossRef]
- Iwasaki, M.; Inui, H.; Matsudaira, Y.; Kano, H.; Yoshida, N.; Ito, M.; Hori, M. E Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Appl. Phys. Lett. 2008, 92, 081503. [Google Scholar] [CrossRef]
- Watanabe, H.; Kondo, H.; Sekine, M.; Hiramatsu, M.; Hori, M. Control of super hydrophobic and super hydrophilic surfaces of carbon nanowalls using atmospheric pressure plasma treatments. Jpn. J. Appl. Phys. 2012, 51, 01AJ07. [Google Scholar] [CrossRef]
- Beuhler, R.J.; Flanigan, E.; Greene, L.J.; Friedman, L. Proton transfer mass spectrometry of peptides a rapid heating technique for underivatized peptides containing arginine. J. Am. Chem. Soc. 1974, 12, 3990–3999. [Google Scholar] [CrossRef]
- Forbes, M.W.; Jockusch, R.A.; Young, A.B.; Harrison, A.G. Fragmentation of protonated dipeptides containing arginine. Effect of activation method. J. Am. Soc. Mass Spectrom. 2007, 18, 1959–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavansky, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S. On the role of defects and surface chemisrty for surface-assisted laser desorption ionization from silicon. J. Chem. Phys. 2008, 128, 014711. [Google Scholar] [CrossRef] [PubMed]
Atmospheric Pressure Plasma Treatment | Laser Energy | Normalized Intensity of Arginine | S/N Ratio |
---|---|---|---|
Without | 0.60 | 0.18 | 9.0 |
With | 0.60 | 0.87 | 6.7 |
0.23 | 1.60 | 17.8 | |
0.13 | 2.80 | 10.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohta, T.; Ito, H.; Ishikawa, K.; Kondo, H.; Hiramatsu, M.; Hori, M. Atmospheric Pressure Plasma-Treated Carbon Nanowalls’ Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (CNW-SALDI-MS). C 2019, 5, 40. https://doi.org/10.3390/c5030040
Ohta T, Ito H, Ishikawa K, Kondo H, Hiramatsu M, Hori M. Atmospheric Pressure Plasma-Treated Carbon Nanowalls’ Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (CNW-SALDI-MS). C. 2019; 5(3):40. https://doi.org/10.3390/c5030040
Chicago/Turabian StyleOhta, Takayuki, Hironori Ito, Kenji Ishikawa, Hiroki Kondo, Mineo Hiramatsu, and Masaru Hori. 2019. "Atmospheric Pressure Plasma-Treated Carbon Nanowalls’ Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (CNW-SALDI-MS)" C 5, no. 3: 40. https://doi.org/10.3390/c5030040
APA StyleOhta, T., Ito, H., Ishikawa, K., Kondo, H., Hiramatsu, M., & Hori, M. (2019). Atmospheric Pressure Plasma-Treated Carbon Nanowalls’ Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (CNW-SALDI-MS). C, 5(3), 40. https://doi.org/10.3390/c5030040