Reduced Graphene Oxide—Polycarbonate Electrodes on Different Supports for Symmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Graphene Oxide Solution
2.2. Preparation of rGO-PC Freestanding Electrode
2.3. Preparation of rGO-PC-Based Supercapacitors
2.4. Characterization
3. Results and Discussion
3.1. Structural Characterization of Freestanding rGO-PC Paper
3.2. Electrochemical Characterization of Single Electrode
3.3. Electrochemical Characterization of Symmetric SC on Substrates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodie, B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Kohlschütter, V.; Haenni, P. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Z. Anorg. Allg. Chem. 1918, 105, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Wallace, P.R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Ruess, G.; Vogt, F. Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatsh. Chem. 1948, 78, 222–242. [Google Scholar] [CrossRef]
- Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Carbon 1986, 24, 241. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Züttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 2004, 78, 941–946. [Google Scholar] [CrossRef]
- Sundaram, R.S. Chemically derived graphene. In Graphene: Properties, Preparation, Characterisation and Devices; Skakalova, V., Kaiser, A.B., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 50–80. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A.; Hortiguela Gallo, M.J.; Otero-Irurueta, G.; Mikhalev, S.; Staitic, P.; Lufrano, F. Energy storage of supercapacitor electrodes on carbon cloth enhanced by graphene oxide aerogel reducing conditions. J. Energy Storage 2020, 32, 101839. [Google Scholar] [CrossRef]
- Sengupta, I.; Chakraborty, S.; Talukdar, M.; Pal, S.K.; Chakraborty, S. Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res. 2018, 33, 4113. [Google Scholar] [CrossRef]
- Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In situ X-ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019. [Google Scholar] [CrossRef] [Green Version]
- Ramamoorthy, H.; Buapan, K.; Chiawchan, T.; Thamkrongart, K.; Somphonsane, R. Exploration of the temperature-dependent correlations present in the structural, morphological and electrical properties of thermally reduced free-standing graphene oxide papers. J. Mater. Sci. 2021, 56, 15134–15150. [Google Scholar] [CrossRef]
- Tamboli, S.H.; Seok Kim, B.; Choi, G.; Lee, H.; Lee, D.; Patil, U.M.; Lim, J.; Kulkarni, S.B.; Chan Jun, S.; Hee Cho, H. Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. Mater. Chem. A 2014, 2, 5077. [Google Scholar] [CrossRef]
- Karthick, R.; Brindha, M.; Selvaraj, M.; Ramu, S. Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film. J. Colloid Interface Sci. 2013, 406, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef] [Green Version]
- El-Kady, M.; Shao, Y.; Kaner, R. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Lemine, A.S.; Zagho, M.M.; Altahtamouni, T.M.; Bensalah, N. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 2018, 42, 4284–4300. [Google Scholar] [CrossRef]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Yuan, J.; Zhang, K.; Yu, X.; Sun, Y.; Zhang, H.; Qin, L.-C. Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chem. Phys. Lett. 2018, 693, 60–65. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Zhang, B.; Liang, R.; Zheng, Q.-B.; Oh, S.W.; Lin, X.Y.; Yousefi, N.; Kim, J.K. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 2012, 50, 4239–4251. [Google Scholar] [CrossRef]
- Alazmi, A.; El Tall, O.; Rasul, S.; Hedhili, M.N.; Patole, S.P.; Costa, P.M.F.J. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale 2016, 8, 17782–17787. [Google Scholar] [CrossRef]
- Dubal, D.P.; Kim, J.G.; Kim, Y.; Holze, R.; Lokhande, C.D.; Kim, W.B. Supercapacitors based on flexible substrates: An overview. Energy Technol. 2014, 2, 325–341. [Google Scholar] [CrossRef]
- Faruque, M.A.A.; Syduzzaman, M.; Sarkar, J.; Bilisik, K.; Naebe, M. A review on the production methods and applications of graphene materials. Nanomaterials 2021, 11, 2414. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Deng, J.; Fang, J.; Gou, Y. Review—Preparation and application of graphene-based hybrid materials through electrochemical exfoliation. J. Electrochem. Soc. 2020, 167, 086511. [Google Scholar] [CrossRef]
- Liu, S.; Hu, K.; Cerruti, M.; Barthelat, F. Ultra-stiff graphene oxide paper prepared by directed-flow vacuum filtration. Carbon 2020, 158, 426–434. [Google Scholar] [CrossRef]
- Zhao, S.; Li, M.; Wu, X.; Yu, S.H.; Zhang, W.; Luo, J.; Wang, J.; Geng, Y.; Gou, Q.; Sun, K. Graphene-based free-standing bendable films: Designs, fabrications, and applications. Mater. Today Adv. 2020, 6, 100060. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhang, C.; Baer, E.; Langhe, D.; Ponting, M.; Zhu, L. High dielectric constant polycarbonate/nylon multilayer films capacitors with self-healing capability. ACS Appl. Polym. Mater. 2019, 1, 867–875. [Google Scholar] [CrossRef]
- Legrand, G.D.; Bendler, G.T. Handbook of Polycarbonate Science and Technology; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Singh, J.; Bansal, S.A.; Singh, A.P. Mechanical Characterization of Polycarbonate-Graphene Oxide (PCG) Nanocomposite. In Advances in Production and Industrial Engineering; Pandey, M., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2021; pp. 103–111. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Jung, H.-T. Grafting polycarbonate onto graphene nanosheets: Synthesis and characterization of high performance polycarbonate–graphene nanocomposites for ESD/EMI applications. RSC Adv. 2017, 7, 45902–45910. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Del Rio Castillo, A.E.; Jussila, H.; Ye, G.; Ren, Z.; Bai, J.; Chen, X.; Lipsanen, H.; Sun, Z.; Bonaccorso, F. Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 2016, 4, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Hamanaka, I.; Takahashi, Y.; Kawaguchi, T. Effect of reinforcement on the flexural properties of injection-molded thermoplastic denture base resins. J. Prosthodont. 2015, 26, 302–308. [Google Scholar] [CrossRef]
- Lago, E.; Toth, P.S.; Pugliese, G.; Pellegrini, V.; Bonaccorso, F. Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv. 2016, 6, 97931–97940. [Google Scholar] [CrossRef] [Green Version]
- Leeladhar, P.; Raturi, J.P. Singh. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators. Sci. Rep. 2018, 8, 3687. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Kumar Yadav, D.; Kumar Mishra, J.; Sahu, R.; Jain, S.K.; Dixit, S.; Agarwal, G.; Jakhar, N.; Tripath, B. Effect of BaTiO3 Nanofillers on the Energy Storage Performance of Polymer Nanocomposites. Macromol. Symp. 2021, 399, 2100024. [Google Scholar] [CrossRef]
- Rogal’skii, S.P.; Pud, A.A.; Shapoval, G.S.; Mel’nik, A.F.; Bryk, M.T. Nature of Initiators for Indirect Electrochemical Reductive Degradation of Polycarbonates in Dimethylformamide. Theor. Exp. Chem. 2004, 40, 33–38. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Zhang, L.; Gao, Y.; Dai, B.; Lian, Y.; Yan, H.; Zhang, H. Microbial Porous Carbon by Low-Alkali Activation for Flexible Supercapacitors. J. Electron. Mater. 2021, 50, 6733–6740. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, M.; Sun, L.; Shi, W. Flexible yolk-shelled NiCo2S4 hollow spheres/RGO film electrodes for efficient supercapacitive energy storage. New J. Chem. 2018, 42, 16174–16182. [Google Scholar] [CrossRef]
- Saito, K.; Jehanno, C.; Meabe, L.; Olmedo-Martínez, J.L.; Mecerreyes, D.; Fukushima, K.; Sardon, H. From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. J. Mater. Chem. A 2020, 8, 13921–13926. [Google Scholar] [CrossRef]
- Matsumoto, M.; Uno, T.; Kubo, M.; Itoh, T. Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties. Ionics 2013, 19, 615–622. [Google Scholar] [CrossRef]
- Farzana, R.; Rajarao, R.; Bhat, B.R.; Sahajwalla, V. Performance of an activated carbon supercapacitor electrode synthesised from waste Compact Discs (CDs). J. Ind. Eng. Chem. 2018, 65, 387–396. [Google Scholar] [CrossRef]
- Okhay, O.; Gonçalves, G.; Dias, C.; Ventura, J.; Vieira, E.M.F.; Gonçalves, L.M.V.; Tkach, A. Tuning electrical and thermoelectric properties of freestanding graphene oxide papers by carbon nanotubes and heat treatment. J. Alloys Compd. 2019, 781, 196–200. [Google Scholar] [CrossRef]
- Pell, W.; Conway, B.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2000, 491, 9–21. [Google Scholar] [CrossRef]
- IEC-62391-2. Fixed Electric Double Layer Capacitors for Use in Electronic Equipment—Part 2: Sectional Specification—Electric Double Layer Capacitors Fpr Power Application, 1st ed. International Standard, International Electrochemical Commission, ICS Codes 31.060.10. Available online: https://webstore.iec.ch/preview/info_iec62391-1%7Bed1.0%7Den.pdf (accessed on 10 April 2006).
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Paleo, A.J.; Staiti, P.; Rocha, A.M.; Squadrito, G.; Lufrano, F. Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes. J. Power Sources 2019, 434, 226735. [Google Scholar] [CrossRef]
- Park, H.; Ambade, R.B.; Noh, S.H.; Eom, W.; Koh, K.H.; Ambade, S.B.; Lee, W.J.; Kim, S.H.; Han, T.H. Porous graphene-carbon nanotube scaffolds for fiber supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 9011–9022. [Google Scholar] [CrossRef]
- Tuukkanen, S.; Krebs, M. Printable power storage: Batteries and supercapacitors. In Organic and Printed Electronics, 1st ed.; Nisato, G., Lupo, D., Ganz, S., Eds.; Jenny Stanford Publishing: New York, NY, USA, 2016; pp. 265–291. [Google Scholar]
- Romero, F.J.; Gerardo, D.; Romero, R.; Ortiz-Gomez, I.; Salinas-Castillo, A.; Moraila-Martinez, C.L.; Rodriguez, N.; Morales, D.P. Comparison of laser-synthetized nanographene-based electrodes for flexible supercapacitors. Micromachines 2020, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.; Jalali, M.; Abdollahi, A.; Mohammadi, S.; Sanaee, Z.; Mohajerzadeh, S. A high performance supercapacitor based on decoration of MoS2/reduced graphene oxide with NiO nanoparticles. RSC Adv. 2017, 7, 52772. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bai, J.; Yang, D.; Sun, P.; Li, X. Excellent performance of flexible supercapacitor based on the ternary composites of reduced graphene oxide/molybdenum disulfide/poly (3,4-ethylenedioxythiophene). Electrochim. Acta 2020, 330, 135205. [Google Scholar] [CrossRef]
- Beidaghi, M.; Wang, C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Jia, M.; Zhao, Q.; Jin, X.; Yao, C. Synthesis and characterization of free-standing activated carbon/reduced graphene oxide film electrodes for flexible supercapacitors. RSC Adv. 2017, 7, 45066–45074. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zu, J.; Liu, J.; Wang, Y.; Pei, M.; Xu, Y. Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. J. Energy Storage 2020, 32, 101795. [Google Scholar] [CrossRef]
Electrode | Electrolyte | Area Capacitance | Reference |
---|---|---|---|
rGO-PC, vacuum filtration, placed on PET/Cu/C | NaCl | 0.93 mF/cm2 at 10 μA/cm2 | This work |
rGO-PC, vacuum filtration, placed on PET/GrI | NaCl | 0.25 mF/cm2 at 10 μA/cm2 | This work |
Graphene, laser synthetized on Kapton | H3PO4-PVA | 0.23 mF/cm2 at 10 mV/s | [56] |
rGO, placed on Si substrate | KCl | ~2.2 mF/cm2 at 25 mV/s | [57] |
rGO, covered on carbon cloth | H2SO4 | 3.5 mF/cm2 at 0.5 mA/cm2 | [58] |
rGO, interdigital microelectrode arrays | KCl | 3 mF/cm2 | [59] |
rGO, vacuum filtration | H2SO4-PVA | ~10 mF/cm2 at 10 mA/cm2 | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Bastos, A.C.; Andreeva, K.; Tuukkanen, S.; Tkach, A. Reduced Graphene Oxide—Polycarbonate Electrodes on Different Supports for Symmetric Supercapacitors. C 2022, 8, 12. https://doi.org/10.3390/c8010012
Okhay O, Bastos AC, Andreeva K, Tuukkanen S, Tkach A. Reduced Graphene Oxide—Polycarbonate Electrodes on Different Supports for Symmetric Supercapacitors. C. 2022; 8(1):12. https://doi.org/10.3390/c8010012
Chicago/Turabian StyleOkhay, Olena, Alexandre Cunha Bastos, Kateryna Andreeva, Sampo Tuukkanen, and Alexander Tkach. 2022. "Reduced Graphene Oxide—Polycarbonate Electrodes on Different Supports for Symmetric Supercapacitors" C 8, no. 1: 12. https://doi.org/10.3390/c8010012
APA StyleOkhay, O., Bastos, A. C., Andreeva, K., Tuukkanen, S., & Tkach, A. (2022). Reduced Graphene Oxide—Polycarbonate Electrodes on Different Supports for Symmetric Supercapacitors. C, 8(1), 12. https://doi.org/10.3390/c8010012