Novel Nanobiocatalyst Constituted by Lipase from Burkholderia cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biochar Production
2.3. Synthesis of Graphene Oxide
2.4. Characterization of Graphene Oxide
2.5. Lipase Immobilization on Graphene Oxide by Physical Adsorption
2.6. Determination of Hydrolytic Activity
2.7. Computational Analysis
2.8. Effect of pH and Temperature on Activity
2.9. Thermal Stability and Reusability
3. Results and Discussion
3.1. Characterization of Graphene Oxide
3.2. Effect of pH on Immobilization Process
3.3. Effect of Enzyme/Support Ratio on Immobilization Process
3.4. Effects pH and Temperature of the Immobilized BCL on Graphene Oxide
3.5. Thermal Stability and Operational Stability of the Immobilized BCL on Graphene Oxide
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y.; John, M.J. Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon. Biomass Convers. Biorefin. 2020, 10, 57–72. [Google Scholar] [CrossRef]
- Chin-Pampillo, J.S.; Alfaro-Vargas, A.; Rojas, R.; Giacomelli, C.E.; Perez-Villanueva, M.; Chinchilla-Soto, C.; Domene, X. Widespread tropical agrowastes as novel feedstocks for biochar production: Characterization and priority environmental uses. Biomass Convers. Biorefin. 2021, 11, 1775–1785. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Otaru, A.J.; Ameh, C.; Abdulkareem, A.; Odigure, J.; Okafor, J. Development and characterization of adsorbent from rice husk ash to bleach vegetable oils. IOSR J. Appl. Chem. 2013, 4, 42–49. [Google Scholar]
- Almeida, L.C.; Barbosa, M.S.; de Jesus, F.A.; Santos, R.M.; Fricks, A.T.; Freitas, L.S.; Soares, C.M. Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: An experimental and molecular docking study. Biotechnol. Appl. Biochem. 2021, 68, 801–808. [Google Scholar] [CrossRef]
- Hassan, N.A.; Abdullah, R.; Khadiran, T.; Elham, P.; Vejan, P. Biochar derived from oil palm trunk as a potential precursor in the production of high-performance activated carbon. Biomass Convers. Biorefin. 2021, 1–17. [Google Scholar] [CrossRef]
- Supriyanto, G.; Rukman, N.K.; Nisa, A.K.; Jannatin, M.; Abdullah, P.; Fahmi, M.Z.; Kusuma, H.S. Graphene Oxide from Indonesian Biomass: Synthesis and Characterization. BioResources 2018, 13, 4832–4840. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Darabian, L.M.; Costa, T.L.G.; Cipriano, D.F.; Cremasco, C.W.; Schettino, M.A., Jr.; Freitas, J.C.C. Synthesis of Graphene Quantum Dots by a Simple Hydrothermal Route Using Graphite Recycled from Spent Li-Ion Batteries. C 2022, 8, 48. [Google Scholar]
- Ahmad, H.; Fan, M.; Hui, D. Graphene oxide incorporated functional materials: A review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.; Chiong, T.; Takeo, M. Advances in graphene oxide based nanobiocatalytic technology for wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100647. [Google Scholar] [CrossRef]
- Yu, D.; Li, Z.; Zhou, X.; Wang, W.; Wang, L.; Liu, T.; Du, J. Study on the modification of magnetic graphene oxide and the effect of immobilized lipase. Int. J. Biol. Macromol. 2022, 216, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [Green Version]
- Badgujar, V.C.; Badgujar, K.C.; Yeole, P.M.; Bhanage, B.M. Immobilization of Rhizomucor miehei lipase on a polymeric film for synthesis of important fatty acid esters: Kinetics and application studies. Bioprocess Biosyst. Eng. 2017, 40, 1463–1478. [Google Scholar] [CrossRef]
- Chiaradia, V.; Soares, N.S.; Valério, A.; de Oliveira, D.; Araújo, P.H.H.; Sayer, C. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Appl. Biochem. Biotechnol. 2016, 180, 558–575. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Banerjee, P.; Datta, S.; Mukhopadhayay, A.; Das, P. Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process Saf. Environ. Prot. 2017, 106, 163–172. [Google Scholar] [CrossRef]
- Santos, R.M.; Santos, A.O.; Sussuchi, E.M.; Nascimento, J.S.; Lima, Á.S.; Freitas, L.S. Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresour. Technol. 2015, 196, 43–48. [Google Scholar] [CrossRef]
- Abidar, F.; Morghi, M.; Ait Ichou, A.; Soudani, A.; Chiban, M.; Sinan, F.; Zerbet, M. Removal of orthophosphate ions from aqueous solution using chitin as natural adsorbent. Desalin. Water Treat. 2015, 57, 14739–14749. [Google Scholar] [CrossRef]
- Brito, P.M.J.; Flores Santos, M.P.; de Souza, E.C.; Santos, L.S.; Ferreira Bonomo, R.C.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Development of activated carbon from pupunha palm heart sheaths: Effect of synthesis conditions and its application in lipase immobilization. J. Environ. Chem. Eng. 2020, 2, 104391. [Google Scholar] [CrossRef]
- Soares, C.M.; Castro, H.F.; Santana MH, A.; Zanin, G.M. Selection of Stabilizing Additive for Lipase Immobilization. Appl. Biochem. Biotechnol. 2001, 5, 703–718. [Google Scholar] [CrossRef]
- Martinez-Rosell, G.; Giorgino, T.; De Fabritiis, G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 1511–1516. [Google Scholar]
- Tang, J.; Lv, H.; Gong, Y.; Huang, Y. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresour. Technol. 2015, 196, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673. [Google Scholar] [CrossRef]
- Kellici, S.; Acord, J.; Ball, J.; Reehal, H.S.; Morgan, D.; Saha, B. A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities. RSC Adv. 2014, 4, 14858–14861. [Google Scholar] [CrossRef]
- Pfluck, A.C.D.; de Barros, D.P.C.; Fonseca, L.P.; Melo, E.P. Stability of lipases in miniemulsion systems: Correlation between secondary structure and activity. Enzym. Microb. Technol. 2018, 114, 7–14. [Google Scholar] [CrossRef]
- Machado, N.B.; Miguez, J.P.; Bolina, I.C.; Salviano, A.B.; Gomes, R.A.; Tavano, O.L.; Mendes, A.A. Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzym. Microb. Technol. 2019, 128, 9–21. [Google Scholar] [CrossRef]
- Brito, M.J.P.; Veloso, C.M.; Bonomo, R.C.F.; Fontan, R.D.C.I.; Santos, L.S.; Monteiro, K.A. Activated carbons preparation from yellow mombin fruit stones for lipase immobilization. Fuel Process. Technol. 2017, 156, 421–428. [Google Scholar] [CrossRef]
- Carvalho, N.B.; Vidal, B.T.; Barbosa, A.S.; Pereira, M.M.; Mattedi, S.; Freitas, L.D.S.; Lima, Á.S.; Soares, C.M.F. Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int. J. Mol. Sci. 2018, 19, 1829. [Google Scholar] [CrossRef] [Green Version]
- Bayramoglu, G.; Arica, M.Y. Immobilization of Mucor miehei esterase on core-shell magnetic beads via adsorption and covalent binding: Application in esters synthesis. Fibers Polym. 2014, 15, 2051–2060. [Google Scholar] [CrossRef]
- Nematian, T.; Shakeri, A.; Salehi, Z.; Saboury, A.A. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. Biotechnol. Biofuels 2020, 13, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Zhang, J.; Guo, S. Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26, 6083–6085. [Google Scholar] [CrossRef] [PubMed]
- Hermanová, S.; Zarevúcká, M.; Bouša, D.; Pumera, M.; Sofer, Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 2015, 7, 5852–5858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, Y.; Bai, Y.-X.; Li, Y.-F.; Lin, L.; Cui, Y.-J.; Xia, C.-G. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process. Biochem. 2008, 43, 1179–1185. [Google Scholar] [CrossRef]
- Xie, W.; Ma, N. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 2010, 34, 890–896. [Google Scholar] [CrossRef]
- Zhou, W.; Zhuang, W.; Ge, L.; Wang, Z.; Wu, J.; Niu, H.; Ying, H. Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. J. Colloid Interface Sci. 2019, 546, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, Y.; Wang, X.; Li, Q.; Wang, J.; Yan, Y. Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA. J. Mol. Catal. B Enzym. 2011, 71, 45–50. [Google Scholar] [CrossRef]
- Li, Y.; Gao, F.; Wei, W.; Qu, J.B.; Ma, G.H.; Zhou, W.Q. Pore size of macroporous polystyrene microspheres affects lipase immobilization. J. Mol. Catal. B Enzym. 2010, 66, 182–189. [Google Scholar] [CrossRef]
- Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surf. B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef]
- Pereira, E.B.; Zanin, G.; Castro, H. Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Braz. J. Chem. Eng. 2003, 20, 343–355. [Google Scholar]
- Abdulla, R.; Ravindra, P. Characterization of cross linked Burkholderia cepacia lipase in alginate and κ-carrageenan hybrid matrix. J. Taiwan Inst. Chem. Eng. 2013, 44, 545–551. [Google Scholar] [CrossRef]
- Gomes, F.M.; de Paula, A.V.; Silva, G.d.S.; de Castro, H.F. Determinação das propriedades catalíticas em meio aquoso e orgânico da lipase de Candida rugosa imobilizada em celulignina quimicamente modificada por carbonildiimidazol. Quim. Nova 2006, 29, 710–718. [Google Scholar] [CrossRef]
- Cabrera-Padilla, R.Y.; Lisboa, M.C.; Fricks, A.T.; Franceschi, E.; Lima, A.S.; Silva, D.P.; Soares, C.M.F. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): A new eco-friendly support. J. Ind. Microbiol. Biotechnol. 2012, 39, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Kneževi, Z.D.; Šiler-marinkovi, S.S.; Mojovi, L.V. Immobilized lipases as practical catalysts. Acta Period. Technol. 2004, 280, 151–164. [Google Scholar] [CrossRef]
Enzyme | Support | Activity Recovery (%) | Enzyme Loading (g/g support) | Ref. |
---|---|---|---|---|
Lipase from Burkholderia cepacia | Graphene oxide derived from grape seed biochar | 100 | 0.375 | This Work |
Lipase from Rhizopus oryzae | Graphene oxide | 25 | 0.02 | [32] |
Lipase from Thermomyces lanuginosa | Magnetic Fe3O4 nano-particles | 70 | 0.250 | [33] |
Lipase from Candida rugosa | Graphene oxide encapsulated Fe3O4 | 64 | 0.02 | [34] |
Lipase from Thermomyces lanuginosa | Graphene oxide functionalized with lysine | 150 | 0.115 | [35] |
Lipase from Burkholderia cepacia | Resin NKA | 96 | 0.110 | [36] |
Lipase from Candida rugosa | Magnetic microspheres with hydrophilicity | 64 | 0.100 | [37] |
Lipase from Burkholderia cepacia | PST microspheres | 50 | 0.252 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, L.C.; Andrade, E.L.O.; Santos, J.C.B.; Santos, R.M.; Fricks, A.T.; Freitas, L.d.S.; Lima, Á.S.; Pereira, M.M.; Soares, C.M.F. Novel Nanobiocatalyst Constituted by Lipase from Burkholderia cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar. C 2023, 9, 12. https://doi.org/10.3390/c9010012
de Almeida LC, Andrade ELO, Santos JCB, Santos RM, Fricks AT, Freitas LdS, Lima ÁS, Pereira MM, Soares CMF. Novel Nanobiocatalyst Constituted by Lipase from Burkholderia cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar. C. 2023; 9(1):12. https://doi.org/10.3390/c9010012
Chicago/Turabian Stylede Almeida, Lays C., Erikles L. O. Andrade, Jefferson C. B. Santos, Roberta M. Santos, Alini T. Fricks, Lisiane dos S. Freitas, Álvaro S. Lima, Matheus M. Pereira, and Cleide M. F. Soares. 2023. "Novel Nanobiocatalyst Constituted by Lipase from Burkholderia cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar" C 9, no. 1: 12. https://doi.org/10.3390/c9010012
APA Stylede Almeida, L. C., Andrade, E. L. O., Santos, J. C. B., Santos, R. M., Fricks, A. T., Freitas, L. d. S., Lima, Á. S., Pereira, M. M., & Soares, C. M. F. (2023). Novel Nanobiocatalyst Constituted by Lipase from Burkholderia cepacia Immobilized on Graphene Oxide Derived from Grape Seed Biochar. C, 9(1), 12. https://doi.org/10.3390/c9010012