Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications
Abstract
:1. Introduction
2. Nano-Graphite
3. Polymer and Nano-Graphite-Derived Nanocomposites: Variations and Features
3.1. Conducting Polymer/Nano-Graphite
3.2. Polystyrene/Nano-Graphite
3.3. Poly(Methyl Methacrylate)/Nano-Graphite
3.4. Poly(Vinyl Chloride)/Nano-Graphite
3.5. Poly(Vinylidene Fluoride)/Nano-Graphite
3.6. Poly(Lactic Acid)/Nano-Graphite
3.7. Polyurethane/Nano-Graphite
3.8. Rubber/Nano-Graphite
4. Application Arenas of High-Performance Polymer/Nano-Graphite Nanocomposites
4.1. In Dye-Sensitized Solar Cells
4.2. In Electronics
4.3. EMI Shielding
5. Future Perspectives, Challenges, and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, D.J. Comments on the XPS analysis of carbon materials. C 2021, 7, 51. [Google Scholar] [CrossRef]
- de Souza, F.M.; Choi, J.; Bhoyate, S.; Kahol, P.K.; Gupta, R.K. Expendable graphite as an efficient flame-retardant for novel partial bio-based rigid polyurethane foams. C 2020, 6, 27. [Google Scholar] [CrossRef]
- Cazzanelli, M.; Basso, L.; Cestari, C.; Bazzanella, N.; Moser, E.; Orlandi, M.; Piccoli, A.; Miotello, A. Fluorescent Nanodiamonds Synthesized in One-Step by Pulsed Laser Ablation of Graphite in Liquid-Nitrogen. C 2021, 7, 49. [Google Scholar] [CrossRef]
- Odusanya, A.; Rahaman, I.; Sarkar, P.K.; Zkria, A.; Ghosh, K.; Haque, A. Laser-Assisted Growth of Carbon-Based Materials by Chemical Vapor Deposition. C 2022, 8, 24. [Google Scholar] [CrossRef]
- Kausar, A. Poly (methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: A review. Polym.-Plast. Technol. Mater. 2019, 58, 821–842. [Google Scholar] [CrossRef]
- Kausar, A.; Rafique, I.; Muhammad, B. Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym.-Plast. Technol. Mater. 2017, 56, 1438–1456. [Google Scholar] [CrossRef]
- Blomquist, N.; Koppolu, R.; Dahlström, C.; Toivakka, M.; Olin, H. Influence of substrate in roll-to-roll coated nanographite electrodes for metal-free supercapacitors. Sci. Rep. 2020, 10, 5282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Forsberg, S.; Engström, A.-C.; Nurmi, M.; Andres, B.; Dahlström, C.; Toivakka, M. Conductive nanographite–nanocellulose coatings on paper. Flexib. Prin. Electron. 2017, 2, 035002. [Google Scholar] [CrossRef]
- Wan, C.; Yao, C.; Li, J.; Duan, H.; Zhan, S.; Jia, D.; Li, Y.; Yang, T. Friction and wear behavior of polyimide matrix composites filled with nanographite. J. Appl. Polym. Sci. 2022, 139, 52058. [Google Scholar] [CrossRef]
- Kumar, V.; Alam, M.N.; Manikkavel, A.; Choi, J.; Lee, D.J. Investigation of silicone rubber composites reinforced with carbon nanotube, nanographite, their hybrid, and applications for flexible devices. J. Vin. Add. Technol. 2021, 27, 254–263. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, C.; He, J.; Tu, X.; Sun, W.; Pan, H.; Zhou, Y.; Rui, X.; Zhang, B.; Huang, K. Structural Engineering in Graphite-Based Metal-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2107277. [Google Scholar] [CrossRef]
- Maier, P.; Xavier Jr, N.F.; Truscott, C.L.; Hansen, T.; Fouquet, P.; Sacchi, M.; Tamtögl, A. How does tuning the van der Waals bonding strength affect adsorbate structure? Phys. Chem. Chem. Phys. 2022, 24, 29371–29380. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M. All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Blomquist, N.; Engström, A.-C.; Hummelgård, M.; Andres, B.; Forsberg, S.; Olin, H. Large-scale production of nanographite by tube-shear exfoliation in water. PLoS ONE 2016, 11, e0154686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, M.; Li, J.; Shen, Z.; Zhang, X.; Ma, S. Morphology and structure of mono-and few-layer graphene produced by jet cavitation. Appl. Phys. Lett. 2011, 99, 123112. [Google Scholar] [CrossRef]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Knieke, C.; Berger, A.; Voigt, M.; Taylor, R.N.K.; Röhrl, J.; Peukert, W. Scalable production of graphene sheets by mechanical delamination. Carbon 2010, 48, 3196–3204. [Google Scholar] [CrossRef]
- Nacken, T.; Damm, C.; Walter, J.; Rüger, A.; Peukert, W. Delamination of graphite in a high pressure homogenizer. RSC Adv. 2015, 5, 57328–57338. [Google Scholar] [CrossRef] [Green Version]
- Karagiannidis, P.G.; Hodge, S.A.; Lombardi, L.; Tomarchio, F.; Decorde, N.; Milana, S.; Goykhman, I.; Su, Y.; Mesite, S.V.; Johnstone, D.N. Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 2017, 11, 2742–2755. [Google Scholar] [CrossRef] [Green Version]
- Koppolu, R.; Blomquist, N.; Dahlström, C.; Toivakka, M. High-Throughput Processing of Nanographite–Nanocellulose-Based Electrodes for Flexible Energy Devices. Ind. Eng. Chem. Res. 2020, 59, 11232–11240. [Google Scholar] [CrossRef]
- Blomquist, N.; Wells, T.; Andres, B.; Bäckström, J.; Forsberg, S.; Olin, H. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials. Sci. Rep. 2017, 7, 39836. [Google Scholar] [CrossRef] [PubMed]
- Shenderova, O. Detonation Nanodiamonds: Science and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ioni, Y.V.; Tkachev, S.; Bulychev, N.; Gubin, S. Preparation of finely dispersed nanographite. Inorg. Mater. 2011, 47, 597–602. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Wang, Z.; Liu, Y.; You, T. Preparation of water-soluble nanographite and its application in water-based cutting fluid. Nanoscale Res. Lett. 2013, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, B.; Sato, H.; Enoki, T.; Hishiyama, Y.; Kaburagi, Y.; Rao, A.; Sumanasekera, G.U.; Eklund, P. Intercalated nanographite: Structure and electronic properties. Phys. Rev. B 2001, 64, 235407. [Google Scholar] [CrossRef]
- Frost, B.R.; Fyfe, W.S.; Tazaki, K.; Chan, T. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature 1989, 340, 134–136. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Mochane, M.J.; Sefadi, J.S.; Motloung, S.V.; Andala, D.M. Thermal conductivity of graphite-based polymer composites. Impact of Thermal Conductivity on Energy Technologies; IntechOpen: London, UK, 2018; Volume 181. [Google Scholar]
- Salavagione, H.J.; Martínez, G.; Ellis, G. Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid Commun. 2011, 32, 1771–1789. [Google Scholar] [CrossRef]
- Sadasivuni, K.K.; Ponnamma, D.; Thomas, S.; Grohens, Y. Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 2014, 39, 749–780. [Google Scholar] [CrossRef]
- Gorshenev, V. Influence of Technological Conditions in the Formation of Electrically Conductive Thermoplastic Polymer-Graphite Composites. Inorg. Mater. Appl. Res. 2022, 13, 515–522. [Google Scholar] [CrossRef]
- Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.; Cheng, R. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater. 2014, 268, 191–198. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, L.; Wang, Q.; Li, S.; Lin, Z.; Li, W.; Zhang, P.; Yu, C. Enhanced tribological properties of PEEK-based composite coatings reinforced by PTFE and graphite. J. Appl. Polym. Sci. 2022, 139, 51878. [Google Scholar] [CrossRef]
- Jena, K.K.; AlFantazi, A.; Mayyas, A.T. Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite. Chem. Eng. J. 2022, 430, 132667. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, X.; Xu, Q.; Zhou, C.; Shang, Y.; Zhang, H. Thermal conductive segregated multi-scale network constructed by ball-milling and in-situ polymerization in PEEK/MWCNT/graphite composite. Compos. Communicat. 2022, 29, 101035. [Google Scholar] [CrossRef]
- Seyedjamali, H.; Pirisedigh, A. Well-dispersed polyimide/TiO2 nanocomposites: In situ sol–gel fabrication and morphological study. Coll. Polym. Sci. 2012, 290, 653–659. [Google Scholar] [CrossRef]
- Psarras, G.C. Nanographite–Polymer Composites. In Carbon Nanomaterials; CRC Press: Boca Raton, FL, USA, 2018; pp. 647–673. [Google Scholar]
- Radzuan, N.A.M.; Sulong, A.B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 2017, 42, 9262–9273. [Google Scholar] [CrossRef]
- Krause, P.; Nowoświat, A. Experimental studies involving the impact of solar radiation on the properties of expanded graphite polystyrene. Energies 2019, 13, 75. [Google Scholar] [CrossRef] [Green Version]
- Singhal, P.; Rattan, S. Swift heavy ion irradiation as a tool for homogeneous dispersion of nanographite platelets within the polymer matrices: Toward tailoring the properties of PEDOT: PSS/nanographite nanocomposites. J. Phys. Chem. B 2016, 120, 3403–3413. [Google Scholar] [CrossRef]
- Shinde, H.; Kakani, S.M.; Shinde, S.; More, A.; Kher, J.; Patil, S.R. Mechanically Stable Nano-graphite Polyaniline Composites: Synthesis and Characterization. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 14164–14171. [Google Scholar]
- Mo, Z.L.; Xie, T.-T.; Zhao, Y.-X.; Sun, W.-H.; Guo, R.-B.; He, J.-X. Synthesis of PPy/nano-graphite sheets/TbCl3 composites with high conductivity. Mater. Manuf. Process. 2012, 27, 1343–1347. [Google Scholar] [CrossRef]
- Zhu, Z.-M.; Rao, W.-H.; Kang, A.-H.; Liao, W.; Wang, Y.-Z. Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polym. Degrad. Stab. 2018, 154, 1–9. [Google Scholar] [CrossRef]
- Han, X.; Cheng, Q.; Bao, F.; Gao, J.; Yang, Y.; Chen, T.; Yan, C.; Ma, R. Synthesis of low-density heat-resisting polystyrene/graphite composite microspheres used as water carrying fracturing proppants. Polym.-Plast. Technol. Mater. 2014, 53, 1647–1653. [Google Scholar] [CrossRef]
- Rymansaib, Z.; Iravani, P.; Emslie, E.; Medvidović-Kosanović, M.; Sak-Bosnar, M.; Verdejo, R.; Marken, F. All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor. Electroanalysis 2016, 28, 1517–1523. [Google Scholar] [CrossRef]
- Xuemei, H.; Hao, Y. Fabrication of polystyrene/detonation nanographite composite microspheres with the core/shell structure via pickering emulsion polymerization. J. Nanomater. 2013, 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Soni, G.; Soni, P.; Jangra, P.; Vijay, Y. Optical, mechanical and thermal properties of PMMA/graphite nanocomposite thin films. Mater. Res. Exp. 2019, 6, 075315. [Google Scholar] [CrossRef]
- Ali, E.A.G.E.; Kim, T.; Adhha, M.A. Effects of graphite milling time and composition to tensile properties of poly-methyl methacrylate (PMMA)/graphite composite. J. Sustain. Sci. Manag. 2019, 14, 4–11. [Google Scholar]
- Wang, J.; Shi, S.; Yang, J.; Zhang, W. Multiscale analysis on free vibration of functionally graded graphene reinforced PMMA composite plates. Appl. Math. Model. 2021, 98, 38–58. [Google Scholar] [CrossRef]
- Singhi, M.; Fahim, M. Dielectric properties of nanographite-filled PMMA composites prepared by in situ polymerization. Polym. Compos. 2012, 33, 675–682. [Google Scholar] [CrossRef]
- Soni, G.; Jangir, R.K. Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik 2021, 226, 165915. [Google Scholar] [CrossRef]
- Raza, J.; Hamid, A.; Khan, M.; Hussain, F.; Tiehu, L.; Fazil, P.; Zada, A.; Wahab, Z.; Ali, A. Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocomposites. Z. Für Phys. Chem. 2022, 236, 619–636. [Google Scholar] [CrossRef]
- Focke, W.W.; Muiambo, H.; Mhike, W.; Kruger, H.J.; Ofosu, O. Flexible PVC flame retarded with expandable graphite. Polym. Degrad. Stab. 2014, 100, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Zhang, D.; Shi, Z.; Zhang, X.; Li, C.; Wang, L.; Song, J.; Lin, Q. Enhanced photodegradability of PVC plastics film by codoping nano-graphite and TiO2. Polym. Degrad. Stab. 2020, 181, 109332. [Google Scholar] [CrossRef]
- Takahashi, K.; Higa, K.; Mair, S.; Chintapalli, M.; Balsara, N.; Srinivasan, V. Mechanical degradation of graphite/PVDF composite electrodes: A model-experimental study. J. Electrochem. Soc. 2015, 163, A385. [Google Scholar] [CrossRef]
- Iqbal, N.; Lee, S. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1961. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Weng, L.; Yu, Y.; Zhang, X.; Liu, L.; Wang, C. Dielectrical properties of graphite nanosheets/PVDF composites regulated by coupling agent. Mater. Today Commun. 2019, 21, 100705. [Google Scholar] [CrossRef]
- Li, Y.; Tjong, S.C.; Li, R. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids. eXPRESS Polym. Lett. 2011, 5, 526–534. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Abdelrazek, E. The effect of nanographite addition on the physical properties of poly (vinylidene fluoride)/hydroxypropyl cellulose blend. J. Mater. Sci. Mater. Electron. 2014, 25, 5481–5490. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Wang, S.; Zhang, L.; Park, C.B. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 2018, 6, 6847–6859. [Google Scholar] [CrossRef]
- Przekop, R.E.; Kujawa, M.; Pawlak, W.; Dobrosielska, M.; Sztorch, B.; Wieleba, W. Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements. Polymers 2020, 12, 1250. [Google Scholar] [CrossRef]
- Kjelgård, K.G.; Wisland, D.T.; Lande, T.S. 3D printed wideband microwave absorbers using composite graphite/PLA filament. In Proceedings of the 2018 48th European Microwave Conference, Madrid, Spain, 23–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 859–862. [Google Scholar]
- Gardella, L.; Furfaro, D.; Galimberti, M.; Monticelli, O. On the development of a facile approach based on the use of ionic liquids: Preparation of PLLA (sc-PLA)/high surface area nano-graphite systems. Green Chem. 2015, 17, 4082–4088. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Z.; Bi, H.; Xu, M.; Cai, L. Electrical and thermal conductivity of polylactic acid (PLA)-based biocomposites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers 2019, 11, 549. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Bhat, B.R.; Bhattacharya, B.; Mehra, R. Synthesis and Characterization of High-Dielectric-Constant Nanographite–Polyurethane Composite. JOM 2018, 70, 1302–1306. [Google Scholar] [CrossRef]
- ElFaham, M.M.; Alnozahy, A.M.; Ashmawy, A. Comparative study of LIBS and mechanically evaluated hardness of graphite/rubber composites. Mater. Chem. Phys. 2018, 207, 30–35. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Brasero, J.; López-Manchado, M.A.; Yazdani-Pedram, M. High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Compos. Part B Eng. 2014, 67, 449–454. [Google Scholar] [CrossRef] [Green Version]
- El-Nashar, D.E.; Rozik, N.N.; Abd El-Messieh, S.L. Mechanical and electrical properties of acrylonitrile-butadiene rubber filled with treated nanographite. Polimery 2014, 59, 834–844. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Choudhary, R.N.P.; Mahapatra, S.P. Dynamic mechanical and dielectric relaxation studies of chlorobutyl elastomer nanocomposites: Effect of nanographite loading and temperature. High Perform. Polym. 2015, 27, 274–287. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Solar Energy 2011, 85, 1172–1178. [Google Scholar] [CrossRef]
- Yun, S.; Hagfeldt, A.; Ma, T. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 2014, 26, 6210–6237. [Google Scholar] [CrossRef]
- Zambrzycki, M.; Piech, R.; Raga, S.R.; Lira-Cantu, M.; Fraczek-Szczypta, A. Hierarchical carbon nanofibers/carbon nanotubes/NiCo nanocomposites as novel highly effective counter electrode for dye-sensitized solar cells: A structure-electrocatalytic activity relationship study. Carbon 2022, 203, 97–110. [Google Scholar] [CrossRef]
- Cruz-Gutiérrez, C.A.; Félix-Navarro, R.M.; Calva-Yañez, J.C.; Silva-Carrillo, C.; Lin-Ho, S.W.; Reynoso-Soto, E.A. Carbon nanotube-carbon black hybrid counter electrodes for dye-sensitized solar cells and the effect on charge transfer kinetics. J. Solid State Electrochem. 2021, 25, 1479–1489. [Google Scholar] [CrossRef]
- Brennan, L.J.; Byrne, M.T.; Bari, M.; Gun’ko, Y.K. Carbon nanomaterials for dye-sensitized solar cell applications: A bright future. Adv. Ener. Mater. 2011, 1, 472–485. [Google Scholar] [CrossRef]
- Lee, C.-P.; Lin, C.-A.; Wei, T.-C.; Tsai, M.-L.; Meng, Y.; Li, C.-T.; Ho, K.-C.; Wu, C.-I.; Lau, S.-P.; He, J.-H. Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT: PSS counter electrodes. Nano Energy 2015, 18, 109–117. [Google Scholar] [CrossRef]
- Kuppu, S.V.; Senthilkumaran, M.; Sethuraman, V.; Balaji, M.; Saravanan, C.; Ahmed, N.; Mohandoss, S.; Lee, Y.R.; Anandharaj, J.; Stalin, T. The surfactants mediated electropolymerized poly (aniline)(PANI)-reduced graphene oxide (rGO) composite counter electrode for dye-sensitized solar cell. J. Phys. Chem. Solids 2022, 173, 111121. [Google Scholar] [CrossRef]
- Rafique, S.; Rashid, I.; Sharif, R. Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode. Sci. Rep. 2021, 11, 14830. [Google Scholar] [CrossRef]
- Shih, Y.-C.; Lin, H.-L.; Lin, K.-F. Electropolymerized polyaniline/graphene nanoplatelet/multi-walled carbon nanotube composites as counter electrodes for high performance dye-sensitized solar cells. J. Electroanal. Chem. 2017, 794, 112–119. [Google Scholar] [CrossRef]
- Reza, M.; Utami, A.N.; Amalina, A.N.; Benu, D.P.; Fatya, A.I.; Agusta, M.K.; Yuliarto, B.; Kaneti, Y.V.; Ide, Y.; Yamauchi, Y. Significant role of thorny surface morphology of polyaniline on adsorption of triiodide ions towards counter electrode in dye-sensitized solar cells. New J. Chem. 2021, 45, 5958–5970. [Google Scholar] [CrossRef]
- Huang, K.-C.; Huang, J.-H.; Wu, C.-H.; Liu, C.-Y.; Chen, H.-W.; Chu, C.-W.; Lin, C.-L.; Ho, K.-C. Nanographite/polyaniline composite films as the counter electrodes for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 10384–10389. [Google Scholar] [CrossRef]
- Yue, G.; Zhang, X.A.; Wang, L.; Tan, F.; Wu, J.; Jiang, Q.; Lin, J.; Huang, M.; Lan, Z. Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode. Electrochim. Acta 2014, 129, 229–236. [Google Scholar] [CrossRef]
- Chen, D.; Pei, Q. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, S.M.; Spinks, G.M.; Kim, S.J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Cheng, J.; Zhang, W.; Cao, G.; Zhao, H.; Yang, Y. Novel polymer-graphite composite grid as a negative current collector for lead-acid batteries. J. Power Source 2016, 334, 31–38. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Han, S.S.; Park, S.-S. RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Mater. Sci. 2021, 3, 233–240. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, G.; Choi, J.; Lee, D.-J. Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators. Polymer 2020, 190, 122221. [Google Scholar] [CrossRef]
- Costa, P.; Nunes-Pereira, J.; Oliveira, J.; Silva, J.; Moreira, J.A.; Carabineiro, S.; Buijnsters, J.; Lanceros-Mendez, S. High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 2017, 153, 241–252. [Google Scholar] [CrossRef]
- Wei, X.-F.; Liu, J.-X.; Bao, W.; Qin, Y.; Li, F.; Liang, Y.; Xu, F.; Zhang, G.-J. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J. Eur. Ceram. Soc. 2021, 41, 4747–4754. [Google Scholar] [CrossRef]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef]
- Breen, M.S.; Long, T.C.; Schultz, B.D.; Williams, R.W.; Richmond-Bryant, J.; Breen, M.; Langstaff, J.E.; Devlin, R.B.; Schneider, A.; Burke, J.M. Air pollution exposure model for individuals (EMI) in health studies: Evaluation for ambient PM2. 5 in Central North Carolina. Environ. Sci. Technol. 2015, 49, 14184–14194. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W.; Duan, G.; Mei, C.; Jiang, S.; Rui, Z.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204. [Google Scholar] [CrossRef]
- Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589–6599. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromolecul. Mater. Eng. 2021, 306, 2100032. [Google Scholar] [CrossRef]
- Chung, D. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587. [Google Scholar] [CrossRef]
- Yao, Y.; Jin, S.; Zou, H.; Li, L.; Ma, X.; Lv, G.; Gao, F.; Lv, X.; Shu, Q. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580. [Google Scholar] [CrossRef]
- Safdar, F.; Ashraf, M.; Javid, A.; Iqbal, K. Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications—A review. J. Ind. Text. 2022, 51, 7293S–7358S. [Google Scholar] [CrossRef]
- Thomassin, J.-M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, L.; Ma, Z.; Fan, Q.; Ma, J. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 2021, 177, 412–426. [Google Scholar] [CrossRef]
- Shakir, M.F.; Khan, A.N.; Khan, R.; Javed, S.; Tariq, A.; Azeem, M.; Riaz, A.; Shafqat, A.; Cheema, H.M.; Akram, M.A. EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Res. Phys. 2019, 14, 102365. [Google Scholar] [CrossRef]
- Jeddi, J.; Katbab, A.A. AC electrical conductivity, shielding effectiveness and viscoelastic characteristics of nanocomposites based on RTV silicon rubber and nano graphite sheets/carbon black hybrid system. AIP Conf. Proc. 2017, 1914, 030013. [Google Scholar]
- Jeddi, J.; Katbab, A.A.; Mehranvari, M. Investigation of microstructure, electrical behavior, and EMI shielding effectiveness of silicone rubber/carbon black/nanographite hybrid composites. Polym. Compos. 2019, 40, 4056–4066. [Google Scholar] [CrossRef]
Nano-Graphite (wt.%) | Glass Transition Temperature (°C) | Initial Thermal Decomposition Temperature (°C) |
---|---|---|
Neat | 110.6 | 114.5 |
0.25 | 107.8 | 97.72 |
0.50 | 112.1 | 153.9 |
0.75 | 116.6 | 132.5 |
1.0 | 112.0 | 126.2 |
1.5 | – | 88.67 |
Sample | Voc (v) | Jsc (mA·cm−2) | FF | PCE (%) |
---|---|---|---|---|
PPy | 0.760 | 11.74 | 0.632 | 5.64 |
NG | 0.705 | 13.04 | 0.582 | 5.35 |
Pt | 0.755 | 14.54 | 0.636 | 6.98 |
NG/PPy | 0.765 | 14.83 | 0.652 | 7.40 |
Polymer | Nanofiller/Preparation Method | Nanocomposite Fabrication | Property/Application | Ref |
---|---|---|---|---|
Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) | Nano-graphite; 7–8 graphene layers; 2.6 nm thickness | Solution method | Dispersion; swift heavy ions | [39] |
Polyaniline | Nano-graphite; planetary ball milling | Cold pressing | Electrical conductivity; hardness | [40] |
Polypyrrole | Nano-graphite; sonication in 95% alcohol solution | In situ polymerization | Electrical conductivity 80.0 Scm−1 | [41] |
Polystyrene | Nano-graphite; detonation method; size 16 nm; specific surface area 583.6 m2⋅g−1 | Pickering emulsion | Morphology; polystyrene microspheres encapsulated with nano-graphite shield | [45] |
Poly(methyl methacrylate) | Commercial nano-graphite; ~400 nm | In situ polymerization | Thermogravimetric analysis; initial decomposition temperature ~154 °C | [49] |
Poly(methyl methacrylate) | Nano-graphite | Solution casting technique | Optical properties; thermal stability | [50] |
Poly(vinyl chloride) | Commercial nano-graphite; Titania | Solution casting technique | Conductivity; photocatalytic activity | [54] |
Poly(vinylidene fluoride) | Nano-graphite | Solution casting; compression molding | Percolation threshold; dielectric permittivity | [58] |
Poly(vinylidene fluoride) | Nano-graphite | Solution method | β-phase; interface effects | [59] |
Poly(lactic acid) | Nano-graphite; sonication of graphite in ionic liquid, 1-butyl-3-methylimidazoliumhexa-fluorophosphate | Melt blending | Aggregates of 300 nm | |
Poly(lactic acid) | Commercial. nano-graphite; diameter 1.5–2.0 µm | Fused Deposition Modeling | Thermal conductivity; conducting pathways | [64] |
Polyurethane | Nano-graphite | Solution method | Percolation threshold; electrical conductivity | [65] |
Acrylonitrilebutadiene rubber | Nano-graphite in poly(ethylene glycol) | Melt method | Young’s modulus; hardness; thermal stability; permittivity; dielectric loss; antistatic application | [68] |
Chlorobutyl elastomer | Nano-graphite | Melt method | Percolation threshold; storage modulus; dielectric properties | [69] |
Polyaniline | Nano-graphite | Electro-polymerization | DSSC counter electrode; power-conversion efficiency ~7.07% | [80] |
Polypyrrole | Nano-graphite | Electro-polymerization | Electrochemical impedance spectroscopy; power-conversion efficiency ~7.40% | [81] |
Room temperature vulcanized silicone rubber | Nano-graphite; 12–15 nm diameter | Melt; solution; printing | Sensors/actuators; piezo-resistive strain sensing; compressive modulus; tensile modulus stretchability >100%; durability of up to 5000 cycles | [86,87,88,89] |
Silicon rubber | Nano-graphite; carbon black | Melt route | Electromagnetic interference shielding | [100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A. Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. C 2023, 9, 13. https://doi.org/10.3390/c9010013
Kausar A. Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. C. 2023; 9(1):13. https://doi.org/10.3390/c9010013
Chicago/Turabian StyleKausar, Ayesha. 2023. "Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications" C 9, no. 1: 13. https://doi.org/10.3390/c9010013
APA StyleKausar, A. (2023). Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. C, 9(1), 13. https://doi.org/10.3390/c9010013