Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Test Procedures
2.2.1. Open-Circuit Potential Measurements
2.2.2. Potentiodynamic Tests
2.2.3. Cyclic Voltammetry
2.2.4. Chronoamperometric Measurements
2.2.5. Electrochemical Impedance Spectroscopy
2.2.6. Confocal Raman Spectroscopy
2.2.7. Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy (EDXS)
3. Results
3.1. Comparison of the Open-Circuit-Potential Profiles of Carbon Surfaces in 50 mM NaCl
3.2. Comparison of Cathodic Potentiodynamic Polarization Curves of Carbon Surfaces in 50 mM NaCl
3.3. Comparison of Cyclic Voltammograms in 50 mM NaCl
3.4. Comparison of Electrochemical Impedance Spectra in 50 mM NaCl
3.5. Comparison of Chronoamperomteric Profiles in 50 mM NaCl
3.6. Confocal Raman Studies of Carbon Surfaces
3.7. Energy-Dispersive Spectroscopy of Carbon Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, K.; Rao, T.N.; Tryk, D.A.; Fujishima, A.; Watanabe, M.; Yasui, K.; Masuda, H. Impedance characteristics of the nanoporous honeycomb diamond electrodes for electrical double-layer capacitor applications. J. Electrochem. Soc. 2001, 148, A668. [Google Scholar] [CrossRef]
- Yoshimura, M.; Honda, K.; Kondo, T.; Uchikado, R.; Einaga, Y.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Factors controlling the electrochemical potential window for diamond electrodes in non-aqueous electrolytes. Diam. Relat. Mater. 2002, 11, 67–74. [Google Scholar] [CrossRef]
- Torokhov, V.G.; Chukov, D.I.; Tcherdyntsev, V.V.; Sherif, G.; Zadorozhnyy, M.Y.; Stepashkin, A.A.; Larin, I.I.; Medvedeva, E.V. Mechanical and Thermophysical Properties of Carbon Fiber-Reinforced Polyethersulfone. Polymers 2022, 14, 2956. [Google Scholar] [CrossRef] [PubMed]
- Barile, C.; Casavola, C.; Pappalettera, G.; Kannan, V.P.; Renna, G. Investigation of Interlaminar Shear Properties of CFRP Composites at Elevated Temperatures Using the Lempel-Ziv Complexity of Acoustic Emission Signals. Materials 2022, 15, 4252. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, W.; Jiang, P.; Chen, F.; Liu, Y. Deep Learning Approach for Damage Classification Based on Acoustic Emission Data in Composite Materials. Materials 2022, 15, 4270. [Google Scholar] [CrossRef]
- Brett, C.M.; Angnes, L.; Liess, H.D. Carbon film resistors as electrodes: Voltammetric properties and application in electroanalysis. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2001, 13, 765–769. [Google Scholar] [CrossRef]
- Rana, A.; Baig, N.; Saleh, T.A. Electrochemically pretreated carbon electrodes and their electroanalytical applications—A review. J. Electroanal. Chem. 2019, 833, 313–332. [Google Scholar] [CrossRef]
- Magesh, V.; Sundramoorthy, A.K.; Ganapathy, D. Recent advances on synthesis and potential applications of carbon quantum dots. Front. Mater. 2022, 383. [Google Scholar] [CrossRef]
- Murugan, P.; Nagarajan, R.D.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Nallaswamy, D.; Khosla, A. Electrochemical detection of H2O2 using an activated glassy carbon electrode. ECS Sens. Plus 2022, 1, 034401. [Google Scholar] [CrossRef]
- Groult, H.; Devilliers, D.; Vogler, M.; Hinnen, C.; Marcus, P.; Nicolas, F. Electrochemical behaviour and surface analysis of crude and modified carbon electrodes for fluorine production. Electrochim. Acta 1993, 38, 2413–2421. [Google Scholar] [CrossRef]
- Aryal, N.; Ammam, F.; Patil, S.A.; Pant, D. An overview of cathode Materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem. 2017, 19, 5748–5760. [Google Scholar] [CrossRef]
- Kornienko, G.V.; Kolyagin, G.A.; Kornienko, V.L.; Parfenov, V.A. Graphitized carbon Materials for electrosynthesis of H2O2 from O2 in gas-diffusion electrodes. Russ. J. Electrochem. 2016, 52, 983–987. [Google Scholar] [CrossRef]
- Le, T.X.H.; Bechelany, M.; Cretin, M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 2017, 122, 564–591. [Google Scholar] [CrossRef]
- Kamedulski, P.; Lukaszewicz, J.P.; Witczak, L.; Szroeder, P.; Ziolkowski, P. The importance of structural factors for the electrochemical performance of graphene/carbon nanotube/melamine powders towards the catalytic activity of oxygen reduction reaction. Materials 2021, 14, 2448. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Y.; You, S. Electrified carbon nanotube membrane technology for water treatment. In Electrochemical Membrane Technology for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 111–140. [Google Scholar] [CrossRef]
- Hosford, P.S.; Wells, J.A.; Christie, I.N.; Lythgoe, M.F.; Millar, J.; Gourine, A.V. Electrochemical carbon fiber-based technique for simultaneous recordings of brain tissue PO2, pH, and extracellular field potentials. Biosens. Bioelectron. 2019, 3, 100034. [Google Scholar] [CrossRef]
- Huffman, M.L.; Venton, B.J. Carbon-fiber microelectrodes for in vivo applications. Analyst 2009, 134, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Feng, Z.Y.; Li, D.; Jin, B.; Lan, Y.; Meng, L.Y. Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: A review. TrAC Trends Anal. Chem. 2022, 148, 116541. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Huo, K.; Chu, P.K. Microelectrode arrays based on carbon nanomaterials: Emerging electrochemical sensors for biological and environmental applications. RSC Adv. 2013, 3, 18698–18715. [Google Scholar] [CrossRef]
- Beidaghi, M.; Chen, W.; Wang, C. Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors. J. Power Sources 2011, 196, 2403–2409. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Carbon Fiber/Epoxy Composite Property Enhancement through Incorporation of Carbon Nanotubes at the Fiber-Matrix Interphase–Part II: Mechanical and Electrical Properties of Carbon Nanotube Coated Carbon Fiber Composites. Compos. Part A: Appl. Sci. Manuf. 2022, 160, 107023. [Google Scholar] [CrossRef]
- Du, X.; Zhou, H.; Sun, W.; Liu, H.Y.; Zhou, G.; Zhou, H.; Mai, Y.W. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 2017, 140, 123–133. [Google Scholar] [CrossRef]
- Xiang, L.; Yu, P.; Hao, J.; Zhang, M.; Zhu, L.; Dai, L.; Mao, L. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo. Anal. Chem. 2014, 86, 3909–3914. [Google Scholar] [CrossRef] [PubMed]
- Morais, E.A.D.; Alvial, G.; Longuinhos, R.; Figueiredo, J.M.A.; Lacerda, R.G.; Ferlauto, A.S.; Ladeira, L.O. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber. Mater. Res. 2011, 14, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Dong-Won, P.; Yang, C.S.; Kim, K.R.; Kwak, J.H.; So, H.M.; Ahn, C.W.; Kim, B.S.; Chang, H.; Lee, J.O. Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode. ACS Nano 2011, 5, 7061–7068. [Google Scholar] [CrossRef] [PubMed]
- Akinoglu, E.M.; Kätelhön, E.; Pampel, J.; Ban, Z.; Antonietti, M.; Compton, R.G.; Giersig, M. Nanoscopic carbon electrodes: Structure, electrical properties and application for electrochemistry. Carbon 2018, 130, 768–774. [Google Scholar] [CrossRef]
- Tu, Y.; Lin, Y.; Yantasee, W.; Ren, Z. Carbon nanotubes based nanoelectrode arrays: Fabrication, evaluation, and application in voltammetric analysis. Electroanalysis 2005, 17, 79–84. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Ferreira, M.G.; Zheludkevich, M.L. Galvanically stimulated degradation of carbon-fiber reinforced polymer composites: A critical review. Materials 2019, 12, 651. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.M.; Kawamura, K.; Ban, L.L. Formation and structure of polymeric carbons. Proc. R. Soc. Lond. A. Math. Phys. Sci. 1972, 327, 501–517. [Google Scholar] [CrossRef]
- Sharma, S.; Shyam Kumar, C.N.; Korvink, J.G.; Kübel, C. Evolution of glassy carbon microstructure: In situ transmission electron microscopy of the pyrolysis process. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Sato, H. Some physical properties of glassy carbon. Nature 1962, 193, 261–262. [Google Scholar] [CrossRef]
- Diaf, H.; Pereira, A.; Melinon, P.; Blanchard, N.; Bourquard, F.; Garrelie, F.; Donnet, C.; Vondráčk, M. Revisiting thin film of glassy carbon. Phys. Rev. Mater. 2020, 4, 066002. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrode Materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.M.; Kawamura, K. Structure of glassy carbon. Nature 1971, 231, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.J.F. Fullerene-related structure of commercial glassy carbons. Philos. Mag. 2004, 84, 3159–3167. [Google Scholar] [CrossRef] [Green Version]
- Uskoković, V. A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Robertson, S.D. Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces. Nature 1969, 221, 1044–1046. [Google Scholar] [CrossRef]
- Guentert, O.J. X-ray Study of Pyrolytic Graphites. J. Chem. Phys. 1962, 37, 884–891. [Google Scholar] [CrossRef]
- Moore, A.W. Pyrolytic Carbon and Graphite. In Encyclopedia of Materials: Science and Technology; Jürgen Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 7933–7937. [Google Scholar] [CrossRef]
- Moore, A.W.; Ubbelohde, A.R.J.P.; Young, D.A. Stress recrystallization of pyrolytic graphite. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1964, 280, 153–169. [Google Scholar] [CrossRef]
- Devi, M.; Rawat, S.; Sharma, S. A comprehensive review of the pyrolysis process: From carbon nanomaterial synthesis to waste treatment. Oxf. Open Mater. Sci. 2021, 1, itab014. [Google Scholar] [CrossRef]
- Bowling, R.J.; Packard, R.T.; McCreery, R.L. Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: Relationship between electrochemical performance and carbon microstructure. J. Am. Chem. Soc. 1989, 111, 1217–1223. [Google Scholar] [CrossRef]
- Iamprasertkun, P.; Ejigu, A.; Dryfe, R.A. Understanding the electrochemistry of “water-in-salt” electrolytes: Basal plane highly ordered pyrolytic graphite as a model system. Chem. Sci. 2020, 11, 6978–6989. [Google Scholar] [CrossRef]
- Edvardsen, L.; Grandcolas, M.; Lædre, S.; Yang, J.; Lange, T.; Bjørge, R.; Gawel, K. Conductive epoxy/carbon nanofiber coatings for scale control. Surf. Coat. Technol. 2021, 425, 127694. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, L.; Hou, J. Nanosheets with High-Performance Electrochemical Oxygen Reduction Reaction Revived from Green Walnut Peel. Molecules 2022, 27, 328. [Google Scholar] [CrossRef] [PubMed]
- Sawant, S.Y.; Han, T.H.; Cho, M.H. Metal-free carbon-based materials: Promising electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Mol. Sci. 2017, 18, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Falco, G.; Florent, M.; Jagiello, J.; Cheng, Y.; Daemen, L.L.; Ramirez-Cuesta, A.J.; Bandosz, T.J. Alternative view of oxygen reduction on porous carbon electrocatalysts: The substance of complex oxygen-surface interactions. Iscience 2021, 24, 102216. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Xu, W.; Wu, X.; Jiang, J. Catalytically active carbon from cattail fibers for electrochemical reduction reaction. Front. Chem. 2019, 786. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, L.K.; Wang, G.; Gao, M.R.; Ge, J.; Yuan, W.J.; Shen, Y.H.; Xie, A.J.; Yu, S.H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 4095–4103. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Quevedo, M.C.; Bastos, A.C.; Ferreira, M.G.S.; Zheludkevich, M.L. Electrochemical characterization and degradation of carbon fibre reinforced polymer in quiescent near neutral chloride media. Npj Mater. Degrad. 2022, 6, 1–14. [Google Scholar] [CrossRef]
- Rahmani, H.; Najafi, S.H.M.; Ashori, A. Mechanical performance of epoxy/carbon fiber laminated composites. J. Reinf. Plast. Compos. 2014, 33, 733–740. [Google Scholar] [CrossRef]
- Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Williams, G.; Trask, R.; Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1525–1532. [Google Scholar] [CrossRef]
- Botelho, E.C.; Silva, R.A.; Pardini, L.C.; Rezende, M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 2006, 9, 247–256. [Google Scholar] [CrossRef]
- Marsh, G. Airbus takes on Boeing with reinforced plastic A350 XWB. Reinf. Plast. 2007, 51, 26–29. [Google Scholar] [CrossRef]
- Rezaei, F.; Yunus, R.; Ibrahim, N.A.; Mahdi, E.S. Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet. Polym. Plast. Technol. Eng. 2008, 47, 351–357. [Google Scholar] [CrossRef]
- Jacob, G.C.; Fellers, J.F.; Simunovic, S.; Starbuck, J.M. Energy absorption in polymer composites for automotive crashworthiness. J. Compos. Mater. 2002, 36, 813–850. [Google Scholar] [CrossRef]
- Fuchs, E.R.; Field, F.R.; Roth, R.; Kirchain, R.E. Strategic Materials selection in the automobile body: Economic opportunities for polymer composite design. Compos. Sci. Technol. 2008, 68, 1989–2002. [Google Scholar] [CrossRef]
- Alves, C.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313–327. [Google Scholar] [CrossRef]
- Al-Qureshi, H.A. Automobile leaf springs from composite materials. J. Mater. Process. Technol. 2001, 118, 58–61. [Google Scholar] [CrossRef]
- Talib, A.A.; Ali, A.; Badie, M.A.; Lah, N.A.C.; Golestaneh, A.F. Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft. Mater. Des. 2010, 31, 514–521. [Google Scholar] [CrossRef]
- Chu, X.; Kinoshita, K. Surface modification of carbons for enhanced electrochemical activity. Mater. Sci. Eng. B 1997, 49, 53–60. [Google Scholar] [CrossRef]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 36, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G. The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, A.; Zou, Y.; Wang, Q.; Dryfe, R.A.; Huang, X.; Dou, S.; Wang, S. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem. 2014, 126, 10980–10984. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Yasakau, K.; Kallip, S.; Nogueira, H.I.; Ferreira, M.G.S.; Zheludkevich, M.L. Modification of carbon fibre reinforced polymer (CFRP) surface with sodium dodecyl sulphate for mitigation of cathodic activity. Appl. Surf. Sci. 2019, 478, 924–936. [Google Scholar] [CrossRef]
- Brownson, D.A.; Metters, J.P.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Surfactants inherent to graphene can dramatically effect electrochemical processes. Electroanalysis 2011, 23, 894–899. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Q.; Swain, G.M. Anthraquinonedisulfonate electrochemistry: A comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes. Anal. Chem. 1998, 70, 3146–3154. [Google Scholar] [CrossRef]
- Arnold, C.L.; Eyckens, D.J.; Servinis, L.; Nave, M.D.; Yin, H.; Marceau, R.K.; Pinson, J.; Demir, B.; Walsh, T.R.; Henderson, L.C. Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: A simple pathway to install passive functionality into composites. J. Mater. Chem. A 2019, 7, 13483–13494. [Google Scholar] [CrossRef]
- Delamar, M.; Hitmi, R.; Pinson, J.; Saveant, J.M. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 1992, 114, 5883–5884. [Google Scholar] [CrossRef]
- Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.; Pinson, J.; Savéant, J.M. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 1997, 119, 201–207. [Google Scholar] [CrossRef]
- Ofoegbu, S.U. Corrosion and Corrosion Inhibition in Multi-material Combinations. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2018; pp. 117–178. Available online: http://hdl.handle.net/10773/24097 (accessed on 12 March 2021).
- Rinat, J.; Korin, E.; Soifer, L.; Bettelheim, A. Electrocrystallization of calcium carbonate on carbon-based electrodes. J. Electroanal. Chem. 2005, 575, 195–202. [Google Scholar] [CrossRef]
- Shimizu, K.; Sepunaru, L.; Compton, R.G. Innovative catalyst design for the oxygen reduction reaction for fuel cells. Chem. Sci. 2016, 7, 3364–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.H.; Baldizzone, C.; Polymeros, G.; Pizzutilo, E.; Kasian, O.; Schuppert, A.K.; Ranjbar Sahraie, N.; Sougrati, M.T.; Mayrhofer, K.J.; Jaouen, F. Minimizing operando demetallation of Fe-NC electrocatalysts in acidic medium. ACS Catal. 2016, 6, 3136–3146. [Google Scholar] [CrossRef]
- Engstrom, R.C.; Strasser, V.A. Characterization of electrochemically pretreated glassy carbon electrodes. Anal. Chem. 1984, 56, 136–141. [Google Scholar] [CrossRef]
- Anjo, D.M.; Kahr, M.; Khodabakhsh, M.M.; Nowinski, S.; Wanger, M. Electrochemical activation of carbon electrodes in base: Minimization of dopamine adsorption and electrode capacitance. Anal. Chem. 1989, 61, 2603–2608. [Google Scholar] [CrossRef]
- Chen, P.; McCreery, R.L. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem. 1996, 68, 3958–3965. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Tateishi, H.; Koinuma, M.; Kamei, Y.; Ogata, C.; Gezuhara, K.; Hatakeyama, K.; Hayami, S.; Taniguchi, T.; Funatsu, A. Electrolytic graphene oxide and its electrochemical properties. J. Electroanal. Chem. 2013, 704, 233–241. [Google Scholar] [CrossRef]
- Paul, R.; Dai, Q.; Hu, C.; Dai, L. Ten years of carbon-based metal-free electrocatalysts. Carbon Energy 2019, 1, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Choung, S.; Han, J.W. Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: Combining theory and experiment. Nanoscale Adv. 2021, 3, 6797–6826. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, J.; Ge, R.; Zhang, J.; Li, Y.; Zhu, M.; Dai, L.; Li, S.; Li, W. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis. J. Energy Chem. 2022, 71, 234–265. [Google Scholar] [CrossRef]
- Wu, K.H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.J.; Chen, J.M.; Su, D.S.; Qi, W.; et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458. [Google Scholar] [CrossRef]
- Alexeyeva, N.; Shulga, E.; Kisand, V.; Kink, I.; Tammeveski, K. Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. J. Electroanal. Chem. 2010, 648, 169–175. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Jiang, C.; Wang, J.; Lu, L. High-Rate Oxygen Electroreduction over Graphitic-N Species Exposed on 3D Hierarchically Porous Nitrogen-Doped Carbons. Angew. Chem. 2014, 126, 9657–9661. [Google Scholar] [CrossRef]
- Singh, S.K.; Takeyasu, K.; Nakamura, J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 2019, 31, 1804297. [Google Scholar] [CrossRef]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon Materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, X.; Jia, L.; Ma, X.; Zhu, L. Carbonaceous debris that resided in graphene oxide/reduced graphene oxide profoundly affect their electrochemical behaviors. Electrochem. Commun. 2012, 23, 94–97. [Google Scholar] [CrossRef]
- Liyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [Green Version]
- Bonanni, A.; Ambrosi, A.; Chua, C.K.; Pumera, M. Oxidation debris in graphene oxide is responsible for its inherent electroactivity. ACS Nano 2014, 8, 4197–4204. [Google Scholar] [CrossRef]
- Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 2011, 50, 3173–3177. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 1996, 100, 19954–19958. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ion. 1997, 101, 857–862. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Roubaud, E.; Lacroix, R.; Da Silva, S.; Esvan, J.; Etcheverry, L.; Bergel, A.; Basséguy, R.; Erable, B. Industrially scalable surface treatments to enhance the current density output from graphite bioanodes fueled by real domestic wastewater. Iscience 2021, 24, 102162. [Google Scholar] [CrossRef]
- Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18, 2740–2749. [Google Scholar] [CrossRef]
- Buono, C.; Davies, P.R.; Davies, R.J.; Jones, T.; Kulhavý, J.; Lewis, R.; Morgan, D.J.; Robinson, N.; Willock, D.J. Spectroscopic and atomic force studies of the functionalisation of carbon surfaces: New insights into the role of the surface topography and specific chemical states. Faraday Discuss. 2014, 173, 257–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, H.R.; Day, S.P.; Woodruff, W.E.; Vallés, C.; Young, R.J.; Kinloch, I.A.; Morley, G.W.; Hanna, J.V.; Wilson, N.R.; Rourke, J.P. Deoxygenation of graphene oxide: Reduction or cleaning? Chem. Mater. 2013, 25, 3580–3588. [Google Scholar] [CrossRef]
- Wu, Z.; Pittman, C.U., Jr.; Gardner, S.D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon 1995, 33, 597–605. [Google Scholar] [CrossRef]
- Yi, Y.; Tornow, J.; Willinger, E.; Willinger, M.G.; Ranjan, C.; Schlögl, R. Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2015, 2, 1929–1937. [Google Scholar] [CrossRef]
- Yi, Y.; Weinberg, G.; Prenzel, M.; Greiner, M.; Heumann, S.; Becker, S.; Schlögl, R. Electrochemical corrosion of a glassy carbon electrode. Catal. Today 2017, 295, 32–40. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.G. In situ FTIR characterization of the electrooxidation of glassy carbon electrodes. J. Appl. Electrochem. 1995, 25, 259–266. [Google Scholar] [CrossRef]
- Besenhard, J.O.; Jakob, J.; Krebber, U.; Moeller, P.; Sauter, R.F.; Kurtze, A.; Kanani, N.; Meyer, H.; Hoerber, J.K.H.; Jannakoudakis, A.D. Anodische Oberflächen-und Volumenoxidation graphitischer Materialien in neutralen und alkalischen wäßrigen Lösungen/Anodic Surface and Bulk Oxidation of Graphitic Materials in Neutral and Basic Aqueous Solutions. Z. Für Nat. B 1989, 44, 729–735. [Google Scholar] [CrossRef]
- Hollemann, A.F.; Wiberg, E.N.; Wiberg, N. Lehrbuch der Anorganischen Chemie, 91st ed.; Walter de Gruyter: Berlin, NY, USA, 1985. [Google Scholar]
- Yue, Z.R.; Jiang, W.; Wang, L.; Gardner, S.D.; Pittman, C.U., Jr. Surface characterization of electrochemically oxidized carbon fibers. Carbon 1999, 37, 1785–1796. [Google Scholar] [CrossRef]
- Nose, M.; Kinumoto, T.; Choo, H.S.; Miyazaki, K.; Abe, T.; Ogumi, Z. Electrochemical oxidation of highly oriented pyrolytic graphite in sulphuric acid solution under potential pulse condition. Fuel Cells 2009, 9, 284–290. [Google Scholar] [CrossRef]
- Yeager, E. Electrocatalysts for O2 reduction. Electrochim. Acta 1984, 29, 1527–1537. [Google Scholar] [CrossRef]
- Yeager, E. Dioxygen electrocatalysis: Mechanisms in relation to catalyst structure. J. Mol. Catal. 1986, 38, 5–25. [Google Scholar] [CrossRef]
- Strelko, V.V.; Kartel, N.T.; Dukhno, I.N.; Kuts, V.S.; Clarkson, R.B.; Odintsov, B.M. Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surf. Sci. 2004, 548, 281–290. [Google Scholar] [CrossRef]
- Maldonado, S.; Stevenson, K.J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 2005, 109, 4707–4716. [Google Scholar] [CrossRef]
- Sidik, R.A.; Anderson, A.B.; Subramanian, N.P.; Kumaraguru, S.P.; Popov, B.N. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory. J. Phys. Chem. B 2006, 110, 1787–1793. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204. [Google Scholar] [CrossRef]
- Šljukić, B.; Banks, C.E.; Compton, R.G. An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J. Iran. Chem. Soc. 2005, 2, 1–25. [Google Scholar] [CrossRef]
- Wiggins-Camacho, J.D.; Stevenson, K.J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. J. Phys. Chem. C 2011, 115, 20002–20010. [Google Scholar] [CrossRef]
- Nugent, J.M.; Santhanam, K.S.V.; Rubio, A.; Ajayan, P.M. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 2001, 1, 87–91. [Google Scholar] [CrossRef]
- Vaik, K.; Sarapuu, A.; Tammeveski, K.; Mirkhalaf, F.; Schiffrin, D.J. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. J. Electroanal. Chem. 2004, 564, 159–166. [Google Scholar] [CrossRef]
- Sawyer, D.T.; Chiericato, G.; Angelis, C.T.; Nanni, E.J.; Tsuchiya, T. Effects of media and electrode Materials on the electrochemical reduction of dioxygen. Anal. Chem. 1982, 54, 1720–1724. [Google Scholar] [CrossRef]
- Benck, J.D.; Pinaud, B.A.; Gorlin, Y.; Jaramillo, T.F. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte. PLoS ONE 2014, 9, e107942. [Google Scholar] [CrossRef] [Green Version]
- Morcos, I.; Yeager, E. Kinetic studies of the oxygen—Peroxide couple on pyrolytic graphite. Electrochim. Acta 1970, 15, 953–975. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Tyrk, D.A.; Yeager, E. Quinone-like surfaces structures and O2 reduction on glassy carbon and graphite surfaces in alkaline solutions. In Proceedings of the Workshop on the Electrochemistry of Carbon, Cleveland, OH, USA, 17–19 August 1983; Sarangapani, S., Akridge, J.R., Schumm, B., Eds.; The Electrochemical Society: Pennington, NJ, USA, 1984; pp. 158–178. [Google Scholar]
- McCreery, R.L. Electroanalytical Chemsitry; Bard, A.J., Ed.; Dekker: New York, NY, USA, 1991; Volume 17. [Google Scholar]
- Bowling, R.J.; McCreery, R.L.; Pharr, C.M.; Engstrom, R.C. Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence. Anal. Chem. 1989, 61, 2763–2766. [Google Scholar] [CrossRef]
- Pontikos, N.M.; McCreery, R.L. Microstructural and morphological changes induced in glassy carbon electrodes by laser irradiation. J. Electroanal. Chem. 1992, 324, 229–242. [Google Scholar] [CrossRef]
- Hu, I.F.; Kuwana, T. Oxidative mechanism of ascorbic acid at glassy carbon electrodes. Anal. Chem. 1986, 58, 3235–3239. [Google Scholar] [CrossRef]
- Fagan, D.T.; Hu, I.F.; Kuwana, T. Vacuum heat-treatment for activation of glassy carbon electrodes. Anal. Chem. 1985, 57, 2759–2763. [Google Scholar] [CrossRef]
- Evans, J.F.; Kuwana, T. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces. Anal. Chem. 1977, 49, 1632–1635. [Google Scholar] [CrossRef]
- Tse, D.C.S.; Kuwana, T. Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal. Chem. 1978, 50, 1315–1318. [Google Scholar] [CrossRef]
- Deakin, M.R.; Stutts, K.J.; Wightman, R.M. The effect of pH on some outer-sphere electrode reactions at carbon electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1985, 182, 113–122. [Google Scholar] [CrossRef]
- Cabaniss, G.E.; Diamantis, A.A.; Murphy, W.R., Jr.; Linton, R.W.; Meyer, T.J. Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes. J. Am. Chem. Soc. 1985, 107, 1845–1853. [Google Scholar] [CrossRef]
- Barbero, C.; Silber, J.J.; Sereno, L. Studies of surface-modified glassy carbon electrodes obtained by electrochemical treatment: Its effect on Ru(bpy)2+3 adsorption and the electron transfer rates of the Fe2+/Fe3+ couple. J. Electroanal. Chem. Interfacial Electrochem. 1988, 248, 321–340. [Google Scholar] [CrossRef]
- Armstrong, F.A.; Bond, A.M.; Hill, H.A.; Oliver, B.N.; Psalti, I.S. Electrochemistry of cytochrome c, plastocyanin, and ferredoxin at edge-and basal-plane graphite electrodes interpreted via a model based on electron transfer at electroactive sites of microscopic dimensions in size. J. Am. Chem. Soc. 1989, 111, 9185–9189. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Byon, H.R.; Gallant, B.M.; Lee, S.W.; Shao-Horn, Y. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 2013, 23, 1037–1045. [Google Scholar] [CrossRef]
- Lowe, S.E.; Shi, G.; Zhang, Y.; Qin, J.; Jiang, L.; Jiang, S.; Al-Mamun, M.; Liu, P.; Zhong, Y.L.; Zhao, H. The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide. Nano Mater. Sci. 2019, 1, 215–223. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Eslami-Farsani, R.; Torabian, M.; Amousa, N. Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: A review study. Synth. Met. 2020, 269, 116549. [Google Scholar] [CrossRef]
- Hathcock, K.W.; Brumfield, J.C.; Goss, C.A.; Irene, E.A.; Murray, R.W. Incipient electrochemical oxidation of highly oriented pyrolytic graphite: Correlation between surface blistering and electrolyte anion intercalation. Anal. Chem. 1995, 67, 2201–2206. [Google Scholar] [CrossRef]
- Sinitsyna, O.V.; Meshkov, G.B.; Grigorieva, A.V.; Antonov, A.A.; Grigorieva, I.G.; Yaminsky, I.V. Blister formation during graphite surface oxidation by Hummers’ method. Beilstein J. Nanotechnol. 2018, 9, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Manako, T.; Imai, H. Electrochemical STM investigation of oxidative corrosion of the surface of highly oriented pyrolytic graphite. J. Electrochem. Soc. 2009, 156, B1208. [Google Scholar] [CrossRef]
- Tang, J.; Chen, S.; Yuan, Y.; Cai, X.; Zhou, S. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens. Bioelectron. 2015, 71, 387–395. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Feng, C.; Wang, Z.; Jia, T.; Gong, L.; Xu, L. Enhanced performance of microbial fuel cell using carbon microspheres modified graphite anode. Energy Sci. Eng. 2017, 5, 217–225. [Google Scholar] [CrossRef]
- Patel, A.N.; Collignon, M.G.; O’Connell, M.A.; Hung, W.O.; McKelvey, K.; Macpherson, J.V.; Unwin, P.R. A new view of electrochemistry at highly oriented pyrolytic graphite. J. Am. Chem. Soc. 2012, 134, 20117–20130. [Google Scholar] [CrossRef]
- Lai, S.C.; Patel, A.N.; McKelvey, K.; Unwin, P.R. Definitive Evidence for Fast Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical Imaging. Angew. Chem. Int. Ed. 2012, 51, 5405–5408. [Google Scholar] [CrossRef]
- McDermott, M.T.; Kneten, K.; McCreery, R.L. Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: The important role of surface defects. J. Phys. Chem. 1992, 96, 3124–3130. [Google Scholar] [CrossRef]
- Banks, C.E.; Moore, R.R.; Davies, T.J.; Compton, R.G. Investigation of modified basal plane pyrolytic graphite electrodes: Definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem. Commun. 2004, 10, 1804–1805. [Google Scholar] [CrossRef]
- Davies, T.J.; Moore, R.R.; Banks, C.E.; Compton, R.G. The cyclic voltammetric response of electrochemically heterogeneous surfaces. J. Electroanal. Chem. 2004, 574, 123–152. [Google Scholar] [CrossRef]
- Davies, T.J.; Hyde, M.E.; Compton, R.G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 2005, 44, 5121–5126. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Banks, C.E.; Crossley, A.; Compton, R.G. Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes. ChemPhysChem 2006, 7, 1337–1344. [Google Scholar] [CrossRef]
- Ji, X.; Buzzeo, M.C.; Banks, C.E.; Compton, R.G. Electrochemical response of cobalt (II) in the presence of ammonia. Electroanalysis 2006, 18, 44–52. [Google Scholar] [CrossRef]
- Moore, R.R.; Banks, C.E.; Compton, R.G. Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst 2004, 129, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Hyde, M.E.; Davies, T.J.; Compton, R.G. Fabrication of random assemblies of metal nanobands: A general method. Angew. Chem. 2005, 117, 6649–6654. [Google Scholar] [CrossRef]
- Dumitrescu, I.; Unwin, P.R.; Macpherson, J.V. Electrochemistry at carbon nanotubes: Perspective and issues. Chem. Commun. 2009, 41, 6886–6901. [Google Scholar] [CrossRef]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef]
- Lee, C.Y.; Guo, S.X.; Bond, A.M.; Oldham, K.B. Effect of heterogeneity on the dc and ac voltammetry of the [Fe(CN)6]3−/4− solution-phase process at a highly ordered pyrolytic graphite electrode. J. Electroanal. Chem. 2008, 615, 1–11. [Google Scholar] [CrossRef]
- Lee, C.Y.; Bond, A.M. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments. Anal. Chem. 2008, 81, 584–594. [Google Scholar] [CrossRef]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Z.; Chang, J.H.; Huang, C.P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002, 36, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.J.; Humffray, A.A. Electrochemical studies on glassy carbon electrodes: II. Oxygen reduction in solutions of high pH (pH > 10). J. Electroanal. Chem. Interfacial Electrochem. 1975, 64, 63–84. [Google Scholar] [CrossRef]
- Paliteiro, C.; Hamnett, A.; Goodenough, J.B. The electroreduction of oxygen on pyrolytic graphite. J. Electroanal. Chem. Interfacial Electrochem. 1987, 233, 147–159. [Google Scholar] [CrossRef]
- Baez, V.B.; Pletcher, D. Preparation and characterization of carbon/titanium dioxide surfaces—The reduction of oxygen. J. Electroanal. Chem. 1995, 382, 59–64. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Constant-phase-element behavior caused by resistivity distributions in films: II. Applications. J. Electrochem. Soc. 2010, 157, C458. [Google Scholar] [CrossRef]
- Alexander, C.L.; Tribollet, B.; Vivier, V.; Orazem, M.E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 3. Adsorbed intermediates. Electrochim. Acta 2017, 251, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Orazem, M.E.; Frateur, I.; Tribollet, B.; Vivier, V.; Marcelin, S.; Pébère, N.; Bunge, A.L.; White, E.A.; Riemer, D.P.; Musiani, M. Dielectric properties of Materials showing constant-phase-element (CPE) impedance response. J. Electrochem. Soc. 2013, 160, C215. [Google Scholar] [CrossRef] [Green Version]
- Brug, G.J.; Van Den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Rice, R.J.; McCreery, R.L. Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal. Chem. 1989, 61, 1637–1641. [Google Scholar] [CrossRef]
- Güell, A.G.; Tan, S.Y.; Unwin, P.R.; Zhang, G. Electrochemistry at Highly Oriented Pyrolytic Graphite (HOPG): Toward a New Perspective. In Electrochemistry of Carbon Electrodes; Wiley: Hoboken, NJ, USA, 2015; pp. 31–82. [Google Scholar] [CrossRef]
- Luque, N.B.; Schmickler, W. The electric double layer on graphite. Electrochim. Acta 2012, 71, 82–85. [Google Scholar] [CrossRef]
- Zhou, Y.; Holme, T.; Berry, J.; Ohno, T.R.; Ginley, D.; O’Hayre, R. Dopant-induced electronic structure modification of HOPG surfaces: Implications for high activity fuel cell catalysts. J. Phys. Chem. C 2010, 114, 506–515. [Google Scholar] [CrossRef]
- Randin, J.P.; Yeager, E. Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 1971, 118, 711. [Google Scholar] [CrossRef]
- Cline, K.K.; McDermott, M.T.; McCreery, R.L. Anomalously slow electron transfer at ordered graphite electrodes: Influence of electronic factors and reactive sites. J. Phys. Chem. 1994, 98, 5314–5319. [Google Scholar] [CrossRef]
- McDermott, M.T.; McCreery, R.L. Scanning tunneling microscopy of ordered graphite and glassy carbon surfaces: Electronic control of quinone adsorption. Langmuir 1994, 10, 4307–4314. [Google Scholar] [CrossRef]
- Chang, H.; Bard, A.J. Observation and characterization by scanning tunneling microscopy of structures generated by cleaving highly oriented pyrolytic graphite. Langmuir 1991, 7, 1143–1153. [Google Scholar] [CrossRef]
- Velický, M.; Toth, P.S.; Woods, C.R.; Novoselov, K.S.; Dryfe, R.A. Electrochemistry of the basal plane versus edge plane of graphite revisited. J. Phys. Chem. C 2019, 123, 11677–11685. [Google Scholar] [CrossRef]
- Randin, J.P.; Yeager, E. Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite. J. Electroanal. Chem. Interfacial Electrochem. 1972, 36, 257–276. [Google Scholar] [CrossRef]
- Randin, J.P.; Yeager, E. Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1975, 58, 313–322. [Google Scholar] [CrossRef]
- Rabbow, T.J.; Whitehead, A.H. Deconvolution of electrochemical double layer capacitance between fractions of active and total surface area of graphite felts. Carbon 2017, 111, 782–788. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563. [Google Scholar] [CrossRef]
- Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. Aip Adv. 2012, 2, 032183. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mehta, B.R.; Bhatnagar, M.; Mahapatra, S.; Salkalachen, S.; Jhawar, P. Graphene as a transparent conducting and surface field layer in planar Si solar cells. Nanoscale Res. Lett. 2014, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Cheng, L. Graphite oxide under high pressure: A Raman spectroscopic study. J. Nanomater. 2013, 2013, 47. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Jorio, A.; Souza Filho, A.G.; Dresselhaus, G.; Dresselhaus, M.S.; Swan, A.K.; Ünlü, M.S.; Goldberg, B.B.; Pimenta, M.A.; Hafner, J.H.; Lieber, C.M.; et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155412. [Google Scholar] [CrossRef] [Green Version]
- Casari, C.S.; Bassi, A.L.; Baserga, A.; Ravagnan, L.; Piseri, P.; Lenardi, C.; Tommasini, M.; Milani, A.; Fazzi, D.; Bottani, C.E.; et al. Low-frequency modes in the Raman spectrum of sp − sp2 nanostructured carbon. Phys. Rev. B 2008, 77, 195444. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.; Dallmeyer, I.; Johnson, T.J.; Brauer, C.S.; McEwen, J.S.; Espinal, J.F.; Garcia-Perez, M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 2016, 100, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Moon, H.; Cheong, H.; Choi, J.S.; Choi, J.A.; Park, B.H. Variations in the Raman spectrum as a function of the number of graphene layers. J. Korean Phys. Soc. 2009, 55, 1299–1303. [Google Scholar] [CrossRef]
- Sharbidre, R.S.; Lee, C.J.; Hong, S.G.; Ryu, J.K.; Kim, T.N. Comparison of existing methods to identify the number of graphene layers. Korean J. Mater. Res. 2016, 26, 704–708. [Google Scholar] [CrossRef]
- Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials 2018, 11, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzyka, R.; Drewniak, S.; Pustelny, T.; Sajdak, M.; Drewniak, Ł. Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy statistical analysis. Materials 2021, 14, 769. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium. Electrochim. Acta 2016, 199, 194–203. [Google Scholar] [CrossRef]
- Liu, D.; Long, Y.T. Superior catalytic activity of electrochemically reduced graphene oxide supported iron phthalocyanines toward oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 24063–24068. [Google Scholar] [CrossRef] [PubMed]
- Kauppila, J.; Kunnas, P.; Damlin, P.; Viinikanoja, A.; Kvarnström, C. Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim. Acta 2013, 89, 84–89. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- Ramesha, G.K.; Sampath, S. Electrochemical reduction of oriented graphene oxide films: An in situ Raman spectroelectrochemical study. J. Phys. Chem. C 2009, 113, 7985–7989. [Google Scholar] [CrossRef]
- Brownson, D.A.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef]
Carbon Surface | Status | Elements | Atomic No. | Counts | Mass [%] | Mass Norm. [%] | Atom [%] | abs. Error [%] (1σ) | Rel. Error [%] (1σ) |
---|---|---|---|---|---|---|---|---|---|
CFRP | polished | C * | 6 | 50,588 | 95.25 | 95.25 | 96.39 | 4.12 | 4.33 |
polished | O * | 8 | 822 | 4.75 | 4.75 | 3.61 | 0.31 | 6.62 | |
polished polished | C ** O ** | 6 8 | 41,255 593 | 95.73 4.27 | 95.73 4.27 | 96.76 3.24 | 4.14 0.31 | 4.33 7.15 | |
CFRP | polarized polarized polarized polarized | C * O * C ** O ** | 6 8 6 8 | 98,313 2392 83,433 2135 | 93.28 6.64 93.04 6.96 | 93.28 6.64 93.04 6.96 | 94.89 5.07 94.68 5.32 | 4.05 0.38 4.04 0.40 | 4.35 5.72 4.35 5.77 |
Glassy Carbon | polished | C # | 6 | 61,582 | 97.61 | 97.61 | 98.20 | 4.19 | 4.29 |
polished | O # | 8 | 463 | 2.37 | 2.37 | 1.79 | 0.18 | 7.61 | |
polished | C ## | 6 | 76,278 | 97.98 | 97.98 | 98.47 | 4.20 | 4.28 | |
polished | O ## | 8 | 482 | 2.02 | 2.02 | 1.53 | 0.15 | 7.64 | |
Glassy Carbon | polarized | C O Na Cl | 6 8 11 17 | 55,184 566 266 201 | 96.66 3.09 0.19 0.07 | 96.66 3.09 0.19 0.07 | 97.54 2.34 0.10 0.02 | 4.18 0.22 0.03 0.01 | 4.33 7.23 15.56 17.09 |
HOPG | Freshly cleaved | C O | 6 8 | 266,167 276 | 99.65 0.35 | 99.65 0.35 | 99.74 0.26 | 4.23 0.04 | 4.25 11.97 |
HOPG | polarized | C | 6 | 125,020 | 99.78 | 99.78 | 99.84 | 4.25 | 4.25 |
O | 8 | 76 | 0.21 | 0.21 | 0.16 | 0.06 | 26.78 |
Material | Edge Plane Capacitance (μF cm−2) | Basal Plane Capacitance (μF cm−2) | Material Capacitance (μF cm−2) | References |
---|---|---|---|---|
Graphene | 1.0 × 105 (nano-effects could be present) | 4 | [65] | |
Graphite | 2.8 | 1.8 | [174] | |
HOPG | 0.81–1.0 | [145] | ||
Graphite | 1–3 | 50–100 | [170,175,176] | |
Glassy carbon | ≥13 | [170] | ||
Carbon felt | 47.8 | 3.2 | [177] | |
Glassy carbon | 10–25 | [177] | ||
Glassy carbon | 35 | [69] | ||
Hydrogenated glassy carbon | 20 | [69] | ||
HOPG | 6 | [69] | ||
Diamond | 5 | [69] | ||
CFRP | 19.5–34.5 | This work | ||
Glassy carbon | 13.6–85.5 | This work | ||
HOPG | 1.4–1.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofoegbu, S.U.; Ferreira, M.G.S.; Nogueira, H.I.S.; Zheludkevich, M. Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C 2023, 9, 7. https://doi.org/10.3390/c9010007
Ofoegbu SU, Ferreira MGS, Nogueira HIS, Zheludkevich M. Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C. 2023; 9(1):7. https://doi.org/10.3390/c9010007
Chicago/Turabian StyleOfoegbu, Stanley Udochukwu, Mário Guerreiro Silva Ferreira, Helena I. S. Nogueira, and Mikhail Zheludkevich. 2023. "Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media" C 9, no. 1: 7. https://doi.org/10.3390/c9010007
APA StyleOfoegbu, S. U., Ferreira, M. G. S., Nogueira, H. I. S., & Zheludkevich, M. (2023). Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C, 9(1), 7. https://doi.org/10.3390/c9010007