Manganese Oxide Loaded Carbon Fiber for Solar Energy Harvesting and Oil Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Composite Nanofiber Processing
2.4. Oxidization, Stabilization, and Carbonization
2.5. Morphology Observation and Elemental Analysis
2.6. Spilled Oil Decomposition Test under Sunlight
3. Results and Discussion
3.1. Morphology and Structures of Composite Nanofibers
3.2. Modeling the Distribution of Manganese Oxide Particles in Carbon Nanofibers
3.3. Photochemical Response of the Partially Carbonized Nanofiber Electrode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimesso, L.; Heider, L.; Hahn, H. Synthesis of nanocrystalline Mn-oxides by gas condensation. Solid State Ionics 1999, 123, 39–46. [Google Scholar] [CrossRef]
- Baldi, M.; Escribano, V.S.; Amores, J.M.G.; Milella, F.; Busca, G. Characterization of manganese and iron oxides as combustion catalysts for propane and propene. Appl. Catal. B Environ. 1998, 17, L175–L182. [Google Scholar] [CrossRef]
- Stobbe, E.R.; Boer, B.A.; Geus, J.W. The reduction and oxidation behaviour of manganese oxides. Catal. Today 1999, 47, 161–167. [Google Scholar] [CrossRef]
- Reddy, R.N.; Reddy, R.G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources 2004, 132, 315–320. [Google Scholar] [CrossRef]
- Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P.M.; Wei, B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries. Electrochim. Acta 2015, 170, 164–170. [Google Scholar] [CrossRef]
- Wayu, M. Manganese oxide carbon-based nanocomposite in energy storage applications. Solids 2021, 2, 232–248. [Google Scholar] [CrossRef]
- Mondal, K.; Kumar, R.; Sharma, A. Metal-oxide decorated multilayered three-dimensional (3D) porous carbon thin films for supercapacitor electrodes. Ind. Eng. Chem. Res. 2016, 55, 12569–12581. [Google Scholar] [CrossRef]
- Wu, D.; Xie, X.; Zhang, Y.; Zhang, D.; Du, W.; Zhang, X.; Wang, B. MnO2/carbon composites for supercapacitor: Synthesis and electrochemical performance. Front. Mater. 2020, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Xu, T.; Bai, J.; Li, C. MnO2 nanosheets grown on multichannel carbon nanofibers containing amorphous cobalt oxide as a flexible electrode for supercapacitors. ACS Appl. Energy Mater. 2019, 2, 8675–8684. [Google Scholar] [CrossRef]
- Saito, Y.; Meguro, M.; Ashizawa, M.; Waki, K.; Yuksel, R.; Unaland, H.E.; Matsumoto, H. Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes. RSC Adv. 2017, 7, 12351–12358. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Ji, L.; Woodroof, M.D.; Zhang, X. Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 5025–5031. [Google Scholar] [CrossRef]
- Liu, J.; Essner, J.; Li, J. Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem. Mater. 2010, 22, 5022–5030. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Park, S.J.; Khil, M.S.; Kim, H.Y. Preparation of MnO nanofibers by novel hydrothermal treatment of manganese acetate/PVA electrospun nanofiber mats. Mater. Sci. Eng. B 2009, 162, 205–208. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 2022, 48, 18374–18383. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.; Kim, T.; El-Newehy, M.; Aldalbahi, A.; Yoon, S.S. Electrospun zinc-manganese bimetallic oxide carbon nanofibers as freestanding supercapacitor electrodes. Int. J. Energy Res. 2022, 46, 22100–22112. [Google Scholar] [CrossRef]
- Divya, P.; Prakash, N.G.; Ko, T.J.; Rosaiah, P. Metal/metal oxide (N-MnO/rGO) encapsulated carbon nanofiber composites for high-performance Li-ion batteries. J. Clust. Sci. 2023, 34. (early access). [Google Scholar] [CrossRef]
- Tandon, A.; Rani, S.; Sharma, Y. Designing the binder-free conversion-based manganese oxide nanofibers as highly stable and rate-capable anode for next-generation Li-ion batteries. ACS Appl. Energy Mater. 2022, 5, 6855–6868. [Google Scholar] [CrossRef]
- Alegre, C.; Busacca, C.; Di Blasi, A.; Cannilla, C.; Barbera, O.; Antonucci, V.; Lázaro, M.J.; Baglio, V. Electrospun MnCo2O4/carbon-nanofibers as oxygen electrode for alkaline zinc-air batteries. J. Energy Storage 2022, 55, 105404. [Google Scholar] [CrossRef]
- Haridas, A.K.; Sadan, M.K.; Kim, J.-H.; Lee, Y.; Ahn, J.-H. Electrospun Interconnected Bead-Like P2-NaxCoyMn(1−y)O2 (x = 0.66, y = 0.1) Cathode Material for Stable Sodium-Ion Storage. Batteries 2022, 8, 237. [Google Scholar] [CrossRef]
- Kongthong, T.; Poochai, C.; Sriprachuabwong, C.; Tuantranont, A.; Nanan, S.; Meethong, N.; Pakawatpanurut, P.; Amornsakchai, T.; Sodtipinta, J. Microwave-assisted synthesis of nitrogen-doped pineapple leaf fiber-derived activated carbon with manganese dioxide nanofibers for high-performance coin- and pouch-cell supercapacitors. J. Sci. Adv. Mater. Devices 2022, 7, 100434. [Google Scholar] [CrossRef]
- Elghamry, I.; Al-Jendan, S.A.; Saleh, M.M.; Abdelsalam, M.E. Bimetallic nickel/manganese phosphate-carbon nanofiber electrocatalyst for the oxidation of formaldehyde in alkaline medium. RSC Adv. 2022, 12, 20656–20671. [Google Scholar] [CrossRef]
- Poudel, M.B.; Shin, M.; Kim, H.J. Interface engineering of MIL-88 derived MnFe-LDH and MnFe2O3 on three-dimensional carbon nanofibers for the efficient adsorption of Cr(VI), Pb(II), and As(III) ions. Sep. Purif. Technol. 2022, 287, 120463. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, T.; Guo, Q.; Qiu, F.; Yang, D.; Ou, Z. Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation. Chem. Eng. J. 2018, 351, 622–630. [Google Scholar] [CrossRef]
- Lianos, P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the Photofuelcell: A review of a re-emerging research field. J. Hazard. Mater. 2011, 185, 575–590. [Google Scholar] [CrossRef]
- Kaneko, M.; Ueno, H.; Ohnuki, K.; Horikawa, M.; Saito, R.; Nemoto, J. Direct electrical power generation from urine, wastes and biomass with simultaneous photodecomposition and cleaning. Biosens. Bioelectron. 2007, 23, 140–143. [Google Scholar] [CrossRef]
- Gan, Y.X.; Gan, B.J.; Su, L. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array. Mater. Sci. Eng. B 2011, 176, 1197–1206. [Google Scholar] [CrossRef]
- Marschall, R.; Klaysom, C.; Mukherji, A.; Wark, M.; Lu, G.Q.; Wang, L. Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell. Int. J. Hydrogen Energy 2012, 37, 4012–4017. [Google Scholar] [CrossRef]
- Cheng, H.; Qian, Q.; Wang, X.; Yu, P.; Mao, L. Electricity generation from carboxymethyl cellulose biomass: A new application of enzymatic biofuel cells. Electrochim. Acta 2012, 82, 203–207. [Google Scholar] [CrossRef]
- Gan, Y.X.; Gan, B.J.; Clark, E.; Su, L.; Zhang, L. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell. Mater. Res. Bull. 2012, 47, 2380–2388. [Google Scholar] [CrossRef]
- Kadaksham, J.; Singh, P.; Aubry, N. Manipulation of particles using dielectrophoresis. Mech. Res. Commun. 2006, 33, 108–122. [Google Scholar] [CrossRef]
- Kadaksham, A.T.J.; Singh, P.; Aubry, N. Dielectrophoresis of nanoparticles. Electrophoresis 2004, 25, 3625–3632. [Google Scholar] [CrossRef] [PubMed]
- Aubry, N.; Singh, P. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis. Electrophoresis 2006, 27, 703–715. [Google Scholar] [CrossRef]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 2009; pp. 139–180. [Google Scholar] [CrossRef]
- Wang, L.; Lu, J.; Marchenko, S.A.; Monuki, E.S.; Flanagan, L.A.; Lee, A.P. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 2009, 30, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Lewpiriyawong, N.; Yang, C. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter. Electrophoresis 2014, 35, 714–720. [Google Scholar] [CrossRef]
- Jia, Y.; Ren, Y.; Jiang, H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis 2015, 36, 1744–1753. [Google Scholar] [CrossRef]
Atomic Number | Element Symbol | Element Name | Atomic Conc. | Weight Conc. |
---|---|---|---|---|
6 | C | Carbon | 54.769 | 44.689 |
7 | N | Nitrogen | 34.529 | 32.866 |
8 | O | Oxygen | 7.006 | 7.615 |
13 | Al | Aluminum | 0.492 | 0.902 |
14 | Si | Silicon | 0.263 | 0.501 |
25 | Mn | Manganese | 2.684 | 10.020 |
78 | Pt | Platinum | 0.257 | 3.407 |
Element Number | Element Symbol | Element Name | Atomic Conc. | Weight Conc. | Atomic Conc. Normd. | Weight Conc. Normd. |
---|---|---|---|---|---|---|
5 | B | Boron | 4.744 | 3.600 | 4.750 | 3.655 |
6 | C | Carbon | 55.277 | 46.600 | 55.338 | 47.310 |
7 | N | Nitrogen | 30.913 | 30.400 | 30.947 | 30.863 |
8 | O | Oxygen | 5.609 | 6.300 | 5.616 | 6.396 |
13 | Al | Aluminum | 0.423 | 0.800 | 0.423 | 0.812 |
14 | Si | Silicon | 0.254 | 0.500 | 0.254 | 0.508 |
25 | Mn | Manganese | 2.671 | 10.300 | 2.674 | 10.457 |
78 | Pt | Platinum | 0.110 | 1.500 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Y.X.; Tran, A.B.; Rivera, A.; Wu, R.; Sukkoed, N.; Yu, Z.; Gan, J.B.; Dominguez, D.; Chaparro, F.J. Manganese Oxide Loaded Carbon Fiber for Solar Energy Harvesting and Oil Decomposition. C 2023, 9, 26. https://doi.org/10.3390/c9010026
Gan YX, Tran AB, Rivera A, Wu R, Sukkoed N, Yu Z, Gan JB, Dominguez D, Chaparro FJ. Manganese Oxide Loaded Carbon Fiber for Solar Energy Harvesting and Oil Decomposition. C. 2023; 9(1):26. https://doi.org/10.3390/c9010026
Chicago/Turabian StyleGan, Yong X., Anh B. Tran, Alexander Rivera, Ryan Wu, Natnichar Sukkoed, Zhen Yu, Jeremy B. Gan, Dominic Dominguez, and Francisco J. Chaparro. 2023. "Manganese Oxide Loaded Carbon Fiber for Solar Energy Harvesting and Oil Decomposition" C 9, no. 1: 26. https://doi.org/10.3390/c9010026
APA StyleGan, Y. X., Tran, A. B., Rivera, A., Wu, R., Sukkoed, N., Yu, Z., Gan, J. B., Dominguez, D., & Chaparro, F. J. (2023). Manganese Oxide Loaded Carbon Fiber for Solar Energy Harvesting and Oil Decomposition. C, 9(1), 26. https://doi.org/10.3390/c9010026