Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pretreatment of GO
2.2.2. Functionalization of GO Using Silane (GPTMS)
2.2.3. Preparation of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)
2.3.3. Optical Microscopy
2.3.4. Mechanical Tension Testing
3. Results
3.1. Characterization of GO, GO-GPTMS, and Nanocompounds by FTIR Spectroscopy
- The bands were measured using originPro, (integration option) to obtain the areas of each selected peak or signal.
- A polynomial baseline was drawn from the raw spectra.
- The resulting spectrum was multiplied by −1, and the origin was set to y = 0 to obtain positive bands.
3.2. Morphological Characterization
3.2.1. Characterization of Silane-GPTMS Functionalized GOs and GOs by Scanning Electron Microscopy (SEM/EDS)
3.2.2. Interface and Microstructure of Nanocompounds
3.3. Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds by Optical Microscopy
3.4. Mechanical Characterization of Nanocompounds
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braun, T.; Schubert, A.; Zsindely, S. Nanoscience and Nanotechnology on the Balance. Scientometrics 1997, 38, 321–325. [Google Scholar] [CrossRef]
- Hu, H.; Onyebueke, L.; Abatan, A. Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation. J. Miner. Mater. Charact. Eng. 2010, 9, 275–319. [Google Scholar] [CrossRef]
- Matin, E.; Attar, M.; Ramezanzadeh, B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. Prog. Org. Coat. 2015, 78, 395–403. [Google Scholar] [CrossRef]
- Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corros. Sci. 2014, 88, 387–399. [Google Scholar] [CrossRef]
- Jin, F.; Li, X.; Park, S. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Jin, F.; Ma, C.; Park, S. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng. A 2011, 528, 8517–8522. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, F.; Han, E. Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Prog. Org. Coat. 2013, 76, 571–580. [Google Scholar] [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 2015, 85, 199–207. [Google Scholar] [CrossRef]
- Chen, X.; Deng, X.; Shen, W.; Jia, M. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr. Polym. 2018, 181, 879–884. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Qin, C.; Yang, S.; Song, X.; Wang, S.; Li, K. Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics. Cellulose 2018, 25, 7065–7078. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.; Tung, V.; Kaner, R. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2009, 110, 132–145. [Google Scholar] [CrossRef]
- Sun, X.; Sun, H.; Li, H.; Peng, H. Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Adv. Mater. 2013, 25, 5153–5176. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Dai, W.; Song, Y.; Wang, D.; Zeng, L.; Jiang, N. Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym. Compos. 2014, 36, 556–565. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhu, H. Structure and Properties of Graphene. In Graphene; Academic Press: Cambridge, MA, USA, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Lee, C.; Le, Q.; Kim, C.; Kim, S. Use of silane-functionalized graphene oxide in organic photovoltaic cells and organic light-emitting diodes. Phys. Chem. Chem. Phys. 2015, 17, 9369–9374. [Google Scholar] [CrossRef]
- Lee, C.; Bae, J.; Kim, T.; Chang, S.; Kim, S. Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2015, 75, 11–17. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Wang, X.; Jin, J.; Song, M. An investigation of the mechanism of graphene toughening epoxy. Carbon 2013, 65, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zhou, Y.; Zhang, X.; Zou, H.; Chen, Y.; Liang, M. Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites. Polym. Bull. 2019, 76, 6033–6047. [Google Scholar] [CrossRef]
- Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 2013, 60, 16–27. [Google Scholar] [CrossRef]
- Fu, J.; Zong, P.; Chen, L.; Dong, X.; Shang, D.; Yu, W.; Shi, L.; Deng, W. A Facile Approach to Covalently Functionalized Graphene Nanosheet Hybrids and Polymer Nanocomposites. Chemnanomat 2016, 2, 830–839. [Google Scholar] [CrossRef]
- Chu, H.; Wei, H.; Zhu, J. Ultrasound enhanced radical graft polymerization of starch and butyl acrylate. Chem. Eng. Process. Process Intensif. 2015, 90, 1–5. [Google Scholar] [CrossRef]
- Victoria Tafoya, J.; Doszczeczko, S.; Titirici, M.; Jorge Sobrido, A. Enhancement of the electrocatalytic activity for the oxygen reduction reaction of boron-doped reduced graphene oxide via ultrasonic treatment. Int. J. Hydrogen Energy 2022, 47, 5462–5473. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, W.; Wang, L.; Li, S.; Zhu, T.; Liu, G. Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corros. Sci. 2016, 103, 312–318. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.; Rashidi, A.; Bagherzadeh, M. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog. Org. Coat. 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Wang, X.; Xing, W.; Zhang, P.; Song, L.; Yang, H.; Hu, Y. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 2012, 72, 737–743. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Young, R.J.; Deng, L.; Yang, F.; Hao, L.; Jiao, W.; Liu, W. Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 2013, 54, 6437–6446. [Google Scholar] [CrossRef]
- Xue, B.; Yu, M.; Liu, J.; Liu, J.; Li, S.; Xiong, L. Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide. J. Alloy. Compd. 2017, 725, 84–95. [Google Scholar] [CrossRef]
- Vryonis, O.; Harrell, T.M.; Andritsch, T.; Vaughan, A.S.; Lewin, P.L. Solvent Mixing and Its Effect on Epoxy Resin Filled with Graphene Oxide. In Proceedings of the 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, H.; Zhang, S.; Li, D.; Liu, P.; Peng, Z. Space charge characteristics of graphene oxide/epoxy resin nanocomposites under polarity reversal voltage. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018. [Google Scholar] [CrossRef]
- Cai, K.; Zuo, S.; Luo, S.; Yao, C.; Liu, W.; Ma, J.; Mao, H.; Li, Z. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 2016, 6, 95965–95972. [Google Scholar] [CrossRef]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Li, C.; Weng, M.; Huang, S. Preparation and Characterization of pH Sensitive Chitosan/3-Glycidyloxypropyl Trimethoxysilane (GPTMS) Hydrogels by Sol-Gel Method. Polymers 2020, 12, 1326. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Wu, T.; Pan, Y.; Liu, G. Inhibited corrosion-promotion activity of graphene encapsulated in nanosized silicon oxide. J. Mater. Chem. A 2015, 3, 16843–16848. [Google Scholar] [CrossRef]
- Louafi, Y.; Ladjouzi, M.; Taibi, K. Dissolved carbon dioxide effect on the behavior of carbon steel in a simulated solution at different temperatures and immersion times. J. Solid State Electrochem. 2009, 14, 1499–1508. [Google Scholar] [CrossRef]
- Pourhashem, S.; Rashidi, A.; Vaezi, M.; Bagherzadeh, M. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf. Coat. Technol. 2017, 317, 1–9. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.; Baeck, S.; Shim, S. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett. 2015, 16, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740–2749. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Wu, T.; Wang, M.; Yang, Z.; Pan, Y.; Liu, G. Inhibiting the Corrosion-Promotion Activity of Graphene. Chem. Mater. 2015, 27, 2367–2373. [Google Scholar] [CrossRef]
- Hou, S.; Su, S.; Kasner, M.; Shah, P.; Patel, K.; Madarang, C. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 2010, 501, 68–74. [Google Scholar] [CrossRef]
- Huang, J.; Nie, X. A simple and novel method to design flexible and transparent epoxy resin with tunable mechanical properties. Polym. Int. 2016, 65, 835–840. [Google Scholar] [CrossRef]
- Atif, R.; Shyha, I.; Inam, F. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review. Polymers 2016, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y. Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos. Part A Appl. Sci. Manuf. 2017, 103, 74–83. [Google Scholar] [CrossRef]
- Gilmer, C.M.; Zvokel, C.; Vick, A.; Bowden, N.B. Bowden Separation of saturated fatty acids and fatty acid methyl esters with epoxy nanofiltration membranes. RSC Adv. 2017, 7, 5562655632. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Chen, J.; Huang, L.; Lv, Y. Uniaxial Tensile Creep Behavior of Epoxy-Based Polymer Using Molecular Simulation. Polymers 2021, 13, 261. [Google Scholar] [CrossRef]
Sample | %wt GO | Acetone | Epoxy Resin (EP) | Catalyst |
---|---|---|---|---|
1 | 60 mg | 0.6 mL | 3.960 g | 1.980 g |
2 | 120 mg | 1.2 mL | 3.918 g | 1.962 g |
3 | 180 mg | 1.8 mL | 3.882 g | 1.938 g |
Material | Sample | |
---|---|---|
GO/Epoxy | GO-GPTMS/Epoxy | |
EP | DGEBA | DGEBA |
GO1/Epoxy-1 | GO1-GPTMS/Epoxy-1 | |
GO1 | GO1/Epoxy-2 | GO1-GPTMS/Epoxy-2 |
GO1/Epoxy-3 | GO1-GPTMS/Epoxy-3 | |
GO2 | GO2/Epoxy-1 | GO2-GPTMS/Epoxy-1 |
GO2/Epoxy-2 | GO2-GPTMS/Epoxy-2 | |
GO2/Epoxy-3 | GO2-GPTMS/Epoxy-3 | |
GO3 | GO3/Epoxy-1 | GO3-GPTMS/Epoxy-1 |
GO3/Epoxy-2 | GO3-GPTMS/Epoxy-2 | |
GO3/Epoxy-3 | GO3-GPTMS/Epoxy-3 |
GOs | -OH | -CH2 | -COOH | C=O | C=C | C-OH | C-CH2 | C-C | C-O-C | C-O |
---|---|---|---|---|---|---|---|---|---|---|
GO1 | 84,319.7 | 5128.66 | 4912.41 | 13,917.2 | 12,355.6 | 9571.69 | - | - | 7374.74 | 11,531.9 |
GO2 | 40,603.72 | 9028.46 | - | 11,700.27 | 10,756.05 | - | 15,674.61 | 12,592.19 | 19,341.69 | 6832.46 |
GO3 | 31,760.92 | 14,156.32 | - | 11,304.44 | 11,802.26 | - | 16,037.42 | 12,706.46 | 16,115.51 | 4287.52 |
Sample | -OH | -CH2 | C=O | C=C | C-C | Si-O-C | C-O-C | Si-O-Si | C-O |
---|---|---|---|---|---|---|---|---|---|
GO1-GPTMS | 45,787.94 | 12,791.81 | 13,293.09 | 24,618.71 | 10,334.75 | 7311.22 | 4338.98 | 6312.62 | 10,332.37 |
GO2-GPTMS | 44,145.55 | 11,314.32 | 11,794.27 | 25,673.36 | 9081.82 | 7038.82 | 4217.75 | 5586.69 | 9992.90 |
GO3-GPTMS | 30,844.95 | 10,996.61 | 7151.31 | 25,175.67 | 8201.3 | 6050.94 | 3834.42 | 4962.36 | 8772.26 |
Sample | Stress (MPa) | Young Module (GPa) | Strain Max (%) |
---|---|---|---|
DGEBA | 64.778 ± 2.02 | 1.551 ± 0.52 | 9.860 ± 0.72 |
GO1/Epoxy-1 | 39.332 ± 1.33 | 1.012 ± 0.46 | 10.573 ± 0.39 |
GO1/Epoxy-2 | 30.603 ± 1.35 | 0.736 ± 0.18 | 10.340 ± 0.16 |
GO1/Epoxy-3 | 19.550 ± 1.35 | 0.409 ± 0.33 | 10.870 ± 0.78 |
GO1-GPTMS/Epoxy-1 | 87.836 ± 1.17 | 1.936 ± 0.27 | 13.195 ± 0.89 |
GO1-GPTMS/Epoxy-2 | 63.358 ± 1.61 | 1.905 ± 0.51 | 10.415 ± 0.65 |
GO1-GPTMS/Epoxy-3 | 59.524 ± 1.36 | 1.704 ± 0.92 | 10.567 ± 0.42 |
GO2/Epoxy-1 | 38.623 ± 1.78 | 1.613 ± 0.63 | 10.917 ± 0.83 |
GO2/Epoxy-2 | 62.528 ± 1.53 | 1.443 ± 0.32 | 9.763 ± 0.52 |
GO2/Epoxy-3 | 18.357 ± 1.23 | 0.740 ± 0.05 | 9.041 ± 0.20 |
GO2-GPTMS/Epoxy-1 | 98.713 ± 1.23 | 2.096 ± 0.19 | 14.90 ± 0.19 |
GO2-GPTMS/Epoxy-2 | 51.688 ± 1.25 | 1.777 ± 0.33 | 10.530 ± 0.51 |
GO2-GPTMS/Epoxy-3 | 46.017 ± 1.78 | 1.631 ± 0.33 | 10.899 ± 0.97 |
GO3/Epoxy-1 | 47.363 ± 2.65 | 1.211 ± 0.61 | 9.381 ± 0.42 |
GO3/Epoxy-2 | 41.970 ± 2.03 | 1.010 ± 0.39 | 8.353 ± 0.67 |
GO3/Epoxy-3 | 33.145 ± 2.85 | 0.984 ± 0.19 | 8.138 ± 0.45 |
GO3-GPTMS/Epoxy-1 | 55.836 ± 1.12 | 1.332 ± 0.52 | 9.446 ± 0.66 |
GO3-GPTMS/Epoxy-2 | 52.417 ± 1.79 | 1.291 ± 0.17 | 9.765 ± 0.35 |
GO3-GPTMS/Epoxy-3 | 46.038 ± 1.45 | 1.281 ± 0.49 | 9.736 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Delgado, A.M.; González-Mondragón, E.G.; Hernández-Pérez, R.; Salgado-Delgado, R.; Santana-Camilo, J.A.; Olarte-Paredes, A. Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods. C 2023, 9, 28. https://doi.org/10.3390/c9010028
Salgado-Delgado AM, González-Mondragón EG, Hernández-Pérez R, Salgado-Delgado R, Santana-Camilo JA, Olarte-Paredes A. Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods. C. 2023; 9(1):28. https://doi.org/10.3390/c9010028
Chicago/Turabian StyleSalgado-Delgado, Areli Marlen, Elizabeth Grissel González-Mondragón, Ricardo Hernández-Pérez, René Salgado-Delgado, José Alfonso Santana-Camilo, and Alfredo Olarte-Paredes. 2023. "Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods" C 9, no. 1: 28. https://doi.org/10.3390/c9010028
APA StyleSalgado-Delgado, A. M., González-Mondragón, E. G., Hernández-Pérez, R., Salgado-Delgado, R., Santana-Camilo, J. A., & Olarte-Paredes, A. (2023). Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods. C, 9(1), 28. https://doi.org/10.3390/c9010028