Permafrost Effect on the Spatial Distribution of CO2 Emission in the North of Western Siberia (Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Methods
3. Results
3.1. Topsoil Temperature and SWC
3.2. WTL and Thawing Depth
3.3. CO2 Emission
3.4. Correlation between CO2 Emission and Environmental Factors
4. Discussion
4.1. Drivers of Permafrost Impact on CO2 Emissions
4.2. Response of CO2 Emissions to Environmental Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serreze, M.C.; Barry, R.G. Processes and Impacts of Arctic Amplification: A Research Synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon Release through Abrupt Permafrost Thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Khvorostyanov, D.V.; Krinner, G.; Ciais, P.; Heimann, M.; Zimov, S.A. Vulnerability of Permafrost Carbon to Global Warming. Part I: Model Description and Role of Heat Generated by Organic Matter Decomposition. Tellus Ser. B Chem. Phys. Meteorol. 2008, 60B, 250–264. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Abbott, B.W.; Commane, R.; Ernakovich, J.; Euskirchen, E.; Hugelius, G.; Grosse, G.; Jones, M.; Koven, C.; Leshyk, V.; et al. Permafrost and Climate Change: Carbon Cycle Feedbacks from the Warming Arctic. Annu. Rev. Environ. Resour. 2022, 47, 343–371. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Chapin, F.S. The Response of Tundra Plant Biomass, Aboveground Production, Nitrogen, and CO2 Flux to Experimental Warming. Ecology 1998, 79, 1526–1544. [Google Scholar] [CrossRef]
- Shaver, G.R.; Canadell, J.; Chapin, F.S.; Gurevitch, J.; Harte, J.; Henry, G.; Ineson, P.; Jonasson, S.; Melillo, J.; Pitelka, L.; et al. Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. BioScience 2000, 50, 871. [Google Scholar] [CrossRef]
- Dutta, K.; Schuur, E.A.G.; Neff, J.C.; Zimov, S.A. Potential Carbon Release from Permafrost Soils of Northeastern Siberia: Carbon Release from Siberian Permafrost Soils. Glob. Chang. Biol. 2006, 12, 2336–2351. [Google Scholar] [CrossRef]
- Vogel, J.; Schuur, E.A.G.; Trucco, C.; Lee, H. Response of CO 2 Exchange in a Tussock Tundra Ecosystem to Permafrost Thaw and Thermokarst Development. J. Geophys. Res. 2009, 114, G04018. [Google Scholar] [CrossRef]
- Wang, W.; Peng, S.; Wang, T.; Fang, J. Winter Soil CO2 efflux and Its Contribution to Annual Soil Respiration in Different Ecosystems of a Forest-Steppe Ecotone, North China. Soil Biol. Biochem. 2010, 42, 451–458. [Google Scholar] [CrossRef]
- Natali, S.M.; Schuur, E.A.G.; Webb, E.E.; Pries, C.E.H.; Crummer, K.G. Permafrost Degradation Stimulates Carbon Loss from Experimentally Warmed Tundra. Ecology 2014, 95, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Loewenstein, W. Drivers of CO2-Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses. Energies 2020, 13, 3956. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Gatto, A. The Puzzle of Greenhouse Gas Footprints of Oil Abundance. Socio-Econ. Plan. Sci. 2021, 75, 100936. [Google Scholar] [CrossRef]
- Schädel, C.; Koven, C.D.; Lawrence, D.M.; Celis, G.; Garnello, A.J.; Hutchings, J.; Mauritz, M.; Natali, S.M.; Pegoraro, E.; Rodenhizer, H.; et al. Divergent Patterns of Experimental and Model-Derived Permafrost Ecosystem Carbon Dynamics in Response to Arctic Warming. Environ. Res. Lett. 2018, 13, 105002. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S. Permafrost and the Global Carbon Budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef]
- Dorrepaal, E.; Toet, S.; van Logtestijn, R.S.P.; Swart, E.; van de Weg, M.J.; Callaghan, T.V.; Aerts, R. Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature 2009, 460, 616–619. [Google Scholar] [CrossRef]
- van Huissteden, J.; Dolman, A. Soil Carbon in the Arctic and the Permafrost Carbon Feedback. Curr. Opin. Environ. Sustain. 2012, 4, 545–551. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- von Lützow, M.; Kögel-Knabner, I. Temperature Sensitivity of Soil Organic Matter Decomposition—What Do We Know? Biol. Fertil. Soils 2009, 46, 1–15. [Google Scholar] [CrossRef]
- Natali, S.M.; Schuur, E.A.G.; Trucco, C.; Hicks Pries, C.E.; Crummer, K.G.; Baron Lopez, A.F. Effects of Experimental Warming of Air, Soil and Permafrost on Carbon Balance in Alaskan Tundra: Warming of alaskan tundra. Glob. Chang. Biol. 2011, 17, 1394–1407. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Wagner, D.; Liebner, S. Global Warming and Carbon Dynamics in Permafrost Soils: Methane Production and Oxidation. In Permafrost Soils; Margesin, R., Ed.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 16, pp. 219–236. ISBN 978-3-540-69370-3. [Google Scholar]
- Peregon, A.; Maksyutov, S.; Yamagata, Y. An Image-Based Inventory of the Spatial Structure of West Siberian Wetlands. Environ. Res. Lett. 2009, 4, 045014. [Google Scholar] [CrossRef]
- Matthews, E.; Fung, I. Methane Emission from Natural Wetlands: Global Distribution, Area, and Environmental Characteristics of Sources. Glob. Biogeochem. Cycles 1987, 1, 61–86. [Google Scholar] [CrossRef]
- Astakhov, V.; Nazarov, D. Correlation of Upper Pleistocene Sediments in Northern West Siberia. Quat. Sci. Rev. 2010, 29, 3615–3629. [Google Scholar] [CrossRef]
- Åkerman, H.J.; Johansson, M. Thawing Permafrost and Thicker Active Layers in Sub-Arctic Sweden. Permafr. Periglac. Process. 2008, 19, 279–292. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Kholodov, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.A.; et al. Thermal State of Permafrost in Russia. Permafr. Periglac. Process. 2010, 21, 136–155. [Google Scholar] [CrossRef]
- Lara, M.J.; Genet, H.; McGuire, A.D.; Euskirchen, E.S.; Zhang, Y.; Brown, D.R.N.; Jorgenson, M.T.; Romanovsky, V.; Breen, A.; Bolton, W.R. Thermokarst Rates Intensify Due to Climate Change and Forest Fragmentation in an Alaskan Boreal Forest Lowland. Glob. Chang. Biol. 2016, 22, 816–829. [Google Scholar] [CrossRef]
- Borge, A.F.; Westermann, S.; Solheim, I.; Etzelmüller, B. Strong Degradation of Palsas and Peat Plateaus in Northern Norway during the Last 60 Years. Cryosphere 2017, 11, 1–16. [Google Scholar] [CrossRef]
- Helbig, M.; Chasmer, L.E.; Desai, A.R.; Kljun, N.; Quinton, W.L.; Sonnentag, O. Direct and Indirect Climate Change Effects on Carbon Dioxide Fluxes in a Thawing Boreal Forest-Wetland Landscape. Glob. Chang. Biol. 2017, 23, 3231–3248. [Google Scholar] [CrossRef] [PubMed]
- Minayeva, T.; Sirin, A.; Kershaw, P.; Bragg, O. Arctic Peatlands. In The Wetland Book; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–15. ISBN 978-94-007-6173-5. [Google Scholar]
- Olefeldt, D.; Heffernan, L.; Jones, M.C.; Sannel, A.B.K.; Treat, C.C.; Turetsky, M.R. Permafrost Thaw in Northern Peatlands: Rapid Changes in Ecosystem and Landscape Functions. In Ecosystem Collapse and Climate Change; Canadell, J.G., Jackson, R.B., Eds.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2021; Volume 241, pp. 27–67. ISBN 978-3-030-71329-4. [Google Scholar]
- Pavlov, A.V.; Moskalenko, N.G. The Thermal Regime of Soils in the North of Western Siberia. Permafr. Periglac. Process. 2002, 13, 43–51. [Google Scholar] [CrossRef]
- Melnikov, E.S.; Leibman, M.O.; Moskalenko, N.G.; Vasiliev, A.A. Active-Layer Monitoring in the Cryolithozone of West Siberia. Polar Geogr. 2004, 28, 267–285. [Google Scholar] [CrossRef]
- Ponomareva, O.; Shur, Y. Long-Term Monitoring of Frost Heave and Thaw Settlement in the Northern Taiga of West Siberia. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; pp. 1439–1444. [Google Scholar]
- Matyshak, G.V.; Goncharova, O.Y.; Moskalenko, N.G.; Walker, D.A.; Epstein, H.E.; Shur, Y. Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia. Permafr. Periglac. Process. 2017, 28, 108–118. [Google Scholar] [CrossRef]
- Goncharova, O.Y.; Matyshak, G.V.; Epstein, H.E.; Sefilian, A.R.; Bobrik, A.A. Influence of Snow Cover on Soil Temperatures: Meso- and Micro-Scale Topographic Effects (a Case Study from the Northern West Siberia Discontinuous Permafrost Zone). CATENA 2019, 183, 104224. [Google Scholar] [CrossRef]
- Department, A.; Service, U.S.N.R.C. Keys to Soil Taxonomy; United States Department of Agriculture: Washington, DC, USA, 2014; ISBN 978-0-16-092321-0. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; 192p. [Google Scholar]
- Matyshak, G.V.; Bogatyrev, L.G.; Goncharova, O.Y.; Bobrik, A.A. Specific Features of the Development of Soils of Hydromorphic Ecosystems in the Northern Taiga of Western Siberia under Conditions of Cryogenesis. Eurasian Soil Sci. 2017, 50, 1115–1124. [Google Scholar] [CrossRef]
- Riveros-Iregui, D.A.; McGlynn, B.L.; Epstein, H.E.; Welsch, D.L. Interpretation and Evaluation of Combined Measurement Techniques for Soil CO2 Efflux: Discrete Surface Chambers and Continuous Soil CO2 Concentration Probes. J. Geophys. Res. Biogeosciences 2008, 113, G04027. [Google Scholar] [CrossRef]
- Marushchak, M.E.; Kiepe, I.; Biasi, C.; Elsakov, V.; Friborg, T.; Johansson, T.; Soegaard, H.; Virtanen, T.; Martikainen, P.J. Carbon Dioxide Balance of Subarctic Tundra from Plot to Regional Scales. Biogeosciences 2013, 10, 437–452. [Google Scholar] [CrossRef]
- Available online: https://www2.gwu.edu/~calm/data/north.htmn (accessed on 15 November 2022).
- Virkkala, A.-M.; Virtanen, T.; Lehtonen, A.; Rinne, J.; Luoto, M. The Current State of CO 2 Flux Chamber Studies in the Arctic Tundra: A Review. Prog. Phys. Geogr. Earth Environ. 2018, 42, 162–184. [Google Scholar] [CrossRef]
- Estop-Aragonés, C.; Czimczik, C.I.; Heffernan, L.; Gibson, C.; Walker, J.C.; Xu, X.; Olefeldt, D. Respiration of Aged Soil Carbon during Fall in Permafrost Peatlands Enhanced by Active Layer Deepening Following Wildfire but Limited Following Thermokarst. Environ. Res. Lett. 2018, 13, 085002. [Google Scholar] [CrossRef]
- Karelin, D.; Goryachkin, S.; Zazovskaya, E.; Shishkov, V.; Pochikalov, A.; Dolgikh, A.; Sirin, A.; Suvorov, G.; Badmaev, N.; Badmaeva, N.; et al. Greenhouse Gas Emission from the Cold Soils of Eurasia in Natural Settings and under Human Impact: Controls on Spatial Variability. Geoderma Reg. 2020, 22, e00290. [Google Scholar] [CrossRef]
- Masyagina, O.V.; Menyailo, O.V. The Impact of Permafrost on Carbon Dioxide and Methane Fluxes in Siberia: A Meta-Analysis. Environ. Res. 2020, 182, 109096. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.D.; Natali, S.M.; Minions, C.; Risk, D.; Arndt, K.; Zona, D.; Euskirchen, E.S.; Rocha, A.V.; Sonnentag, O.; Helbig, M.; et al. Soil Respiration Strongly Offsets Carbon Uptake in Alaska and Northwest Canada. Environ. Res. Lett. 2021, 16, 084051. [Google Scholar] [CrossRef]
- Goncharova, O.Y.; Matyshak, G.V.; Bobrik, A.A.; Timofeeva, M.V.; Sefilyan, A.R. Assessment of the Contribution of Root and Microbial Respiration to the Total Efflux of CO2 from Peat Soils and Podzols in the North of Western Siberia by the Method of Component Integration. Eurasian Soil Sc. 2019, 52, 206–217. [Google Scholar] [CrossRef]
- Seppälä, M. Synthesis of Studies of Palsa Formation Underlining the Importance of Local Environmental and Physical Characteristics. Quat. Res. 2011, 75, 366–370. [Google Scholar] [CrossRef]
- Ponomareva, O.E.; Gravis, A.G.; Berdnikov, N.M. Contemporary Dynamics of Frost Mounds and Flat Peatlands in North Taiga of West Siberia (on the Example of Nadym Site). Earth’s Cryosphere 2012, 16, 21–30. [Google Scholar]
- Timofeeva, M.V.; Goncharova, O.Y.; Matyshak, G.V.; Chuvanov, S.V. Carbon Flows on the Wetland Complex Ecosystems of the Discontinuous Permafrost Zone of Western Siberia. Geosph. Res. 2022, 3, 109–125. [Google Scholar] [CrossRef]
- Smagin, A. Gazovaya Faza Pochv (Gas Phase of Soils); Moscow State University: Moscow, Russia, 2005. [Google Scholar]
- Luan, J.; Liu, S.; Zhu, X.; Wang, J.; Liu, K. Roles of Biotic and Abiotic Variables in Determining Spatial Variation of Soil Respiration in Secondary Oak and Planted Pine Forests. Soil Biol. Biochem. 2012, 44, 143–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncharova, O.; Matyshak, G.; Timofeeva, M.; Chuvanov, S.; Tarkhov, M.; Isaeva, A. Permafrost Effect on the Spatial Distribution of CO2 Emission in the North of Western Siberia (Russia). C 2023, 9, 58. https://doi.org/10.3390/c9020058
Goncharova O, Matyshak G, Timofeeva M, Chuvanov S, Tarkhov M, Isaeva A. Permafrost Effect on the Spatial Distribution of CO2 Emission in the North of Western Siberia (Russia). C. 2023; 9(2):58. https://doi.org/10.3390/c9020058
Chicago/Turabian StyleGoncharova, Olga, Georgy Matyshak, Maria Timofeeva, Stanislav Chuvanov, Matvey Tarkhov, and Anna Isaeva. 2023. "Permafrost Effect on the Spatial Distribution of CO2 Emission in the North of Western Siberia (Russia)" C 9, no. 2: 58. https://doi.org/10.3390/c9020058
APA StyleGoncharova, O., Matyshak, G., Timofeeva, M., Chuvanov, S., Tarkhov, M., & Isaeva, A. (2023). Permafrost Effect on the Spatial Distribution of CO2 Emission in the North of Western Siberia (Russia). C, 9(2), 58. https://doi.org/10.3390/c9020058