Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method
Abstract
:1. Introduction
2. Design, Material, and Methods
3. Results
3.1. NMR Analysis
3.2. Nuclear Quadrupole Resonance (NQR)
3.3. Physical and Thermochemical Properties
3.4. LUMO and HOMO (Frontier Orbital)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kistler-Fischbacher, M.; Weeks, B.K.; Beck, B.R. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021, 143, 115697. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, J.M.; Sun, H.X.; Lu, N.; Ning, G. Bisphosphonate treatment and risk of esophageal cancer: A meta-analysis of observational studies. Osteoporos. Int. 2013, 24, 279–286. [Google Scholar] [CrossRef]
- Åkesson, K.E.; McGuigan, F.E.A. Closing the Osteoporosis Care Gap. Curr. Osteoporos. Rep. 2021, 19, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mollaamin, F. On the Behavior of Boron Nitride Nanotube-Flavin Adenine Dinucleotide Interaction Ion Implantation Order to Design Biofuel Cells. J. Comput. Theor. Nanosci. 2014, 11, 2017–2022. [Google Scholar] [CrossRef]
- Mollaamin, F. Chemotherapy Study of alkaloids through Theoretical Quantum Methods. Moroc. J. Chem. 2020, 8, 400–411. [Google Scholar] [CrossRef]
- Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle Patches as Drug and Vaccine Delivery Platform. Curr. Med. Chem. 2017, 2, 2413–2422. [Google Scholar] [CrossRef]
- Mollaamin, F. Physicochemical investigation of anti-covid19 drugs using several medicinal plants. J. Chil. Chem. Soc. 2022, 67, 5537–5546. [Google Scholar] [CrossRef]
- Mollaamin, F.; Shahriari, S.; Monajjemi, M. Treating omicron ba.4 & ba.5 via herbal antioxidant asafoetida: A dft study of carbon nanocarrier in drug delivery. J. Chil. Chem. Soc. 2023, 68, 5781–5786. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc. 2021, 66, 5195–5205. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sens. Rev. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Tahan, A.; Mollaamin, F.; Monajjemi, M. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. Chem. A 2009, 83, 587–597. [Google Scholar] [CrossRef]
- Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Exchange and Correlation Effect of Hydrogen Chemisorption on Nano V(100) Surface: A DFT Study by Generalized Gradient Approximation (GGA). J. Comput. Theor. Nanosci. 2011, 8, 763–768. [Google Scholar] [CrossRef]
- Monajjemi, M.; Baie, M.T.; Mollaamin, F. Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1–3) complexes: Density functional calculations. Russ. Chem. Bull. 2010, 59, 886–889. [Google Scholar] [CrossRef]
- Khalili Hadad, B.; Mollaamin, F.; Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ. Chem. Bull. 2011, 60, 238–241. [Google Scholar] [CrossRef]
- Mohsin, S.M.N.; Hussein, M.Z.; Sarijo, S.H.; Fakurazi, S.; Arulselvan, P.; Taufiq-Yap, Y.H. Characterisation and Cytotoxicity Assessment of UV Absorbers-Intercalated Zinc/Aluminium-Layered Double Hydroxides on Dermal Fibroblast Cells. Sci. Adv. Mater. 2014, 6, 648–658. [Google Scholar] [CrossRef]
- Monajjemi, M.; Mahdavian, L.; Mollaamin, F.; Khaleghian, M. Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study. Russ. J. Inorg. Chem 2009, 54, 1465–1473. [Google Scholar] [CrossRef]
- Barahuie, F.; Hussein, M.Z.; Hussein-Al-Ali, S.H.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminumlayered double hydroxide nanocomposites. Int. J. Nanomed. 2013, 8, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Kura, A.U.; Ali, S.H.H.A.; Hussein, M.Z.; Fakurazi, S.; Arulselvan, P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int. J. Nanomed. 2013, 8, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, S.M.N.; Hussein, M.Z.; Sarijo, S.H.; Fakurazi, S.; Arulselvan, P.; Hin, T.-Y. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application. Chem. Cent. J. 2013, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, S.M.N.; Hussein, M.Z.; Sarijo, S.H.; Fakurazi, S.; Arulselvan, P.; Taufiq-Yap, Y.H. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules. J. Biomed. Nanotechnol. 2014, 10, 1490–1500. [Google Scholar] [CrossRef]
- Cao, X.; Deng, W.; Fu, M.; Zhu, Y.; Liu, H.; Wang, L.; Zeng, J.; Wei, Y.; Xu, X.; Yu, J. Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: In vitro release kinetics and in vitro/in vivo correlations in beagle dogs. Eur. J. Pharm. Sci. 2013, 48, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarian, R.; Bhowmick, T.; Muro, S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J. Control. Release 2012, 163, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Xue, H.; Cao, Z.; Keefe, A.; Wang, J.; Jiang, S. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials 2011, 32, 4604–4608. [Google Scholar] [CrossRef] [PubMed]
- Bethune, D.S.; Kiang, C.H.; de Vries, M.S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- Abi, T.G.; Karmakar, T.; Taraphder, S. Proton affinity of polar amino acid sidechain analogues anchored to the outer wall of single walled carbon nanotubes. Comput. Theor. Chem. 2013, 1010, 53–66. [Google Scholar] [CrossRef]
- Feng, W.; Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 2011, 29, 889–895. [Google Scholar] [CrossRef]
- Chen, Q.; Kaneko, T.; Hatakeyama, R. Characterization of pulse-driven gas-liquid interfacial discharge plasmas and application to synthesis of gold nanoparticle-DNA encapsulated carbon nanotubes. Curr. Appl. Phys. 2011, 11, S63–S66. [Google Scholar] [CrossRef]
- Ghalandari, B.; Monajjemi, M.; Mollaamin, F. Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery. J. Comput. Theor. Nanosci. 2011, 8, 1212–1219. [Google Scholar] [CrossRef]
- Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Full-Nanotub. Carbon Nanostruct. 2011, 19, 251–261. [Google Scholar] [CrossRef]
- Monajjemi, M.; Khaleghian, M.; Tadayonpour, N.; Mollaamin, F. The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. Int. J. Nanosci. 2010, 9, 517–529. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M.; Salemi, S.; Baei, M.T. A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube. Full-Nanotub. Carbon Nanostruct. 2011, 19, 182–196. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors. J. Clust. Sci. 2023. [Google Scholar] [CrossRef]
- Sapino, S.; Chindamo, G.; Chirio, D.; Manzoli, M.; Peira, E.; Riganti, C.; Gallarate, M. Calcium Phosphate-Coated Lipid Nanoparticles as a Potential Tool in Bone Diseases Therapy. Nanomaterials 2021, 11, 2983. [Google Scholar] [CrossRef]
- Park, J.; Cimpean, A.; Tesler, A.B.; Mazare, A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials 2021, 11, 2359. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, S.-Q. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals 2022, 15, 397. [Google Scholar] [CrossRef]
- Chindamo, G.; Sapino, S.; Peira, E.; Chirio, D.; Gonzalez, M.C.; Gallarate, M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. Nanomaterials 2020, 10, 875. [Google Scholar] [CrossRef]
- Salamanna, F.; Gambardella, A.; Contartese, D.; Visani, A.; Fini, M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. Nanomaterials 2021, 11, 530. [Google Scholar] [CrossRef]
- Choi, S.; Jo, H.-S.; Song, H.; Kim, H.-J.; Oh, J.-K.; Cho, J.-W.; Park, K.; Kim, S.-E. Multifunctional Tannic Acid-Alendronate Nanocomplexes with Antioxidant, Anti-Inflammatory, and Osteogenic Potency. Nanomaterials 2021, 11, 1812. [Google Scholar] [CrossRef]
- Monajjemi, M. Cell membrane causes the lipid bilayers to behave as variable capacitors: A resonance with self-induction of helical proteins. Biophys. Chem. 2015, 207, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Mahdavian, L.; Monajjemi, M. Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation. Microelectron. J. 2010, 41, 142–149. [Google Scholar] [CrossRef]
- Monajjemi, M.; Farahani, N.; Mollaamin, F. Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranes. Phys. Chem. Liq. 2012, 50, 161–172. [Google Scholar] [CrossRef]
- Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys. Chem. Liq. 2011, 49, 561–571. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Application of DFT/TD-DFT Frameworks in the Drug Delivery Mechanism: Investigation of Chelated Bisphosphonate with Transition Metal Cations in Bone Treatment. Chemistry 2023, 5, 365–380. [Google Scholar] [CrossRef]
- Mollaamin, F.; Ilkhani, A.R.; Sakhaei, N.; Bonsakhteh, B.; Faridchehr, A.; Tohidi, S.; Monajjemi, M. Thermodynamic and Solvent Effect on Dynamic Structures of Nano Bilayer-Cell Membrane: Hydrogen Bonding Study. J. Comput. Theor. Nanosci. 2015, 12, 3148–3154. [Google Scholar] [CrossRef]
- Mbese, Z.; Aderibigbe, B.A. Bisphosphonate-Based Conjugates and Derivatives as Potential Therapeutic Agents in Osteoporosis, Bone Cancer and Metastatic Bone Cancer. Int. J. Mol. Sci. 2021, 22, 6869. [Google Scholar] [CrossRef]
- Rauner, M.; Taipaleenmäki, H.; Tsourdi, E.; Winter, E.M. Osteoporosis Treatment with Anti-Sclerostin Antibodies—Mechanisms of Action and Clinical Application. J. Clin. Med. 2021, 10, 787. [Google Scholar] [CrossRef]
- Geiger, I.; FLS-CARE study group; Kammerlander, C.; Höfer, C.; Volland, R.; Trinemeier, J.; Henschelchen, M.; Friess, T.; Böcker, W.; Sundmacher, L. Implementation of an integrated care programme to avoid fragility fractures of the hip in older adults in 18 Bavarian hospitals–study protocol for the cluster-randomised controlled fracture liaison service FLS-CARE. BMC Geriatr. 2021, 21, 43. [Google Scholar] [CrossRef]
- Hayes, K.N.; He, N.; Brown, K.A.; Cheung, A.M.; Juurlink, D.N.; Cadarette, S.M. Over half of seniors who start oral bisphosphonate therapy are exposed for 3 or more years: Novel rolling window approach and patterns of use. Osteoporos. Int. 2021, 32, 1413–1420. [Google Scholar] [CrossRef]
- Sølling, A.S.; Christensen, D.H.; Darvalics, B.; Harsløf, T.; Thomsen, R.W.; Langdahl, B. Fracture rates in patients discontinuing alendronate treatment in real life: A population-based cohort study. Osteoporos. Int. 2021, 32, 1103–1115. [Google Scholar] [CrossRef]
- Kim, J.-W.; Yee, J.; Oh, S.-H.; Kim, S.-H.; Kim, S.-J.; Chung, J.-E.; Gwak, H.-S. Machine Learning Approaches for Predicting Bisphosphonate-Related Osteonecrosis in Women with Osteoporosis Using VEGFA Gene Polymorphisms. J. Pers. Med. 2021, 11, 541. [Google Scholar] [CrossRef]
- Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 2021, 178, 1891–1906. [Google Scholar] [CrossRef]
- Widler, L.; Jaeggi, K.A.; Glatt, M.; Müller, K.; Bachmann, R.; Bisping, M.; Born, A.-R.; Cortesi, R.; Guiglia, G.; Jeker, H.; et al. Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa). J. Med. Chem. 2002, 45, 3721–3738. [Google Scholar] [CrossRef]
- Thompson, K.; Rogers, M.J. The Molecular Mechanisms of Action of Bisphosphonates. Clin. Rev. Bone Miner. Metab. 2007, 5, 130–144. [Google Scholar] [CrossRef]
- Russell, R.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef]
- Russell, R.G. Bisphosphonates: The first 40 years. Bone 2011, 49, 2–19. [Google Scholar] [CrossRef]
- Quesnel, A.M.; Seton, M.; Merchant, S.N.; Halpin, C.; McKenna, M.J. Third generation bisphosphonates for treatment of sensorineural hearing loss in otosclerosis. Otol. Neurotol. 2012, 33, 1308–1314. [Google Scholar] [CrossRef] [Green Version]
- Diez-Perez, A. Bisphosphonates. Maturitas 2002, 43, S19. [Google Scholar] [CrossRef]
- Rodríguez-Lorenzo, L.M.; Vazquez, B.; San Román, J.; Gross, K.A. Incorporation of 2nd and 3rd Generation Bisphosphonates on Hydroxyfluorapatite. Key Eng. Mater. 2006, 309–311, 899–902. [Google Scholar]
- Mollaamin, F.; Özcan, S.; Özcan, E.; Monajjemi, M. Biomedical Applications of Bisphosphonate Chelating Agents by Metal Cations as Drug Design for Prevention and Treatment of Osteoporosis using QM/MM Method. Biointerface Res. Appl. Chem. 2023, 13, 329. [Google Scholar] [CrossRef]
- Lenart, B.A.; Lorich, D.G.; Lane, J.M. Atypical Fractures of the Femoral Diaphysis in Postmenopausal Women Taking Alendronate. N. Engl. J. Med. 2008, 358, 1304–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwek, E.B.; Goh, S.K.; Koh, J.S.; Png, M.A.; Howe, T.S. An emerging pattern of subtrochanteric stress fractures: A long-term complication of alendronate therapy? Injury 2008, 39, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Bauss, F.; Schimmer, R.C. Ibandronate: The first once-monthly oral bisphosphonate for treatment of postmenopausal osteoporosis. Ther. Clin. Risk Manag. 2006, 2, 3–18. [Google Scholar]
- Sittig, H.-B. Pathogenesis and Bisphosphonate Treatment of Skeletal Events and Bone Pain in Metastatic Cancer: Focus on Ibandronate. Onkologie 2012, 35, 380–387. [Google Scholar] [CrossRef]
- Gatti, D.; Viapiana, O.; Idolazzi, L.; Fracassi, E.; Adami, S. Neridronic acid for the treatment of bone metabolic diseases. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1305–1311. [Google Scholar] [CrossRef]
- Varenna, M.; Adami, S.; Rossini, M.; Gatti, D.; Idolazzi, L.; Zucchi, F.; Malavolta, N.; Sinigaglia, L. Treatment of complex regional pain syndrome type I with neridronate: A randomized, double-blind, placebo-controlled study. Rheumatology 2013, 52, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Kubalek, I.; Fain, O.; Paries, J.; Kettaneh, A.; Thomas, M. Treatment of reflex sympathetic dystrophy with pamidronate: 29 cases. Rheumatology 2001, 40, 1394–1397. [Google Scholar] [CrossRef] [Green Version]
- Zarychanski, R.; Elphee, E.; Walton, P.; Johnston, J. Osteonecrosis of the jaw associated with pamidronate therapy. Am. J. Hematol. 2006, 81, 73–75. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 3–64, 93–104. [Google Scholar]
- Monajjemi, M.; Mollaamin, F.; Shojaei, S. An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem. 2020, 3, 5575–5585. [Google Scholar] [CrossRef]
- Zadeh, M.A.A.; Lari, H.; Kharghanian, L.; Balali, E.; Khadivi, R.; Yahyaei, H.; Mollaamin, F.; Monajjemi, M. Density Functional Theory Study and Anti-Cancer Properties of Shyshaq Plant: In View Point of Nano Biotechnology. J. Comput. Theor. Nanosci. 2015, 12, 4358–4367. [Google Scholar] [CrossRef]
- Monajjemi, M.; Shahriari, S.; Mollaamin, F. Evaluation of Coronavirus Families & Covid-19 Proteins: Molecular Modeling Study. Biointerface Res. Appl. Chem. 2020, 10, 6039–6057. [Google Scholar] [CrossRef]
- Monajjemi, M.; Noei, M. Mollaamin, F. Design of fMet-tRNA and Calculation of its Bonding Properties by Quantum Mechanics. Nucleosides Nucleotides Nucleic Acids 2010, 29, 676–683. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. J. Comp. Chem. 1992, 13, 1089. [Google Scholar] [CrossRef]
- Liotard, D.A.; Hawkins, G.D.; Lynch, G.C.; Cramer, C.J.; Truhlar, D.G. Improved methods for semiempirical solvation models. J. Comp. Chem. 1995, 16, 422. [Google Scholar] [CrossRef]
- Chambers, C.C.; Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J. Phys. Chem. 1996, 100, 16385. [Google Scholar] [CrossRef]
- Giesen, D.J.; Gu, M.Z.; Cramer, C.J.; Truhlar, D.G. A universal organic solvation model. J. Org. Chem. 1996, 61, 8720. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: A DFT study. J. Mol. Model. 2023, 29, 170. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective. J. Mol. Model. 2023, 29, 119. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Tanaka, Y. RANKL as a therapeutic target of rheumatoid arthritis. J. Bone Miner. Metab. 2021, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Mollaamin, F.; Monajjemi, M. Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations. J. Comput. Theor. Nanosci. 2015, 12, 1030–1039. [Google Scholar] [CrossRef]
- Rauch, L.; Hein, R.; Biedermann, T.; Eyerich, K.; Lauffer, F. Bisphosphonates for the Treatment of Calcinosis Cutis—A Retrospective Single-Center Study. Biomedicines 2021, 9, 1698. [Google Scholar] [CrossRef] [PubMed]
- Monajjemi, M. Metal-doped graphene layers composed with boron nitride–graphene as an insulator: A nano-capacitor. J. Mol. Model. 2014, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.R.; Kwon, K.D.; Komarneni, S.; Kubicki, J.D.; Mueller, K.T. Solid-State NMR and Computational Chemistry Study of Mononucleotides Adsorbed to Alumina. Langmuir 2006, 22, 9281–9286. [Google Scholar] [CrossRef]
- Smith, J.A.S. Nuclear Quadrupole Resonance Spectroscopy. J. Chem. Educ. 1971, 48, 39–41. [Google Scholar] [CrossRef]
- Mollaamin, F.; Shahriari, S.; Monajjemi, M.; Khalaj, Z. Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption. J. Clust. Sci. 2023, 34, 1547–1562. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Mol. Simul. 2023, 49, 365–376. [Google Scholar] [CrossRef]
- Young, H.A.; Freedman, R.D. Sears and Zemansky’s University Physics with Modern Physics, 13th ed.; Addison-Wesley: Boston, MA, USA, 2012; p. 754. [Google Scholar]
- Kołodziejska, B.; Stępień, N.; Kolmas, J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int. J. Mol. Sci. 2021, 22, 6564. [Google Scholar] [CrossRef]
- Marx, D.; Yazdi, A.R.; Papini, M.; Towler, M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep. 2020, 12, 100273. [Google Scholar] [CrossRef]
- Aihara, J.-I. Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Politzer, P.; Abu-Awwad, F. A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor. Chem. Accounts 1998, 99, 83–87. [Google Scholar] [CrossRef]
- Mollaamin, F. Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory/Electron Paramagnetic Resonance. J. Comput. Theor. Nanosci. 2014, 11, 2393–2398. [Google Scholar] [CrossRef]
Alendronate → 2Mg2+ | ||||||||||
ppm | P2 | O3 | P4 | O5 | O6 | O7 | O8 | N14 | Mg15 | Mg16 |
σiso | 476.9364 | 354.2408 | 526.9666 | 201.1994 | 417.9254 | 272.9464 | 338.2907 | 295.2486 | 476.8934 | 449.8215 |
σaniso | 197.3153 | 94.4458 | 209.7908 | 927.3699 | 1271.225 | 109.1100 | 1160.4760 | 32.8868 | 273.6673 | 317.7684 |
Alendronate → 2Ca2+ | ||||||||||
ppm | P2 | O3 | P4 | O5 | O6 | O7 | O8 | N14 | Ca15 | Ca16 |
σiso | 560.1002 | 352.9742 | 533.0987 | 133.3365 | 238.4170 | 122.0996 | 273.4535 | 299.2374 | 1266.8935 | 1242.6875 |
σaniso | 144.2001 | 63.4751 | 247.7018 | 359.3426 | 291.6360 | 636.0180 | 369.2229 | 32.2780 | 190.3530 | 186.0608 |
Alendronate → 2Sr2+ | ||||||||||
ppm | P2 | O3 | P4 | O5 | O6 | O7 | O8 | N14 | Sr15 | Sr16 |
σiso | 578.0939 | 398.6744 | 560.6582 | 378.7838 | 392.6713 | 389.2691 | 392.7619 | 299.5870 | 3153.5958 | 3230.1562 |
σaniso | 184.7045 | 69.5146 | 177.8449 | 205.3841 | 221.1451 | 243.9178 | 248.8879 | 28.5730 | 257.5701 | 204.4964 |
Ibandronate → 2Mg2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Mg19 | Mg20 |
σiso | 362.9223 | 418.1065 | 59.9740 | 34.3478 | 138.1868 | 424.7443 | 36.0918 | 293.6687 | 537.7617 | 523.1200 |
σaniso | 57.8641 | 147.7471 | 487.9605 | 510.3891 | 728.4770 | 174.0288 | 439.9294 | 38.7725 | 159.6272 | 203.9691 |
Ibandronate → 2Ca2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Ca19 | Ca20 |
σiso | 361.5829 | 210.1687 | 452.6134 | 669.4192 | 677.6753 | 349.5293 | 187.1626 | 293.1990 | 1221.7390 | 1150.9306 |
σaniso | 57.0125 | 394.7186 | 1378.5036 | 1425.4072 | 1457.4494 | 227.4777 | 899.2902 | 40.5514 | 199.6107 | 372.1082 |
Ibandronate → 2Sr2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Sr19 | Sr20 |
σiso | 365.6022 | 331.3843 | 317.9684 | 408.4177 | 228.0619 | 426.3955 | 120.2419 | 292.7850 | 3130.9451 | 3039.3312 |
σaniso | 69.4799 | 209.7331 | 1123.9718 | 1191.6414 | 831.6244 | 98.9009 | 819.3784 | 40.7449 | 250.0123 | 505.0866 |
Neridronate → 2Mg2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N16 | Mg17 | Mg18 |
σiso | 362.0412 | 411.7829 | 40.1498 | 88.5579 | 183.8948 | 435.2663 | 43.0977 | 298.1960 | 528.3357 | 534.3457 |
σaniso | 57.1142 | 162.3461 | 533.2377 | 448.0810 | 788.6783 | 107.3363 | 452.0056 | 29.1476 | 183.6469 | 184.4351 |
Neridronate → 2Ca2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N16 | Ca17 | Ca18 |
σiso | 361.1504 | 295.8674 | 284.3469 | 313.0876 | 419.9667 | 375.6348 | 181.9129 | 297.5033 | 1183.2441 | 1202.8418 |
σaniso | 55.2182 | 263.4852 | 1198.8384 | 1051.2597 | 1099.8941 | 177.8481 | 875.2833 | 29.3969 | 288.6887 | 231.3930 |
Neridronate → 2Sr2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N16 | Sr17 | Sr18 |
σiso | 367.1523 | 390.6068 | 40.0323 | 9.2850 | 152.4282 | 390.9190 | 32.2100 | 298.4373 | 3061.4067 | 3101.5619 |
σaniso | 73.7996 | 126.9946 | 858.7106 | 697.0640 | 720.7286 | 138.6716 | 689.5901 | 30.3294 | 246.8092 | 175.3476 |
Pamidronate → 2Mg2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Mg14 | Mg15 |
σiso | 362.0592 | 381.0455 | 66.9541 | 29.6460 | 279.2352 | 403.3851 | 8.7584 | 298.0285 | 522.9221 | 515.9499 |
σaniso | 61.9317 | 198.8411 | 474.8645 | 486.8028 | 909.1096 | 153.6341 | 465.7539 | 29.4898 | 201.9489 | 227.1125 |
Pamidronate → 2Ca2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Ca14 | Ca15 |
σiso | 363.4157 | 308.7031 | 139.8592 | 313.4116 | 335.8527 | 302.3324 | 368.3457 | 298.7044 | 1180.3416 | 1195.3529 |
σaniso | 55.7660 | 229.5383 | 992.3576 | 852.3174 | 963.5384 | 253.4179 | 812.8236 | 30.5223 | 259.1125 | 268.9893 |
Pamidronate → 2Sr2+ | ||||||||||
ppm | O1 | P3 | O4 | O5 | O6 | P7 | O8 | N13 | Sr14 | Sr15 |
σiso | 363.8761 | 241.3363 | 515.8675 | 557.2093 | 446.4313 | 382.1276 | 109.8785 | 296.7719 | 3017.4505 | 3053.8428 |
σaniso | 65.8230 | 339.8384 | 1283.1154 | 1420.8103 | 1145.4648 | 144.3417 | 846.5852 | 31.5079 | 558.2663 | 370.8348 |
Atom Type | Alendronate-2Mg2+ | Alendronate-2Ca2+ | Alendronate-2Sr2+ | Atom Type | Pamidronate-2Mg2+ | Pamidronate-2Ca2+ | Pamidronate-2Sr2+ |
C1 | −14.582015 | −14.680364 | −14.698286 | O1 | −22.089153 | −22.112109 | −22.145726 |
P2 | −53.374813 | −53.279858 | −53.29495 | C2 | −14.579306 | −14.602032 | −14.638223 |
O3 | −22.058521 | −22.149621 | −22.098919 | P3 | −53.406411 | −53.417423 | −53.477559 |
P4 | −53.376494 | −53.282896 | −53.27529 | O4 | −22.272632 | −22.279084 | −22.336336 |
O5 | −22.244579 | −22.278534 | −22.394044 | O5 | −22.258221 | −22.248791 | −22.343459 |
O6 | −22.229734 | −22.286302 | −22.390886 | O6 | −22.456859 | −22.462141 | −22.517174 |
O7 | −22.431022 | −22.429008 | −22.442474 | P7 | −53.376249 | −53.408809 | −53.453886 |
O8 | −22.239543 | −22.278605 | −22.412946 | O8 | −22.233854 | −22.239144 | −22.352915 |
O9 | −22.204363 | −22.27527 | −22.397572 | O9 | −22.229882 | −22.285782 | −22.304591 |
O10 | −22.40249 | −22.456515 | −22.473484 | O10 | −22.408516 | −22.432219 | −22.484225 |
C11 | −14.561176 | −14.600068 | −14.578144 | C11 | −14.564672 | −14.577927 | −14.601869 |
C12 | −14.543709 | −14.561792 | −14.530637 | C12 | −14.545795 | −14.572535 | −14.576751 |
C13 | −14.51357 | −14.520012 | −14.514399 | N13 | −18.152349 | −18.171899 | −18.160602 |
N14 | −18.130473 | −18.146224 | −18.128618 | X14 | −39.095005 | −79.482876 | −194.832492 |
X15 | −39.09341 | −79.466582 | −194.914058 | X15 | −39.061118 | −79.461646 | −194.815758 |
X16 | −39.093721 | −79.477353 | −194.90834 | ||||
Atom Type | Ibandronate-2Mg2+ | Ibandronate-2Ca2+ | Ibandronate-2Sr2+ | Atom Type | Neridronate-2Mg2+ | Neridronate-2Ca2+ | Neridronate-2Sr2+ |
O1 | −22.071174 | −22.090505 | −22.135028 | O1 | −22.063309 | −22.079958 | −22.162592 |
C2 | −14.55445 | −14.576253 | −14.627075 | C2 | −14.546229 | −14.565095 | −14.661299 |
P3 | −53.377051 | −53.398859 | −53.464651 | P3 | −53.378029 | −53.393132 | −53.507653 |
O4 | −22.232796 | −22.250951 | −22.326769 | O4 | −22.239304 | −22.250603 | −22.39611 |
O5 | −22.232416 | −22.226345 | −22.32228 | O5 | −22.234969 | −22.224863 | −22.37294 |
O6 | −22.410299 | −22.442602 | −22.498632 | O6 | −22.417286 | −22.426463 | −22.551375 |
P7 | −53.353291 | −53.373911 | −53.437238 | P7 | −53.324873 | −53.342394 | −53.469496 |
O8 | −22.219745 | −22.241599 | −22.327087 | O8 | −22.191646 | −22.214617 | −22.352985 |
O9 | −22.212105 | −22.212723 | −22.310918 | O9 | −22.19086 | −22.188493 | −22.348579 |
O10 | −22.383435 | −22.380158 | −22.417829 | O10 | −22.316029 | −22.340715 | −22.505319 |
C11 | −14.548019 | −14.564822 | −14.601757 | C11 | −14.539276 | −14.556356 | −14.627277 |
C12 | −14.53678 | −14.558542 | −14.589055 | C12 | −14.558729 | −14.581511 | −14.640502 |
N13 | −18.142608 | −18.152869 | −18.17498 | C13 | −14.539792 | −14.555941 | −14.587432 |
C14 | −14.514959 | −14.514147 | −14.525321 | C14 | −14.530353 | −14.543764 | −14.562173 |
C15 | −14.553135 | −14.541599 | −14.550868 | C15 | −14.505909 | −14.512938 | −14.524351 |
C16 | −14.547176 | −14.534201 | −14.545824 | N16 | −18.138051 | −18.139505 | −18.150542 |
C17 | −14.54458 | −14.532666 | −14.552941 | X17 | −39.064255 | −79.461993 | −194.854003 |
C18 | −14.542677 | −14.536273 | −14.550469 | X18 | −39.016632 | −79.412003 | −194.820676 |
X19 | −39.028844 | −79.428857 | −194.800917 | ||||
X20 | −39.063707 | −79.469808 | −194.822286 |
BPs Agent | Metal Cation | Relative Energy ×10−4 (kcal/mol) | Gibbs Free Energy ×10−4 (kcal/mol) | Virial Coefficient (-V/T) | Dipole Moment (Debye) |
Alendronate | 2Mg2+ | −105.3238 | −208.3444 | 1.9576 | 5.0901 |
2Ca2+ | −157.7413 | −278.2509 | 1.9129 | 3.2620 | |
2Sr2+ | −471.0163 | −632.8529 | 1.9999 | 5.2236 | |
Ibandronate | 2Mg2+ | −101.7982 | −240.3687 | 1.8233 | 19.5703 |
2Ca2+ | −159.7855 | −315.8492 | 1.8691 | 22.2388 | |
2Sr2+ | −482.5812 | −683.2521 | 2.0030 | 28.8543 | |
Neridronate | 2Mg2+ | −102.8331 | −226.2752 | 1.8789 | 18.4846 |
2Ca2+ | −161.3368 | −301.3348 | 1.9021 | 20.1825 | |
2Sr2+ | −471.6486 | −654.1330 | 1.9908 | 28.9546 | |
Pamidronate | 2Mg2+ | −95.8092 | −195.2457 | 1.8754 | 16.0488 |
2Ca2+ | −164.3777 | −278.4610 | 1.9726 | 18.5122 | |
2Sr2+ | −472.0945 | −624.2867 | 2.0052 | 34.5252 |
Inhibitor → Al-Alloy | HOMO | LUMO | ∆E | µ | χ | H | ζ | ψ |
---|---|---|---|---|---|---|---|---|
Alendronate → 2Mg2+ | −0.1160 | 0.2485 | 9.9188 | 1.8027 | −1.8027 | 4.9594 | 0.1008 | 0.3276 |
Alendronate → 2Ca2+ | −0.1006 | 0.0707 | 4.6594 | −0.4068 | 0.4068 | 2.3297 | 0.2146 | 0.0355 |
Alendronate → 2Sr2+ | −0.1086 | 0.2270 | 9.1340 | 1.6109 | −1.6109 | 4.5670 | 0.1095 | 0.2841 |
Ibandronate → 2Mg2+ | −0.1501 | 0.1772 | 8.9062 | 0.3687 | −0.3687 | 4.4531 | 0.1123 | 0.0152 |
Ibandronate → 2Ca2+ | −0.1265 | 0.0585 | 5.0352 | −0.9252 | 0.9252 | 2.5176 | 0.1986 | 0.1700 |
Ibandronate → 2Sr2+ | −0.0793 | 0.1429 | 6.0480 | 0.8653 | −0.8653 | 3.0240 | 0.1653 | 0.1238 |
Neridronate → 2Mg2+ | −0.1468 | 0.1609 | 8.3726 | 0.1918 | −0.1918 | 4.1863 | 0.1194 | 0.0044 |
Neridronate → 2Ca2+ | −0.1364 | 0.0450 | 4.9377 | −1.2435 | 1.2435 | 2.4689 | 0.2025 | 0.3131 |
Neridronate → 2Sr2+ | −0.0328 | 0.1890 | 6.0357 | 2.1252 | −2.1252 | 3.0178 | 0.1657 | 0.7483 |
Pamidronate → 2Mg2+ | −0.1052 | 0.1807 | 7.7824 | 1.0272 | −1.0272 | 3.8912 | 0.1285 | 0.1356 |
Pamidronate → 2Ca2+ | −0.1042 | 0.0834 | 5.1081 | −0.2830 | 0.2830 | 2.5540 | 0.1957 | 0.0156 |
Pamidronate → 2Sr2+ | −0.0581 | 0.1458 | 5.5489 | 1.1932 | −1.1932 | 2.7744 | 0.1802 | 0.2566 |
∆E = ELUMO − EHOMO; µ = (EHOMO + ELUMO)/2; χ = −(EHOMO + ELUMO)/2; η = (ELUMO − EHOMO)/2; ζ = 1/(2η); ψ = µ2/(2η) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaamin, F.; Monajjemi, M. Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method. C 2023, 9, 61. https://doi.org/10.3390/c9020061
Mollaamin F, Monajjemi M. Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method. C. 2023; 9(2):61. https://doi.org/10.3390/c9020061
Chicago/Turabian StyleMollaamin, Fatemeh, and Majid Monajjemi. 2023. "Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method" C 9, no. 2: 61. https://doi.org/10.3390/c9020061
APA StyleMollaamin, F., & Monajjemi, M. (2023). Carbon Nanotubes as Biosensors for Releasing Conjugated Bisphosphonates–Metal Ions in Bone Tissue: Targeted Drug Delivery through the DFT Method. C, 9(2), 61. https://doi.org/10.3390/c9020061