Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanoporous Activated Carbons
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, L.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Advanced Energy Materials for Flexible Batteries in Energy Storage: A Review. SmartMat 2020, 1, e1007. [Google Scholar] [CrossRef]
- Mahmud, S.; Rahman, M.; Kamurzzaman, M.; Ali, M.O.; Emon, M.S.A.; Khatun, H.; Ali, M.R. Recent Advances in Lithium-ion Battery Materials for Improved Electrochemical Performance: A review. Results Eng. 2022, 15, 100472. [Google Scholar] [CrossRef]
- Jetybayeva, A.; Aaron, D.S.; Belharouak, I.; Mench, M.M. Critical Review on Recently Developed Lithium and Non-Lithium Anode-based Solid-State Lithium-ion Batteries. J. Power Sources 2023, 566, 232914. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspective for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef]
- Qiao, Z.; Bian, K.; Ding, C.; Zhao, Y. Recent Progress of Carbon-Fiber-Based Electrode Materials for Energy Storage. Diamond Relat. Mater. 2023, 138, 110208. [Google Scholar] [CrossRef]
- Pacchioni, G. Sustainable Flexible Supercapacitors. Nat. Rev. Mater. 2022, 7, 844. [Google Scholar] [CrossRef]
- Wu, C.; Xing, X.; Xiong, W.; Li, H. Cooperative Regulation of Hard Template and Emulsion Self-Assembly to the Synthesis of N/O Co-doped Mesoporous Hollow Carbon Nanospheres for Supercapacitors. Diamond Relat. Mater. 2023, 139, 110273. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest Advances in Supercapacitors: From New Electrode Materials to Novel Device Designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Nandi, A.K. A Review on the Recent Advances in Hybrid Supercapacitors. J. Mater. Chem. A 2021, 9, 15880–15918. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Shrestha, L.K.; Ariga, K. Carbon Nanoarchitectonics for Energy Related Applications. C J. Carbon Res. 2021, 7, 73. [Google Scholar] [CrossRef]
- Li, D.; Huang, Y.; Yu, C.; Tang, C.; Lin, J. Rapid Synthesis of Biomass-Derived Carbon via Induction Pyrolysis for Supercapacitors. Diamond Relat. Mater. 2023, 136, 109956. [Google Scholar] [CrossRef]
- Gnawali, C.L.; Manandhar, S.; Shahi, S.; Shrestha, R.G.; Adhikari, M.P.; Rajbhandari, R.; Pokharel, B.P.; Ma, R.; Ariga, K.; Shrestha, L.K. Nanoporous Carbon Materials from Terminalia bellirica Seed for Methylene Blue Adsorption and High-Performance Supercapacitor Applications. Bull. Chem. Soc. Jpn. 2023, 96, 572–581. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shrestha, R.G.; Chaudhary, R.; Pradhananga, R.R.; Tamrakar, B.M.; Shrestha, T.; Maji, S.; Shrestha, R.L.; Ariga, K. Nelumbo nucifera Seed-Derived Nitrogen-Doped Hierarchically Porous Carbons as Electrode Materials for High-Performance Supercapacitor Applications. Nanomaterials 2021, 11, 3175. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.G.; Maji, S.; Mallick, A.K.; Jha, A.; Shrestha, R.M.; Rajbhandari, R.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Hierarchically Porous Carbon Materials from Phoenix Dactylifera Seed for High-Performance Supercapacitor Applications. Bull. Chem. Soc. Jpn. 2022, 95, 1060–1067. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Maji, S.; Shrestha, L.K.; Ariga, K. Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. Nanomaterials 2020, 10, 639. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Du, Y.; Ma, X.; Lin, J.; Chen, S. Apple-Pomace-Based Porous Biochar as Electrode Materials for Supercapacitors. Diamond Relat. Mater. 2022, 130, 109507. [Google Scholar] [CrossRef]
- Young, C.; Chen, H.-T. Supercapacitor Application of a Three-Dimensional Carbon Sphere–Intercalated Porous Carbon Fabricated Using a Hard Template and a Biomass Material. Diamond Relat. Mater. 2022, 130, 109528. [Google Scholar] [CrossRef]
- Chang, P.; Cen, Y.; Li, X.; Zhang, C.; Li, L.; Luo, Y.; Dong, J.; Yang, T. Chitosan-Based 2D Highly Conductive Porous Carbon Nanosheet as Supercapacitor Electrode with High Voltage and Long Lifespan. Diamond Relat. Mater. 2022, 130, 109514. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, L.; Pang, G.; Xu, J.; Wang, X.; Yang, C. High Performance Porous Carbon Derived from Platanus Leaves for a Solid-State Supercapacitor. Diamond Relat. Mater. 2021, 120, 108655. [Google Scholar] [CrossRef]
- Karnan, M.; Subramani, K.; Sudhan, N.; Ilayaraja, N.; Sathish, M. Aloe Vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 35191–35202. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient Storage Mechanism for Building Better Supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Jäckel, N.; Simon, P.; Gogotsi, Y.; Presser, V. Increase in Capacitance by Subnanometer Pores in Carbon. ACS Energy Lett. 2016, 1, 1262–1265. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, J.; Shrestha, L.K.; Hossain, M.S.A.; Alothman, Z.A.; Yamauchi, Y.; Ariga, K. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. ACS Appl. Mater. Interface 2017, 9, 18986–18993. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Wang, G.; Hou, L.; Yuan, C. Eco-Friendly and Scalable Synthesis of Micro-/Mesoporous Carbon Sub-Microspheres as Competitive Electrodes for Supercapacitors and Sodium-Ion Batteries. Appl. Surf. Sci. 2020, 533, 147511. [Google Scholar] [CrossRef]
- Luo, L.; Lan, Y.; Zhang, Q.; Deng, J.; Luo, L.; Zeng, Q.; Gao, H.; Zhao, W. A Review on Biomass-Derived Activated Carbon as Electrode Materials for Energy Storage Supercapacitors. J. Energy Storage 2022, 55, 105839. [Google Scholar] [CrossRef]
- Manasa, P.; Sambasivam, S.; Ran, F. Recent Progress on Biomass Waste Derived Activated Carbon Electrode Materials for Supercapacitors Applications—A Review. J. Energy Storage 2022, 54, 105290. [Google Scholar] [CrossRef]
- Liang, K.; Chen, Y.; Wang, D.; Wang, W.; Jia, S.; Mitsuzakic, N.; Chen, Z. Post-Modified Biomass Derived Carbon Materials for Energy Storage Supercapacitors: A Review. Sustain. Energy Fuels 2023, 7, 3541–3559. [Google Scholar] [CrossRef]
- Raju, G.S.R.; Kondrat, S.; Chodankar, N.R.; Hwang, S.K.; Lee, J.H.; Long, T.; Pavitra, E.; Patil, S.J.; Ranjith, K.S.; Rao, M.V.B.; et al. Electrolyte Ions-Matching Hierarchically Porous Biochar Electrodes with an Extended Potential Window for Next-Generation Supercapacitors. J. Mater. Chem. A 2023, 11, 15540–15552. [Google Scholar] [CrossRef]
- Maji, S.; Chaudhary, R.; Shrestha, R.G.; Shrestha, R.L.; Demir, B.; Searles, D.J.; Hill, J.P.; Yamauchi, Y.; Ariga, K.; Shrestha, L.K. High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. ACS Appl. Energy Mater. 2021, 4, 12257–12266. [Google Scholar] [CrossRef]
- Ozpinar, P.; Dogan, C.; Demiral, H.; Morali, U.; Erol, S.; Samdan, C.; Yildiz, D.; Demiral, I. Activated Carbons Prepared from Hazelnut Shell Waste by Phosphoric Acid Activation for Supercapacitor Electrode Applications and Comprehensive Electrochemical Analysis. Renew. Energy 2022, 189, 535–548. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Wang, Q.; Chen, X.; Sun, S.; Zhang, S.; Tian, Y.; Liu, C.; Wang, L.; Wei, Z.; et al. N/O Co-Doped Hierarchical Nanoporous Biochar Derived from Waste Polypropylene Nonwoven for High-Performance Supercapacitors. RSC Adv. 2023, 13, 25877–25887. [Google Scholar] [CrossRef] [PubMed]
- Prasankumar, T.; Salpekar, D.; Bhattacharya, S.; Manoharan, K.; Yadav, R.M.; Mata, M.A.C.; Miller, K.A.; Vajtai, R.; Jose, S.; Roy, S.; et al. Biomass Derived Hierarchical Porous Carbon for Supercapacitor Application and Dilute Stream CO2 Capture. Carbon 2022, 199, 249–257. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; Wang, S. Self-assembly of Biomass Derivatives into Multiple Heteroatom-Doped 3D-Interconnected Porous Carbon for Advanced Supercapacitors. Carbon 2022, 199, 258–267. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Zhang, Y.; He, J.; Wang, Y.; Wang, K.; Xu, Y.; Li, H.; Wang, Y. Biomass-Derived Microporous Carbon with Large Micropore Size for High-performance Supercapacitors. J. Power Sources 2020, 448, 227396. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, Q.; Wang, X.; Li, C.; Uyama, H.; Shen, Y. Preparation and Mechanism Investigation of Walnut Shell-Based Hierarchical Porous Carbon for Supercapacitors. Bull. Chem. Soc. Jpn. 2023, 96, 190–197. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shahi, S.; Gnawali, C.L.; Adhikari, M.P.; Rajbhandari, R.; Pokharel, B.P.; Ma, R.; Shrestha, R.G.; Ariga, K. Phyllanthus emblica Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications. Materials 2022, 15, 8335. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, X.; Chen, S.; Ye, J.; Yang, J.; Wang, H.; Li, D.; Yuan, H. Hierarchically Porous Carbon from Biomass Tar as Sustainable Electrode Material for High-Performance Supercapacitors. Int. J. Hydrog. Energy 2023, 48, 25635–25644. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Zhang, R.; Ren, Y. Naturally O-N-S Co-Doped Carbon with Multiscale Pore Architecture Derived from Lotus Leaf Stem for High-Performance Supercapacitors. Bull. Chem. Soc. Jpn. 2021, 94, 1705–1714. [Google Scholar] [CrossRef]
- Zhen, L.-H.; Chen, M.-H.; Liang, S.-X.; Lü, Q.-F. Oxygen-Rich Hierarchical Porous Carbon Derived from Biomass Waste-Kapok Flower for Supercapacitor Electrode. Diamond Relat. Mater. 2021, 113, 108267. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, R.; Li, R.; Fang, W.; Cui, Z.; Zhang, D. Green Synthesis of Hierarchical Porous Carbon with Adjustable Porosity for High Performance Supercapacitors. Diamond Relat. Mater. 2021, 117, 108488. [Google Scholar] [CrossRef]
- Yeleuov, M.; Daulbayev, C.; Taurbekov, A.; Abdisttar, A.; Ebrahim, R.; Kumekov, S.; Prikhodko, N.; Lesbayev, B.; Batyrzhan, K. Synthesis of Graphene-like Porous Carbon from Biomass for Electrochemical Energy Storage Applications. Diamond Relat. Mater. 2021, 119, 108560. [Google Scholar] [CrossRef]
- Phukhrongthung, A.; Iamprasertkun, P.; Bunpheng, A.; Saisopa, T.; Umpuch, C.; Puchongkawarin, C.; Sawangphruk, M.; Luanwuthi, S. Oil Palm Leaf-Derived Hierarchical Porous Carbon for “Water-in-Salt” Based Supercapacitors: The Effect of Anions (Cl− and TFSI−) in Superconcentrated Conditions. RSC Adv. 2023, 13, 24432–24444. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.M.A.P.; dos Reis, G.S.; Lassi, U.; Lima, E.C.; Dotto, G.L.; de Oliveira, H.P. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C J. Carbon Res. 2023, 9, 59. [Google Scholar] [CrossRef]
- Lv, T.; Li, J.; Shi, Y.; Yu, H.; Chen, J. Activating Biomass Carbon with Metallurgical Slag by Pyrolysis in Molten Salt for High-Performance Supercapacitors. RSC Adv. 2023, 13, 23021–23029. [Google Scholar] [CrossRef]
- Escalante, J.; Chen, W.-H.; Tabatabaei, M.; Hoang, A.T.; Kwon, E.E.; Lin, K.-Y.A.; Saravanakumar, A. Pyrolysis of Lignocellulosic, Algal, Plastic, and Other Biomass Wastes for Biofuel Production and Circular Bioeconomy: A Review of Thermogravimetric Analysis (TGA) Approach. Renew. Sustain. Energy Rev. 2022, 169, 112914. [Google Scholar] [CrossRef]
- Geng, X.; Singh, G.; Sathish, C.I.; Li, Z.; Bahadur, R.; Liu, Y.; Li, S.; Yu, X.; Breese, M.; Yi, J.; et al. Biomass Derived Nanoarchitectonics of Porous Carbon with Tunable Oxygen Functionalities and Hierarchical Structures and their Superior Performance in CO2 Adsorption and Energy Storage. Carbon 2023, 214, 118347. [Google Scholar] [CrossRef]
- Singh, G.; Bahadur, R.; Ruban, A.M.; Davidraj, J.M.; Su, D.; Vinu, A. Synthesis of Functionalized Nanoporous Biocarbons with High Surface Area for CO2 Capture and Supercapacitor Applications. Green Chem. 2021, 23, 5571–5583. [Google Scholar] [CrossRef]
- Ghahremani, P.; Mostafatabar, A.H.; Bahlakeh, G.; Ramezanzadeh, B. Rational Design of a Novel Multi-Functional Carbon-Based Nano-Carrier Based on Multi-Walled-CNT-Oxide/Polydopamine/Chitosan for Epoxy Composite with Robust pH-Sensitive Active Anti-Corrosion Properties. Carbon 2022, 189, 113–141. [Google Scholar] [CrossRef]
- Ouyang, J.; Wang, X.; Wang, L.; Xiong, W.; Li, M.; Hua, Z.; Zhao, L.; Zhou, C.; Liu, X.; Chen, H.; et al. Construction of a Porous Carbon Skeleton in Wood Tracheids to Enhance Charge Storage for High-Performance Supercapacitors. Carbon 2022, 196, 532–539. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic–Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Sing, K. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. Colloid Surf. A 2001, 187–188, 3–9. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Odhikari, N.; Shah, S.S.; Hasan, M.M.; Islam, T.; Pal, P.R.; Qasem, M.A.A.; Aziz, M.A. Porous Tal Palm Carbon Nanosheets: Preparation, Characterization and Application for the Simultaneous Determination of Dopamine and Uric Acid. Nanoscale Adv. 2019, 1, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.X. Activated Carbon from Biomass Sustainable Sources. C J. Carbon Res. 2021, 7, 39. [Google Scholar] [CrossRef]
- Bejjanki, D.; Banothu, P.; Kumar, V.B.; Kumar, P.S. Biomass-Derived N-Doped Activated Carbon from Eucalyptus Leaves as an Efficient Supercapacitor Electrode Material. C J. Carbon Res. 2023, 9, 24. [Google Scholar] [CrossRef]
- Baskar, A.V.; Ruban, A.M.; Davidraj, J.M.; Singh, G.; Al-Muhtaseb, A.H.; Lee, J.M.; Yi, J.; Vinu, A. Single-Step Synthesis of 2D Mesoporous C60/Carbon Hybrids for Supercapacitor and Li-Ion Battery Applications. Bull. Chem. Soc. Jpn. 2021, 94, 133–140. [Google Scholar] [CrossRef]
- Harris, P.J.F. New Perspective on the Structure of Graphitic Carbons. Crit. Rev. Solid State Mater. Sci. 2005, 30, 235–253. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, S.-H.; Roh, J.-S. Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis. Crystals 2021, 11, 153. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Adhikari, L.; Shrestha, R.G.; Adhikari, M.P.; Adhikari, R.; Hill, J.P.; Pradhananga, R.R.; Ariga, K. Nanoporous Carbon Materials with Enhanced Supercapacitance Performance and Non-Aromatic Chemical Sensing with C1/C2 Alcohol Discrimination. Sci. Technol. Adv. Mater. 2016, 17, 483–492. [Google Scholar] [CrossRef]
- Zavidovskiy, I.A.; Streletskiy, O.A.; Nuriahmetov, I.F.; Nishchak, O.Y.; Savchenko, N.F.; Tatarintsev, A.A.; Pavlikov, A.V. Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation. J. Compos. Sci. 2023, 7, 156. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Materials Science-Electrochemical Capacitors for Energy, Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chem. Rev. 2015, 115, 5159–5223. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, B.; Liu, T.; Mou, J.; Jiang, Z.; Liu, J.; Li, H.; Liu, M. Wood-Derived Materials for Advanced Electrochemical Energy Storage Devices. Adv. Funct. Mater. 2019, 29, 1902255. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, J.; Cen, Y.; Yang, F.; Li, X.; Xie, Q.; Dong, J. 3D Hierarchical Porous Carbon from Fulvic Acid Biomass for High Energy Density Supercapacitor with High Withstanding Voltage. J. Power Sources 2022, 533, 231413. [Google Scholar] [CrossRef]
- Lobato-peralta, D.R.; Duque-Brito, E.; Orugba, H.O.; Arias, D.M.; Cuentas-Gallegos, A.K.; Okolie, J.A.; Okoye, P.U. Sponge-like Nanoporous Activated Carbon from Corn Husk as a Sustainable and Highly Stable Supercapacitor Electrode for Energy Storage. Diamond Relat. Mater. 2023, 138, 110176. [Google Scholar] [CrossRef]
- Tu, J.; Qiao, Z.; Wang, Y.; Li, G.; Zhang, X.; Li, G.; Ruan, D. American Ginseng Biowaste-Derived Activated Carbon for High-Performance Supercapacitors. Intl. J. Electrochem. Sci. 2023, 18, 16–24. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Deng, M. Eco-Friendly Preparation of Biomass-Derived Porous Carbon and its Electrochemical Properties. ACS Omega 2022, 7, 22689–22697. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Feng, Y.; Gao, X.; Zhou, C.; Cong, S.; Ke, S. High-performance Supercapacitor Electrodes from Porous Rotten Wood Cellulose-derived Carbon via Fungi Action. Chem. Lett. 2023, 52, 389–392. [Google Scholar] [CrossRef]
- Shrestha, R.L.; Chaudhary, R.; Shrestha, T.; Tamrakar, B.M.; Shrestha, R.G.; Maji, S.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. Materials 2020, 13, 5434. [Google Scholar] [CrossRef]
- Shrestha, R.L.; Chaudhary, R.; Shrestha, R.G.; Shrestha, T.; Maji, S.; Ariga, K.; Shrestha, L.K. Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. Bull. Chem. Soc. Jpn. 2021, 94, 565–572. [Google Scholar] [CrossRef]
- Shrestha, R.L.; Shrestha, T.; Tamrakar, B.M.; Shrestha, R.G.; Maji, S.; Ariga, K.; Shrestha, L.K. Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. Materials 2020, 13, 2371. [Google Scholar] [CrossRef]
- Chaudhary, R.; Maji, S.; Shrestha, R.G.; Shrestha, R.L.; Shrestha, T.; Ariga, K.; Shrestha, L.K. Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. C J. Carbon Res. 2020, 6, 73. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, J.; Ren, M.; Ge, Y.; Chen, H.; Ma, X.; Hao, Q. Preparation and Characterization of Porous Carbons by Pyrolysis-CO2 Gasification of Pine Sawdust. Chem. Lett. 2020, 49, 652–655. [Google Scholar] [CrossRef]
- Gehrke, V.; Maron, G.K.; Rodrigues, L.D.S.; Alano, J.H.; Pereira, C.M.P.D.; Orlandi, M.O.; Carreño, N.L.V. Facile Preparation of a Novel Biomass-Derived H3PO4 and Mn(NO3)2 Activated Carbon from Citrus Bergamia Peels for High-Performance Supercapacitors. Mater. Today Commun. 2021, 26, 101779. [Google Scholar] [CrossRef]
- Selvaraj, A.R.; Muthusamy, A.; Cho, I.; Kim, H.-J.; Senthil, K.; Prabakar, K. Ultrahigh Surface Area Biomass Derived 3D Hierarchical Porous Carbon Nanosheet Electrodes for High Energy density Supercapacitors. Carbon 2021, 174, 463. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Shrestha, R.G.; Maji, S.; Pokharel, B.P.; Rajbhandari, R.; Shrestha, R.L.; Pradhananga, R.R.; Hill, J.P.; Ariga, K. High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. Nanomaterials 2020, 10, 728. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qu, W.; He, Y.; Yang, H.; Du, M.; Wang, A.; Yang, Q.; Chen, Y.Q. Synthesis and Processing Optimization of N-doped Hierarchical Porous Carbon Derived from Corncob for High Performance Supercapacitors. J. Energy Storage 2020, 32, 101877. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Z.; Gao, Y.; An, W.; Cao, Z.; Liu, J. Biomass-Swelling Assisted Synthesis of Hierarchical Porous Carbon Fibers for Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 28283–28290. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Zhang, Y.; Zhou, X.; Wang, L.; Yasin, A.; Zhang, L. Bioresource Derived Porous Carbon from Cottonseed Huss for Removal of Triclosan and Electrochemical Application. RSC Adv. 2018, 8, 42405–42414. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, M.; Zhang, Y.; Zhao, W.; Wang, C. A Biomass-Derived Nitrogen-doped Porous Carbon for High-Energy Supercapacitor. Carbon 2018, 140, 404–412. [Google Scholar] [CrossRef]
- Lu, T.; Xu, X.; Zhang, S.; Pan, L.; Wang, Y.; Alshehri, S.M.; Ahamad, T.; Kim, M.; Na, J.; Hossain, M.S.A.; et al. High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. Bull. Chem. Soc. Jpn. 2020, 93, 1014–1019. [Google Scholar] [CrossRef]
- Cao, M.; Wang, Q.; Cheng, W.; Huan, S.; Hu, Y.; Niu, Z.; Han, G.; Cheng, H.; Wang, G. A Novel Strategy Combining Electrospraying and One-Step Carbonization for the Preparation of Ultralight Honeycomb-Like Multilayered Carbon from Biomass-Derived Lignin. Carbon 2021, 179, 68–79. [Google Scholar] [CrossRef]
- Schlee, P.; Hosseinaei, O.; Baker, D.; Landmér, A.; Tomani, P.; Mostazo-López, M.J.; Cazorla-Amorós, D.; Herou, S.; Titirici, M.-M. From Waste to Wealth: From Kraft Lignin to Free-Standing Supercapacitors. Carbon 2019, 145, 470–480. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.; Chen, H.; Liu, Y.; Yang, D.; Li, H. Graphene-Like Porous Carbon Nanosheets Derived from Salvia splendens for High-Rate Performance Supercapacitors. J. Power Sources 2018, 397, 1–10. [Google Scholar] [CrossRef]
- Tian, Y.; Ren, Q.; Chen, X.; Li, L.; Lan, X. Yeast-Based Porous Carbon with Superior Electrochemical Properties. ACS Omega 2022, 7, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Peng, L.; Liu, Y.; Zhao, G.; Chen, J.Y.; Yu, G. Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors. ACS Appl. Mater. Interface 2016, 8, 15205–15215. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Hu, Y.; Lai, H.; Liu, L.; Zhong, L.; Peng, X. Wood-Derived Lightweight and Elastic Carbon Aerogel for Pressure Sensing and Energy Storage. Adv. Funct. Mater. 2020, 30, 1910292. [Google Scholar] [CrossRef]
- Shang, Z.; An, X.; Zhang, H.; Shen, M.; Baker, F.; Liu, Y.; Liu, L.; Yang, J.; Cao, H.; Xu, Q.; et al. Houttuynia-Derived Nitrogen-Doped Hierarchically Porous Carbon for High-Performance Supercapacitor. Carbon 2020, 161, 62–70. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Eftekhari, A. The Mechanism of Ultrafast Supercapacitors. J. Mater. Chem. A 2018, 6, 2866–2876. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lim, M.S.W.; Hong, Z.-Y.; Chong, S.; Tiong, T.J.; Pan, G.-T.; Huang, C.-M. Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
System | SSA (m2 g−1) | Smic (m2 g−1) | Smes (m2 g−1) | Vp (cm3 g−1) | Vmic (cm3 g−1) | Vmes (cm3 g−1) | Wp (nm) | Dp (nm) |
---|---|---|---|---|---|---|---|---|
HrP_500 | 29.7 | 12.4 | 17.3 | 0.075 | 0.031 | 0.044 | ---- | 3.1 |
HrC_Z400 | 1152.2 | 1052.9 | 99.3 | 0.741 | 0.602 | 0.139 | 0.286 | 3.67 |
HrC_Z500 | 1230.1 | 1104.4 | 125.7 | 0.804 | 0.627 | 0.177 | 0.262 | 3.66 |
HrC_Z600 | 1301.2 | 1160.3 | 140.9 | 0.915 | 0.707 | 0.208 | 0.286 | 3.67 |
HrC_Z700 | 1382.6 | 1225.8 | 156.8 | 0.929 | 0.697 | 0.232 | 0.274 | 3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnawali, C.L.; Shrestha, L.K.; Hill, J.P.; Ma, R.; Ariga, K.; Adhikari, M.P.; Rajbhandari, R.; Pokharel, B.P. Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application. C 2023, 9, 109. https://doi.org/10.3390/c9040109
Gnawali CL, Shrestha LK, Hill JP, Ma R, Ariga K, Adhikari MP, Rajbhandari R, Pokharel BP. Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application. C. 2023; 9(4):109. https://doi.org/10.3390/c9040109
Chicago/Turabian StyleGnawali, Chhabi Lal, Lok Kumar Shrestha, Jonathan P. Hill, Renzhi Ma, Katsuhiko Ariga, Mandira Pradhananga Adhikari, Rinita Rajbhandari, and Bhadra P. Pokharel. 2023. "Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application" C 9, no. 4: 109. https://doi.org/10.3390/c9040109
APA StyleGnawali, C. L., Shrestha, L. K., Hill, J. P., Ma, R., Ariga, K., Adhikari, M. P., Rajbhandari, R., & Pokharel, B. P. (2023). Nanoporous Activated Carbon Material from Terminalia chebula Seed for Supercapacitor Application. C, 9(4), 109. https://doi.org/10.3390/c9040109