Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Diffusion Experiment
2.3. Characterizations
3. Results and Discussion
3.1. Microstructure
3.2. Rutherford Backscattering Spectrometry Analysis
3.3. Crystal Structure
3.4. Mechanistic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukhawana, M.B.; Theron, C.C.; Malherbe, J.B.; Van der Berg, N.G.; Botha, A.J.; Grote, W.; Wendler, E.; Wesch, W.; Chakraborty, P. Behaviorofiodineimplantedinhighlyorientedpyrolyticgraphite(HOPG)afterheattreatment. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 273, 65–67. [Google Scholar] [CrossRef]
- Carter, L.; Brockman, J.; Robertson, J.; Loyalka, S. ICP-MSmeasurementofiodinediffusioninIG-110graphiteforHTGR/VHTR. J. Nucl. Mater. 2016, 476, 30–35. [Google Scholar] [CrossRef]
- Verfondern, K. Fuel Performance and Fission Product Behaviour in Gas Cooled Reactors; IAEATecdoc; International Atomic Energy Agency: Vienna, Austria, 1997; pp. 448–453. [Google Scholar]
- Müller, A. Freisezung Gasformiger Spaltproducte (Kr, Xe, J) aus Brennelmenten für Gasgekühlte Hochtemperaturreactoren. Ph.D. Thesis, Kernforschungsanlage Jülich, Jülich, Germany, 1976. [Google Scholar]
- Carter, L.M.; Brockman, J.D.; Robertson, J.D.; Loyalka, S.K. ICP-MS Measurement of cesium diffusion coefficients in NBG-18 graphite. J. Nucl. Mater. 2015, 466, 402–408. [Google Scholar] [CrossRef]
- Carter, L.; Brockman, J.; Robertson, J.; Loyalka, S. Diffusion of cesium and iodine in compressed IG-110 graphite compacts. J. Nucl. Mater. 2016, 473, 218–222. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Song, J.; Lian, P.; Guo, Q. Fine-grained graphite with super molten salt barrier property produced from filler of natural graphite flake by a liquid-phase mixing process. Carbon 2019, 145, 367–377. [Google Scholar] [CrossRef]
- Adeojo, S.; Malherbe, J.; Njoroge, E.; Mlambo, M.; Odutemowo, O.; Thabethe, T.; Abdalla, Z.; Hlatshwayo, T. Effect of sequential isochronal annealing on the structure and migration behaviour of selenium-ion implanted in glassy carbon. Vacuum 2020, 182, 109689. [Google Scholar] [CrossRef]
- Odutemowo, O.S.; Marherbe, J.B.; Theron, C.C. In-situ RBS studies of strontium implanted glassy carbon. Vacuum 2016, 126, 101–105. [Google Scholar] [CrossRef]
- Arregui-Mena, J.D.; Worth, R.N.; Bodel, W.; März, B.; Li, W.; Campbell, A.A.; Cakmak, E.; Gallego, N.; Contescu, C.; Edmondson, P.D. Multiscale characterization and comparison of historical and modern nuclear graphite grades. Mater. Charact. 2022, 190, 112047. [Google Scholar] [CrossRef]
- Hlatshwayo, T.; Sebitla, L.; Njoroge, E.; Mlambo, M.; Malherbe, J. Annealing effects on the migration of ion-implanted cadmium in glassy carbon. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 395, 34–38. [Google Scholar] [CrossRef]
- Asthana, A.; Matsui, Y.; Yasuda, M.; Kimoto, K.; Iwata, T.; Ohshima, K.I. Investigations on the structural disordering of neutron-irradiated highly oriented pyrolytic graphite by X-ray diffraction and electron microscopy. Appl. Crystallogr. 2005, 38, 361–367. [Google Scholar] [CrossRef]
- Phillips, R.; Jolley, K.; Zhou, Y.; Smith, R. Influence of temperature and point defects on the X-ray diffraction pattern of graphite. Carbon Trends 2021, 5, 100124. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Cheng, H.; Hu, M.; Zhang, S. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119286. [Google Scholar] [CrossRef]
- Inam, A.; Brydson, R.; Edmonds, D.V. Raman spectroscopy study of the crystallinity of graphite formed in an experimental free-machining steel. Mater. Charact. 2020, 163, 110264–110269. [Google Scholar] [CrossRef]
- Abbas, G.; Sonia, F.J.; Zafar, Z.A.; Knížek, K.; Houdková, J.; Jiříček, P.; Bouša, M.; Plšek, J.; Kalbáč, M.; Červenka, J.; et al. Influence of structural properties on (de-)intercalation of ClO4− anion in graphite from concentrated aqueous electrolyte. Carbon 2022, 186, 612–623. [Google Scholar] [CrossRef]
- Que, L.; Ai, J.; Shao, T.; Han, R.; Su, J.; Guo, Y.; Liu, Y.; Li, J.; Jian, X.; Zhou, Z. Fluorinated graphene films for ultra-high sensitivity of surface-enhanced Raman scattering. Appl. Surf. Sci. 2023, 616, 156496. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, Q.; Song, J.; Liu, M.; Zhang, C.; Gao, Y.; Zhang, W.; Xia, H.; Liu, X. Direct characterization of ion implanted nanoporous pyrolytic graphite coatings for molten salt nuclear reactors. RSC Adv. 2018, 59, 33927–33938. [Google Scholar] [CrossRef]
- Schito, A.; Muirhead, D.K.; Parnell, J. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Sci. Rev. 2023, 237, 104292. [Google Scholar] [CrossRef]
- Nakashima, S.; Norimoto, M.; Harima, H. Raman scattering of iodine intercalated C60 crystals. Chem. Phys. Lett. 1997, 268, 359–364. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, Y.; Yang, X. In situ low-temperature Raman studies of iodine molecules confined in the one-dimensional channels of AlPO4-5 crystals. Microporous Mesoporous Mater. 2016, 221, 76–80. [Google Scholar] [CrossRef]
- Congeduti, A.; Nardone, M.; Postorino, P. Polarized Raman spectra of a single crystal of iodine. Chem. Phys. 2000, 256, 117–123. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Song, J.; Zhang, H.; Lian, P.; Gao, Y.; Zhang, C.; He, Z.; Liu, Z.; Zhao, M.; et al. Irradiation resistance study of binderless nanoporous-isotropic graphite for use in molten salt nuclear reactors. Nucl. Eng. Des. 2018, 335, 231–240. [Google Scholar] [CrossRef]
- Li, J.; Qin, Y.; Chen, Y.; Shen, J.; Song, Y.; Wang, Z. Structural characteristics and evolution of meta-anthracite to coaly graphite: A quantitative investigation using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. Fuel 2023, 333, 126334. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Roberston, J. Original of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 2001, 63, 121405. [Google Scholar] [CrossRef]
Properties | G400 | G450 | G500 |
---|---|---|---|
Apparent density (g/cm3) | 1.76 0.02 | 1.77 0.02 | 1.84 0.02 |
Graphitization degree (%) | 91.5 | 92.0 | 93.8 |
Average pore size (volume, nm) | 23 | 18 | 553 |
Open porosity (%) | 17.8 0.1 | 17.3 0.1 | 12.8 0.1 |
Element | G400-D96 | G450-D96 | G500-D96 |
---|---|---|---|
Carbon (%) | 96.70 | 97.20 | 96.10 |
Iodine (%) | 3.30 | 2.80 | 3.90 |
Sample Name | D peak Wave Number (cm−1) | G Peak Wave Number (cm−1) | ID/IG (Arbitrary Units) | La (nm) |
---|---|---|---|---|
G400 | 1361 | 1583 | 0.34 | 35 |
G400-D96 | 1353 | 1582 | 0.39 | 31 |
G400-H48 | 1362 | 1582 | 0.28 | 43 |
G450 | 1362 | 1583 | 0.32 | 38 |
G450-D96 | 1356 | 1583 | 0.63 | 19 |
G450-H48 | 1362 | 1582 | 0.23 | 52 |
G500 | 1361 | 1581 | 0.32 | 38 |
G500-D96 | 1354 | 1583 | 0.38 | 32 |
G500-H48 | 1365 | 1583 | 0.20 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.-B.; Lian, P.-F.; Li, P.-D.; Zhang, H.-Y.; Cheng, J.-X.; Wang, Q.-B.; Tang, Z.-F.; Pan, T.J.; Song, J.-L.; Liu, Z.-J. Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature. C 2023, 9, 81. https://doi.org/10.3390/c9030081
Qi M-B, Lian P-F, Li P-D, Zhang H-Y, Cheng J-X, Wang Q-B, Tang Z-F, Pan TJ, Song J-L, Liu Z-J. Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature. C. 2023; 9(3):81. https://doi.org/10.3390/c9030081
Chicago/Turabian StyleQi, Ming-Bo, Peng-Fei Lian, Peng-Da Li, He-Yao Zhang, Jin-Xing Cheng, Qing-Bo Wang, Zhong-Feng Tang, T. J. Pan, Jin-Liang Song, and Zhan-Jun Liu. 2023. "Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature" C 9, no. 3: 81. https://doi.org/10.3390/c9030081
APA StyleQi, M. -B., Lian, P. -F., Li, P. -D., Zhang, H. -Y., Cheng, J. -X., Wang, Q. -B., Tang, Z. -F., Pan, T. J., Song, J. -L., & Liu, Z. -J. (2023). Diffusion Behavior of Iodine in the Micro/Nano-Porous Graphite for Nuclear Reactor at High Temperature. C, 9(3), 81. https://doi.org/10.3390/c9030081