The Adsorption of 2,4-Dichlorobenzoic Acid on Carbon Nanofibers Produced by Catalytic Pyrolysis of Trichloroethylene and Acetonitrile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Functionalized CNFs
2.2. Equilibrium Adsorption Study of 2,4-DCBA from Aqueous Solution
2.2.1. Adsorption Experiments
2.2.2. Adsorption Isotherm Modeling
Langmuir Isotherm
Freundlich Isotherm
Dubinin-Astakhov Isotherm
2.3. Characterization of the Samples
3. Results and Discussion
3.1. Synthesis and Characterization of CNF Samples
3.2. Adsorption of 2,4-DCBA from Aqueous Solutions
3.2.1. Adsorption of 2,4-DCBA at Natural pH
3.2.2. Adsorption of 2,4-DCBA at Different pH Values
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henschler, D. Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules. Angew. Chem. Int. Ed. Engl. 1994, 33, 1920–1935. [Google Scholar] [CrossRef]
- Mishakov, I.V.; Bauman, Y.I.; D’yachkova, S.G.; Potylitsyna, A.R.; Vedyagin, A.A. Integrated Approach to the Utilization of Organochlorine Compounds by the Example of Vinyl Chloride Production Waste. Dokl. Chem. 2023, 508, 62–69. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Mater. Adv. 2021, 2, 598–627. [Google Scholar] [CrossRef]
- Abbo, H.S.; Gupta, K.C.; Khaligh, N.G.; Titinchi, S.J.J. Carbon Nanomaterials for Wastewater Treatment. ChemBioEng Rev. 2021, 8, 463–489. [Google Scholar] [CrossRef]
- Din, I.U.; Shaharun, M.S.; Naeem, A.; Alotaibi, M.A.; Alharthi, A.I.; Bakht, M.A.; Nasir, Q. Carbon Nanofibers as Potential Materials for Catalysts Support, a Mini-Review on Recent Advances and Future Perspective. Ceram. Int. 2020, 46, 18446–18452. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S.O.; Liu, C.; Sahu, A.K. Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy Fuels 2021, 35, 11761–11799. [Google Scholar] [CrossRef]
- des Ligneris, E.; Dumée, L.F.; Kong, L. Nanofiber-Based Materials for Persistent Organic Pollutants in Water Remediation by Adsorption. Appl. Sci. 2018, 8, 166. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossini, H.; Asadi, F.; Janjani, H. A Systematic Review on Organochlorine and Organophosphorus Pesticides Content in Water Resources. Toxin Rev. 2017, 36, 210–221. [Google Scholar] [CrossRef]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Mishakov, I.V.; Bauman, Y.I.; Brzhezinskaya, M.; Netskina, O.V.; Shubin, Y.V.; Kibis, L.S.; Stoyanovskii, V.O.; Larionov, K.B.; Serkova, A.N.; Vedyagin, A.A. Water Purification from Chlorobenzenes Using Heteroatom-Functionalized Carbon Nanofibers Produced on Self-Organizing Ni-Pd Catalyst. J. Environ. Chem. Eng. 2022, 10, 107873. [Google Scholar] [CrossRef]
- Ozerova, A.M.; Potylitsyna, A.R.; Bauman, Y.I.; Tayban, E.S.; Lipatnikova, I.L.; Nartova, A.V.; Vedyagin, A.A.; Mishakov, I.V.; Shubin, Y.V.; Netskina, O.V. Synthesis of Chlorine- and Nitrogen-Containing Carbon Nanofibers for Water Purification from Chloroaromatic Compounds. Materials 2022, 15, 8414. [Google Scholar] [CrossRef] [PubMed]
- Bauman, Y.I.; Netskina, O.V.; Mukha, S.A.; Mishakov, I.V.; Shubin, Y.V.; Stoyanovskii, V.O.; Nalivaiko, A.Y.; Vedyagin, A.A.; Gromov, A.A. Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys. Russ. J. Appl. Chem. 2020, 93, 1873–1882. [Google Scholar] [CrossRef]
- Vrana, B.; Dercová, K.; Baláž, Š.; Ševčíková, A. Effect of Chlorobenzoates on the Degradation of Polychlorinated Biphenyls (PCB) by Pseudomonas Stutzeri. World J. Microbiol. Biotechnol. 1996, 12, 323–326. [Google Scholar] [CrossRef]
- Stratford, J.; Wright, M.A.; Reineke, W.; Mokross, H.; Havel, J.; Knowles, C.J.; Robinson, G.K. Influence of Chlorobenzoates on the Utilisation of Chlorobiphenyls and Chlorobenzoate Mixtures by Chlorobiphenyl/Chlorobenzoate-Mineralising Hybrid Bacterial Strains. Arch. Microbiol. 1996, 165, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Klamerth, N.; Gernjak, W.; Malato, S.; Agüera, A.; Lendl, B. Photo-Fenton Decomposition of Chlorfenvinphos: Determination of Reaction Pathway. Water Res. 2009, 43, 441–449. [Google Scholar] [CrossRef] [PubMed]
- United States Environment Protection Agency (USEPA). Prevention, Pesticides and Toxic Substances. In Reregistration Eligibility Decision (RED) for Propiconazole: Case No. 3125; EPA 738R-0; United States Environment Protection Agency (USEPA): Washington, DC, USA, 2006. [Google Scholar]
- (ThermoFisher-SDS-C7H4Cl2O2) ThermoFisher Scientific Safety Data Sheet. 2,4-Dichlorobenzoic Acid, CAS No.: 50-84-0. 2021. Available online: https://www.thermofisher.in/chemicals/en/search/results?keyword=50-84-0 (accessed on 20 June 2023).
- (ThermoFisher-SDS-C6H4Cl2) ThermoFisher Scientific Safety Data Sheet. o-Dichlorobenzene, CAS No.: 95-50-1. 2021. Available online: https://www.thermofisher.in/chemicals/en/search/results?keyword=95-50-1 (accessed on 20 June 2023).
- Li, H.; Cao, Y.; Zhang, D.; Pan, B. pH-Dependent KOW Provides New Insights in Understanding the Adsorption Mechanism of Ionizable Organic Chemicals on Carbonaceous Materials. Sci. Total Environ. 2018, 618, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pignatello, J.J.; Wang, Y.; Xing, B. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environ. Sci. Technol. 2013, 47, 8334–8341. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, W. Sorption of Ionizable Organic Chemicals to Carbonaceous Adsorbents: Solution pH Change and Contributions of Different Species. Sci. Total Environ. 2019, 647, 1069–1079. [Google Scholar] [CrossRef]
- Rudneva, Y.V.; Shubin, Y.V.; Plyusnin, P.E.; Bauman, Y.I.; Mishakov, I.V.; Korenev, S.V.; Vedyagin, A.A. Preparation of Highly Dispersed Ni1-XPdx Alloys for the Decomposition of Chlorinated Hydrocarbons. J. Alloys Compd. 2019, 782, 716–722. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Bering, B.P.; Dubinin, M.M.; Serpinsky, V.V. Theory of Volume Filling for Vapor Adsorption. J. Colloid Interface Sci. 1966, 21, 378–393. [Google Scholar] [CrossRef]
- Dubinin, M.M. Adsorption Properties and Microporous Structures of Carbonaceous Adsorbents. Carbon N. Y. 1987, 25, 593–598. [Google Scholar] [CrossRef]
- Podlesnyuk, V.V.; Levchenko, T.M.; Marutovskii, R.M.; Koganovskii, A.M. Adsorption of Dissolved Organic Compounds on Porous Polymeric Materials. Theor. Exp. Chem. 1985, 21, 363–365. [Google Scholar] [CrossRef]
- Kaneko, K. Determination of Pore Size and Pore Size Distribution. 1. Adsorbents and Catalysts. J. Memb. Sci. 1994, 96, 59–89. [Google Scholar] [CrossRef]
- Mel’gunov, M.S.; Ayupov, A.B. Direct Method for Evaluation of BET Adsorbed Monolayer Capacity. Microporous Mesoporous Mater. 2017, 243, 147–153. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Potylitsyna, A.R.; Bauman, Y.I.; Mishakov, I.V.; Plyusnin, P.E.; Vedyagin, A.A.; Shubin, Y.V. The Features of the CCVD of Trichloroethylene over Microdispersed Ni and Ni–Mo Catalysts. Top. Catal. 2023, 66, 326–337. [Google Scholar] [CrossRef]
- Li, B.; Zhou, L.; Wu, D.; Peng, H.; Yan, K.; Zhou, Y.; Liu, Z. Photochemical Chlorination of Graphene. ACS Nano 2011, 5, 5957–5961. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Hsu, W.L. Carbon Dioxide Adsorption on Nano/Micro-Scale Porous Adsorbents. Int. J. Nanomanuf. 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Kundu, S.; Xia, W.; Busser, W.; Becker, M.; Schmidt, D.A.; Havenith, M.; Muhler, M. The Formation of Nitrogen-Containing Functional Groups on Carbon Nanotube Surfaces: A Quantitative XPS and TPD Study. Phys. Chem. Chem. Phys. 2010, 12, 4351–4359. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, 11, 2442. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Rajalakshmi, K. Vibrational Study of 2,4-Dichlorobenzoic Acid by DFT. Int. J. Adv. Sci. Technol. Eng. Manag. Sci. 2016, 2. [Google Scholar]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 786, 3973–3993. [Google Scholar] [CrossRef]
- Piccin, J.S.; Cadaval, T.R.S.A.; De Pinto, L.A.A.; Dotto, G.L. Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Ávila, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 19–51. ISBN 9783319581361. [Google Scholar]
- Hallén, D.; Wadsö, I.; Wasserman, D.J.; Robert, C.H.; Gill, S.J. Enthalpy of Dimerization of Benzene in Water. J. Phys. Chem. 1988, 92, 3623–3625. [Google Scholar] [CrossRef]
- Strong, L.E.; Brummel, C.L.; Ryther, R.; Radford, J.R.; Pethybridge, A.D. Dimerization of Some Substituted Benzoic Acids in Aqueous Solution from Conductance Measurements. J. Solut. Chem. 1988, 17, 1145–1167. [Google Scholar] [CrossRef]
- Peral, F.; Gallego, E.; Morcillo, J. Self-Association of Pyridine Carboxylic Acids and Orotic Acid in Aqueous Solution. An Ultraviolet Study. J. Mol. Struct. 1990, 219, 251–256. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nishi, N. Hydrophobic Hydration and Hydrophobic Interaction of Carboxylic Acids in Aqueous Solution: Mass Spectrometric Analysis of Liquid Fragments Isolated as Clusters. J. Am. Chem. Soc. 1990, 112, 549–558. [Google Scholar] [CrossRef]
- Pham, H.H.; Taylor, C.D.; Henson, N.J. First-Principles Prediction of the Effects of Temperature and Solvent Selection on the Dimerization of Benzoic Acid. J. Phys. Chem. B 2013, 117, 868–876. [Google Scholar] [CrossRef]
- Zettlemoyer, A.C.; Micale, F.J. Adsorption from Solution. Croat. Chem. Acta 1970, 42, 247–263. [Google Scholar]
- Leon y Leon, C.A.; Solar, J.M.; Calemma, V.; Radovic, L.R. Evidence for the Protonation of Basal Plane Sites on Carbon. Carbon N. Y. 1992, 30, 797–811. [Google Scholar] [CrossRef]
- Tong, Y.; McNamara, P.J.; Mayer, B.K. Adsorption of Organic Micropollutants onto Biochar: A Review of Relevant Kinetics, Mechanisms and Equilibrium. Environ. Sci. Water Res. Technol. 2019, 5, 821–838. [Google Scholar] [CrossRef]
- Kah, M.; Sigmund, G.; Xiao, F.; Hofmann, T. Sorption of Ionizable and Ionic Organic Compounds to Biochar, Activated Carbon and Other Carbonaceous Materials. Water Res. 2017, 124, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lou, Z.; Yang, K.; Xu, J.; Li, Y.; Liu, Y.; Baig, S.A.; Xu, X. Electrocatalytic Dechlorination of 2,4-Dichlorobenzoic Acid Using Different Carbon-Supported Palladium Moveable Catalysts: Adsorption and Dechlorination Activity. Appl. Catal. B Environ. 2019, 244, 215–224. [Google Scholar] [CrossRef]
- Zhou, J.; Lou, Z.; Wang, Z.; Zhou, C.; Li, C.; Ali Baig, S.; Xu, X. Electrocatalytic Dechlorination of 2,4-DCBA Using CTAB Functionalized Pd/GAC Movable Granular Catalyst: Role of Adsorption in Catalysis. Chem. Eng. J. 2021, 414, 128758. [Google Scholar] [CrossRef]
Sample | SSA, m2·g−1 | VΣpore, cm3·g−1 | Vmicropore, cm3·g−1 | Vmesopore, cm3·g−1 | Vmacropore, cm3·g−1 | , nm |
---|---|---|---|---|---|---|
CNF-Cl | 310 | 0.53 | 0.025 | 0.35 | 0.155 | 6.8 |
CNF-Cl-N | 250 | 0.82 | 0.017 | 0.41 | 0.393 | 13.2 |
Sample | Content, at% | |||
---|---|---|---|---|
C | Cl | N | O | |
CNF-Cl | 98.1 | 0.23 | - | 1.6 |
CNF-Cl-N | 96.1 | - | 0.33 | 3.6 |
Sample | Functional Groups, % 1 | ||||
---|---|---|---|---|---|
C=C | C-O, C-OH, C-O-C | C=O | O-C=O, COOH | ||
CNF-Cl | O1s | - | 70.9 | 29.1 | |
C1s | 77.4 | 12.5 | 5.5 | 4.7 | |
CNF-Cl-N | O1s | - | 59.2 | 40.8 | |
C1s | 76.8 | 15.2 | 4.6 | 3.5 |
pH | 2 | 3 | 4 | 5 | 9 |
Dissociation Degree, % | 17 | 67 | 95 | 99.5 | 100 |
Sample | A0, mmol·g−1 | Natural pH 1 | pH = 2 | pH = 3 | pH = 4 | pH = 5 | pH = 9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A 2, mmol·g−1 | F, % | A 2, mmol·g−1 | F, % | A 2, mmol·g−1 | F, % | A 2, mmol·g−1 | F, % | A 2, mmol·g−1 | F, % | A 2, mmol·g−1 | F, % | ||
CNF-Cl | 0.63 | 2.32 | 55 | 2.1 | 50 | 1.64 | 39 | 1.28 | 30 | 1.05 | 25 | 0.22 | 5 |
CNF-Cl-N | 0.5 | 2.29 | 35 | 1.32 | 20 | 0.98 | 15 | 0.87 | 13 | 0.66 | 10 | 0.15 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozerova, A.M.; Tayban, E.S.; Lipatnikova, I.L.; Potylitsyna, A.R.; Bauman, Y.I.; Prosvirin, I.P.; Shubin, Y.V.; Vedyagin, A.A.; Mishakov, I.V.; Netskina, O.V. The Adsorption of 2,4-Dichlorobenzoic Acid on Carbon Nanofibers Produced by Catalytic Pyrolysis of Trichloroethylene and Acetonitrile. C 2023, 9, 98. https://doi.org/10.3390/c9040098
Ozerova AM, Tayban ES, Lipatnikova IL, Potylitsyna AR, Bauman YI, Prosvirin IP, Shubin YV, Vedyagin AA, Mishakov IV, Netskina OV. The Adsorption of 2,4-Dichlorobenzoic Acid on Carbon Nanofibers Produced by Catalytic Pyrolysis of Trichloroethylene and Acetonitrile. C. 2023; 9(4):98. https://doi.org/10.3390/c9040098
Chicago/Turabian StyleOzerova, Anna M., Elena S. Tayban, Inna L. Lipatnikova, Arina R. Potylitsyna, Yury I. Bauman, Igor P. Prosvirin, Yury V. Shubin, Aleksey A. Vedyagin, Ilya V. Mishakov, and Olga V. Netskina. 2023. "The Adsorption of 2,4-Dichlorobenzoic Acid on Carbon Nanofibers Produced by Catalytic Pyrolysis of Trichloroethylene and Acetonitrile" C 9, no. 4: 98. https://doi.org/10.3390/c9040098
APA StyleOzerova, A. M., Tayban, E. S., Lipatnikova, I. L., Potylitsyna, A. R., Bauman, Y. I., Prosvirin, I. P., Shubin, Y. V., Vedyagin, A. A., Mishakov, I. V., & Netskina, O. V. (2023). The Adsorption of 2,4-Dichlorobenzoic Acid on Carbon Nanofibers Produced by Catalytic Pyrolysis of Trichloroethylene and Acetonitrile. C, 9(4), 98. https://doi.org/10.3390/c9040098