Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet and Animal Management
2.2. Chemical Analysis
2.3. Dry Matter Intake, Milk and Composition
2.4. Blood Sampling and Analysis
2.5. Ruminal Fermentation Analysis
2.6. High-Throughput Sequencing
2.7. Bioinformatics Analysis
2.8. Statistical Analysis
3. Results
3.1. DMI, Milk, and Composition
3.2. Blood Indices of Antioxidant Parameters, Immunity, and Biochemical
3.3. Ruminal Fermentation Parameters
3.4. Rumen Microbial Richness and Diversity
3.5. Taxonomic Analysis of Ruminal Microbial Communities
3.6. Correlation of Ruminal Microbes with Ruminal Fermentation Indices and Serum Indicators
3.7. LEfSe Analysis of Microbial Community-Specific Bacteria in Rumen Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmhadi, M.E.; Ali, D.K.; Khogali, M.K.; Wang, H. Subacute ruminal acidosis in dairy herds, microbiological and nutritional causes, consequences, and prevention strategies. Anim. Nutr. 2022, 10, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Albarran, M.; Balocchi, O.; Wittwer, F.; Pulido, R. Milk production, grazing behavior and nutritional status of dairy cows grazing two herbage allowances during winter. Chil. J. Agric. Res. 2016, 76, 34–39. [Google Scholar] [CrossRef]
- Firkins, J.L.; Eastridge, M.L.; St-Pierre, N.R.; Noftsger, S.M. Effects of grain variability and processing on starch utilization by lactating dairy cattle. J. Anim. Sci. 2001, 79, E218–E238. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 2013, 96, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Pickworth, C.L.; Loerch, S.C.; Kopec, R.E.; Schwartz, S.J.; Fluharty, F.L. Concentration of pro-vitamin A carotenoids in common beef cattle feed stuffs. J. Anim. Sci. 2012, 90, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Luo, Y.; Bao, J.; Luo, Y.; Yu, Z. Additives affect the distribution of metabolic profile, microbial communities and antibiotic resistance genes in high-moisture sweet corn kernel silage. Bioresour. Technol. 2020, 315, 123821. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Z.; Shang, S.; Zhao, X.; Zhang, W.; Zhang, X.; Bai, J.; Yang, Z.; Guo, K. Effect of additives and moisture on the fermentation quality and bacterial community of high moisture ear corn. Front. Microbiol. 2023, 14, 1251946. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.J.; Mullins, C.R. Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J. Dairy Sci. 2012, 95, 4735–4746. [Google Scholar] [CrossRef]
- Satyanarayana, S.D.; Risheen, G.D. Current trends and innovations in livestock production: A critical review. Int. J. Vet. Sci. Anim. Husb. 2023, 8, 22–24. [Google Scholar]
- Pitta, D.W.; Indugu, N.; Baker, L.; Vecchiarelli, B.; Attwood, G. Symposium review, understanding diet-microbe interactions to enhance productivity of dairy cows. J. Dairy Sci. 2018, 101, 7661–7679. [Google Scholar] [CrossRef]
- NASEM. Nutrienr Requirements of Dairy Cattle, 8th ed.; National Academies of Sciences Engineering and Medicine: Washington, DC, USA, 2021. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Wang, Z.; Li, X.Y.; Yu, Y.N.; Yang, L.Y.; Zhang, P.H.; He, J.H.; Shen, W.J.; Tan, Z.L.; Feng, B.L.; Tang, S.X. Enhancing dietary cation-anion difference reshaped the distribution of endotoxin across different biofluids and influenced inflammatory response in dairy cows exposed to heat stress. Anim. Feed Sci. Technol. 2020, 262, 114444. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.J.; Marco, G.J.; Emery, M.E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids. Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH, fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp, an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac, an effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.W.; Kelm, S.; Endres, M.I. Effect of feeding a corn hybrid selected for leafiness as silage or grain to lactating dairy cattle. J. Dairy Sci. 2002, 85, 607–612. [Google Scholar] [CrossRef]
- Wu, Z.; Massingill, L.J.; Walgenbach, R.P.; Satter, L.D. Cracked dry or finely ground high moisture shelled corn as a supplement for grazing cows. J. Dairy Sci. 2001, 84, 2227–2230. [Google Scholar] [CrossRef]
- Purwin, C.; Opyd, P.M.; Baranowska, M.; Borsuk-Stanulewicz, M. The effect of diets containing high-moisture corn or triticale grain on animal performance and the fatty acid composition of lamb muscles. Animals 2022, 12, 3130. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of ferulic acid esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, R.I.; Sordillo, L.M.; Contreras, G.A.; Nelli, R.; Mamedova, L.K.; Bradford, B.J.; Allen, M.S. Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J. Dairy Sci. 2020, 103, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Gao, Z.; Zhu, G. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct. 2013, 4, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Kong, F.; Li, S.; Wang, X.; Sun, X.; Du, W.; Dai, D.; Wang, S.; Xie, B.; Xu, X. Effect of alkaline mineral complex buffer supplementation on milk performance, serum variables, rumen fermentation and rumen microbiota of transition dairy cows. Fermentation 2023, 9, 792. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yin, F.G.; Zhu, C.; Yu, H.; Niven, S.J.; de Lange, C.F.M.; Gong, J. Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livest. Sci. 2012, 145, 79–86. [Google Scholar] [CrossRef]
- Bai, C.; Wang, C.; Sun, L.; Xu, H.; Jiang, Y.; Na, N.; Yin, G.; Liu, S.; Xue, Y. Dynamics of bacterial and fungal communities and metabolites during aerobic exposure in whole-plant corn silages with two different moisture levels. Front. Microbiol. 2021, 12, 663895. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Ranjitkar, S.; Sharma, N.K.; Engberg, R.M. Influence of feeding crimped kernel maize silage on the course of subclinical necrotic enteritis in a broiler disease model. Anim. Nutr. 2017, 3, 392–398. [Google Scholar] [CrossRef]
- Jin, L.; Yan, S.; Shi, B.; Bao, H.; Gong, J.; Guo, X.; Li, J. Effects of vitamin A on the milk performance, antioxidant functions and immune functions of dairy cows. Anim. Feed Sci. Technol. 2014, 192, 15–23. [Google Scholar] [CrossRef]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 732–741. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Q.; Li, Z.; Wang, D.; Yang, S.; Feng, Y. Studies on effect of Tongfengxiaofang in HUM model mice using a UPLC-ESI-Q-TOF/MS metabolomic approach. Biomed. Chromatogr. 2021, 35, e5118. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wang, J.; Xu, H.; Liu, S.Z. Renal function is ameliorated in a diabetic nephropathy rat model through a duodenal-jejunal bypass. Diabetes. Res. Clin. Pract. 2014, 103, 26–34. [Google Scholar]
- Kruit, J.K.; Groen, A.K.; van Berkel, T.J.; Kuipers, F. Emerging roles of the intestine in control of cholesterol metabolism. World J. Gastroenterol. 2006, 12, 6429–6439. [Google Scholar] [CrossRef] [PubMed]
- Coronel, J.; Pinos, I.; Amengual, J. Beta-carotene in obesity research, technical considerations and current status of the field. Nutrients 2019, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Phesatcha, K.; Phesatcha, B.; Chunwijitra, K.; Wanapat, M.; Cherdthong, A. Changed rumen fermentation, blood parameters, and microbial population in fattening steers receiving a high concentrate diet with Saccharomyces cerevisiae improve growth performance. Vet. Sci. 2021, 8, 294. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Li, S.; Danscher, A.M.; Derakshani, H.; Andersen, P.H.; Khafipour, E. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microb. Ecol. 2017, 74, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, H.; Gao, Z.; Xu, J.; Liu, B.; Guo, M.; Yang, X.; Niu, J.; Zhu, X.; Ma, S.; et al. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 4187–4198. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Cherdthong, A.; Kang, S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian Australas. J. Anim. Sci. 2014, 27, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, C.; Broderick, G.A. Effect of processing high moisture ear corn on ruminal fermentation and milk yield. J. Dairy Sci. 1997, 80, 3298–3307. [Google Scholar] [CrossRef]
- Holmes, C.; Brookes, I.; Garrick, D.; Mackenzie, D.; Parkinson, T.; Wilson, G. Milk Production from Pasture; Massey University: Palmerston North, New Zealand, 2002; p. 602. [Google Scholar]
- Aleixo, J.A.; Daza, J.; Keim, J.P.; Castillo, I.; Pulido, R.G. Effects of sugar beet silage, high-moisture corn, and corn silage feed supplementation on the performance of dairy cows with restricted daily access to pasture. Animals 2022, 12, 2672. [Google Scholar] [CrossRef]
- Allen, M.S.; Ying, Y. Effects of corn grain endosperm type and conservation method on feed intake, feeding behavior, and productive performance of lactating dairy cows. J. Dairy Sci. 2021, 104, 7604–7616. [Google Scholar] [CrossRef]
- Bach, A.; Joulie, I.; Chevaux, E.; Elcoso, G.; Ragues, J. Milk performance and rumen microbiome of dairy cows as affected by the inclusion of corn silage or corn shredlage in a total mixed ration. Animal 2021, 15, 100014. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary concentrate-to-forage ratio affects rumen bacterial community composition and metabolome of yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.J.; Brown, J.M.; Murray, R.D.; Getty, B.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 2011, 77, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, Y.; Li, X.; Xiao, H.; Zhang, P.; Shen, W.; Wan, F.; He, J.; Tang, S.; Tan, Z.; et al. Fermented soybean meal replacement in the diet of lactating Holstein dairy cows, modulated rumen fermentation and ruminal microflora. Front. Microbiol. 2021, 12, 625857. [Google Scholar] [CrossRef]
- Sharma, A.; Prasad, S.; Singh, Y.; Bishisth, R. Effect of polyherbal preparation supplementation on immunity and udder health of periparturient Karan-Fries crossbred dairy cows. J. Appl. Anim. Res. 2014, 42, 217–221. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, H.; Wu, F.; Qiu, Q.; Niu, W.; Gao, Z.; Su, H.; Cao, B. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biotechnol. 2019, 103, 4931–4942. [Google Scholar] [CrossRef]
- van Gylswyk, N.O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 1995, 45, 297–300. [Google Scholar] [CrossRef]
- Yang, Y.X.; Mu, C.L.; Luo, Z.; Zhu, W.Y. Bromochloromethane, a methane analogue, affects the microbiota and metabolic profiles of the rat gastrointestinal tract. Appl. Environ. Microbiol. 2016, 82, 778–787. [Google Scholar] [CrossRef]
- Espiritu, H.M.; Mamuad, L.L.; Jin, S.J.; Kim, S.H.; Kwon, S.W.; Lee, S.S.; Lee, S.M.; Cho, Y.I. Genotypic and phenotypic characterization of Treponema phagedenis from bovine digital dermatitis. Microorganisms 2020, 8, 1520. [Google Scholar] [CrossRef]
- Cui, Z.; Wu, S.; Liu, S.; Sun, L.; Feng, Y.; Cao, Y.; Chai, S.; Zhang, G.; Yao, J. From maternal grazing to barn feeding during pre-weaning period, altered gastrointestinal microbiota contributes to change the development and function of the rumen and intestine of yak calves. Front. Microbiol. 2020, 11, 485. [Google Scholar] [CrossRef]
- Nakazawa, F.; Sato, M.; Poco, S.E.; Hashimura, T.; Ikeda, T.; Kalfas, S.; Sundqvist, G.; Hoshino, E. Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 2, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Treloar, B.P.; Teh, K.H.; McKenzie, C.M.; Henderson, G.; Attwood, G.T.; Waters, S.M.; Patchett, M.L.; Janssen, P.H. Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen. Anaerobe 2018, 54, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Sagheddu, V.; Patrone, V.; Miragoli, F.; Puglisi, E.; Morelli, L. Infant early gut colonization by Lachnospiraceae, high frequency of Ruminococcus gnavus. Front. Pediatr. 2016, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Sorbara, M.T.; Littmann, E.R.; Fontana, E.; Moody, T.U.; Kohout, C.E.; Gjonbalaj, M.; Eaton, V.; Seok, R.; Leiner, I.M.; Pamer, E.G. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe. 2020, 28, 134–146.e4. [Google Scholar] [CrossRef]
- Subhash, Y.; Kim, H.J.; Lee, S.S. Aneurinibacillus sediminis sp. nov., isolated from lagoon sediments. Int. J. Syst. Evol. Microbiol. 2017, 67, 2544–2548. [Google Scholar] [CrossRef]
- Cougnoux, A.; Dalmasso, G.; Martinez, R.; Buc, E.; Delmas, J.; Gibold, L.; Sauvanet, P.; Darcha, C.; Dechelotte, P.; Bonnet, M.; et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014, 63, 1932–1942. [Google Scholar] [CrossRef]
Items | Treatment | |
---|---|---|
SFC | HMEC | |
Corn silage | 16.76 | 16.76 |
Wheat silage | 6.51 | 6.51 |
Alfalfa hay | 10.74 | 10.74 |
Oat grass | 1.68 | 1.68 |
Whole cotton seed | 4.47 | 4.47 |
Brewers grains | 11.52 | 11.52 |
High-moisture ear corn | -- | 6.58 |
Steam-flaked corn | 6.58 | -- |
Corn grain | 19.30 | 19.30 |
Soy bean meal | 10.99 | 10.99 |
Expanded soybean | 0.72 | 0.72 |
Canola meal | 3.19 | 3.19 |
DDGS | 3.99 | 3.99 |
Premix 1 | 1.27 | 1.27 |
Bypass fat | 2.27 | 2.27 |
Total | 100.00 | 100.00 |
Nutrient levels | ||
DM | 50.10 | 50.10 |
CP | 16.92 | 16.93 |
EE | 5.36 | 5.43 |
ADF | 15.66 | 15.62 |
NDF | 27.90 | 28.78 |
Starch | 26.97 | 25.68 |
Ca | 0.69 | 0.69 |
P | 0.38 | 0.39 |
NEL/(MJ/kg) 2 | 6.70 | 6.71 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
SFC | HMEC | Treatment | Time | Treatment × Time | ||
Milk yield (kg/d) | 38.21 b | 40.22 a | 0.29 | <0.01 | 0.02 | 0.09 |
DMI (kg/d) | 24.37 b | 25.36 a | 0.38 | 0.01 | 0.66 | 0.89 |
4% FCM (kg/d) | 34.62 b | 38.99 a | 1.54 | 0.01 | 0.93 | 0.99 |
Feed efficiency | 1.42 | 1.54 | 0.12 | 0.08 | 0.93 | 0.99 |
Fat (%) | 3.75 | 3.90 | 0.26 | 0.13 | 0.93 | 0.99 |
Protein (%) | 3.27 | 3.50 | 0.14 | 0.09 | 0.95 | 0.60 |
Lactose (%) | 5.34 | 5.31 | 0.06 | 0.61 | 0.59 | 0.16 |
Total solid (%) | 13.01 | 13.23 | 0.39 | 0.58 | 0.98 | 0.72 |
Somatic cell count (×104 cells/mL) | 23.22 | 18.56 | 4.18 | 0.28 | 0.51 | 0.87 |
Milk urea nitrogen (mg/dL) | 16.70 | 16.31 | 1.47 | 0.80 | 0.15 | 0.32 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
SFC | HMEC | Treatment | Time | Treatment × Time | ||
SOD (U/mL) | 103.09b | 111.69 a | 3.58 | 0.03 | 0.02 | 0.07 |
MDA (nmol/mL) | 4.75 | 4.51 | 0.42 | 0.58 | 0.05 | 0.36 |
T-AOC (U/mL) | 9.38 | 9.39 | 0.43 | 0.98 | 0.64 | 0.22 |
CAT (U/mL) | 7.30 | 7.24 | 0.44 | 0.90 | 0.14 | 0.32 |
GSH-Px (U/mL) | 865.42 b | 922.91 a | 17.66 | 0.01 | 0.64 | 0.04 |
IgG (g/L) | 10.55 b | 11.78 a | 0.44 | 0.01 | 0.30 | 0.05 |
IgA (g/L) | 0.75 b | 0.88 a | 0.05 | 0.02 | 0.07 | 0.04 |
IgM (g/L) | 2.70 b | 3.27 a | 0.57 | 0.03 | 0.02 | 0.53 |
UREA (mmol/L) | 5.51 | 4.98 | 0.48 | 0.28 | 0.05 | 0.57 |
CREA (μmol/L) | 5.24 a | 3.56 b | 2.11 | 0.02 | 0.45 | 0.89 |
ALB (g/L) | 36.57 | 36.71 | 0.96 | 0.88 | 0.73 | 0.64 |
GLU (mmol/L) | 3.51 | 3.58 | 0.12 | 0.20 | 0.31 | 0.05 |
TG (mmol/L) | 0.16 | 0.16 | 0.02 | 0.97 | 0.17 | 0.46 |
CHOL (mmol/L) | 6.67 a | 5.62b | 0.47 | 0.04 | 0.13 | 0.86 |
TNF-α (pg/mL) | 42.03 | 41.54 | 17.55 | 0.98 | 0.10 | 0.28 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
SFC | HMEC | |||
pH | 6.56 | 6.59 | 0.28 | 0.90 |
NH3-N (mg/dL) | 12.65 | 8.25 | 2.03 | 0.06 |
TVFA (mmol/L) | 97.70 b | 120.09 a | 9.96 | 0.03 |
Acetate (mmol/L) | 53.12 b | 70.58 a | 6.56 | 0.03 |
Propionate (mmol/L) | 24.63 | 35.81 | 5.42 | 0.07 |
Isobutyrate (mmol/L) | 0.95 | 0.95 | 0.24 | 1.00 |
Butyrate (mmol/L) | 10.97 | 9.71 | 2.34 | 0.60 |
Isovalerate (mmol/L) | 1.45 | 1.56 | 0.35 | 0.77 |
Valerate (mmol/L) | 1.58 | 1.48 | 0.33 | 0.77 |
A:P 1 | 2.31 | 2.04 | 0.40 | 0.51 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
SFC | HMEC | |||
ACE | 1287 | 1221.8 | 48.13 | 0.19 |
Chao 1 | 1304.5 | 1224.9 | 52.38 | 0.14 |
Shannon | 5.33 | 5.21 | 0.11 | 0.32 |
Simpson | 0.014 | 0.020 | <0.01 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, S.; Li, J.; Zhang, W.; Zhang, X.; Bai, J.; Yang, Z.; Wang, X.; Fortina, R.; Gasco, L.; Guo, K. Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows. Fermentation 2024, 10, 44. https://doi.org/10.3390/fermentation10010044
Shang S, Li J, Zhang W, Zhang X, Bai J, Yang Z, Wang X, Fortina R, Gasco L, Guo K. Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows. Fermentation. 2024; 10(1):44. https://doi.org/10.3390/fermentation10010044
Chicago/Turabian StyleShang, Songlin, Jiajun Li, Wenjing Zhang, Xinrui Zhang, Jinni Bai, Zhiye Yang, Xiangguo Wang, Riccardo Fortina, Laura Gasco, and Kaijun Guo. 2024. "Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows" Fermentation 10, no. 1: 44. https://doi.org/10.3390/fermentation10010044
APA StyleShang, S., Li, J., Zhang, W., Zhang, X., Bai, J., Yang, Z., Wang, X., Fortina, R., Gasco, L., & Guo, K. (2024). Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows. Fermentation, 10(1), 44. https://doi.org/10.3390/fermentation10010044