In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Microbial Metabolism, Physiology & Genetics".

Deadline for manuscript submissions: closed (24 August 2024) | Viewed by 12864

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
Interests: fermented foods; fuzhuan brick tea; human health safety; gut microbiota; metabolic syndrome
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Interests: fermented foods; nutrients; carotenoids; gut microbiota; polysaccharides; friuts and vegetables
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
College of Food Engineering, Anhui Science and Technology University, Bengbu, China
Interests: intestine flora; ruminococcaceae; microorganisms
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food ingredients play a crucial role in human health, and the health-promoting effects of food ingredients are highly related to their digestion and fermentation characteristics in the gastrointestinal tract. A growing amount of evidence suggests that the gut microbiota may serve as an important modulator of the crosstalk between diet and human health. Recently and more strikingly, some reports have demonstrated that some food ingredients, such as polysaccharides and polyphenols, can evade the digestive system without digestion by human enzymes in the saliva, stomach, and small intestine. The indigestible food ingredients can then reach the large intestine intact, where they can be broken down and utilized by gut microbiota. As a result, some health-promoting gut microbiota levels, such as of Akkermansia muciniphila, are increased; furthermore, some beneficial metabolic products such as short-chain fatty acids (SCFAs) in the area are also enhanced, which may positively contribute to human health. Thus, evaluating the digestion and fermentation characteristics of food ingredients is highly important.

It is well-known that it is difficult to detect the changes of food ingredients if an animal model is used to evaluate the digestion and fermentation characteristics of food ingredients due to the complex composition of the animal diet. However, the digestion and fermentation model in vitro have the advantages of reproducibility, simplicity, universality, and can integrally simulate the in vivo conditions to mimic oral, gastric, small intestinal, and large intestinal digestive processes. Thus, the in vitro gastrointestinal digestion and fermentation models have been widely used for evaluating the activities of food ingredients.

Thus, this Special Issue of Fermentation focuses on the in vitro digestibility and ruminal fermentation profile of food ingredients, and it is expected that this publication could substantially expand our knowledge of digestion and fermentation characteristics of food ingredients and further stimulate future research. Accordingly, this Special Issue welcomes experts working in the field to submit original experimental studies and reviews that cover state-of-the-art advances in this important area.

This Special Issue will highlight the most recent advances in, but is not limited to, the following subjects:

  • Changes in physicochemical and biological properties during gastrointestinal digestion and fermentation;
  • Innovative approaches to evaluating the digestion and fermentation characteristics of food ingredients;
  • Metabolic characteristics and biotransformation of food ingredients during gastrointestinal digestion and fermentation system;
  • The interaction between gut microbiota and food ingredients;
  • The potential risk of food ingredients on the human health evaluated using a digestion and fermentation model in vitro.

Prof. Dr. Guijie Chen
Dr. Zhuqing Dai
Prof. Dr. Chunxu Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • in vitro digestibility
  • ruminal fermentation
  • gut microbiota
  • multi-omics techniques
  • metabolic characteristics and biotransformation
  • prebiotic activity
  • food ingredients
  • health-promoting functions
  • potential risk

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

14 pages, 2038 KiB  
Article
Revealing the Potential Advantages of Plectasin Through In Vitro Rumen Fermentation Analysis
by Qinwu Li, Baozhen Zhu, Fei Li, Zhiyuan Ma, Long Guo and Xiuxiu Weng
Fermentation 2024, 10(11), 542; https://doi.org/10.3390/fermentation10110542 - 24 Oct 2024
Viewed by 491
Abstract
Plectasin, a novel antimicrobial peptide, has the potential to disrupt bacterial cell walls and alter the rumen fermentation mode, making it a superior alternative to antibiotics. However, there is limited research on the effects of plectasin on rumen microbiota. This study aimed to [...] Read more.
Plectasin, a novel antimicrobial peptide, has the potential to disrupt bacterial cell walls and alter the rumen fermentation mode, making it a superior alternative to antibiotics. However, there is limited research on the effects of plectasin on rumen microbiota. This study aimed to evaluate the effects of plectasin (0.057 μmol/L) on in vitro rumen fermentation characteristics and select groups of rumen bacterial communities in comparison with monensin (5 μmol/L), one of the most commonly used ionophores in ruminants, and as a control treatment with the basal substrate. Unlike monensin, plectasin was found to increase the molar proportions of butyrate and acetate/propionate ratio (p < 0.001) while decreasing pH and the molar proportions of propionate (p < 0.05). Principal component analysis of bacterial 16S rRNA gene amplicons clearly showed a separation between the bacteria shaped by plectasin and monensin. Comparative analysis also revealed differences in the relative abundance of certain bacteria in different taxa between plectasin and monensin. The divergent effects of plectasin and monensin on bacterial communities are likely responsible for the differences in their ability to alter rumen fermentation. Plectasin may have advantages over monensin in modulating ruminal bacterial communities and increasing the butyrate and the acetate/propionate ratio. Therefore, it may be considered as a potential additive for ruminant feed. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

14 pages, 292 KiB  
Article
Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System
by Saad M. Hussein, Matias J. Aguerre, Thomas C. Jenkins, William C. Bridges and Gustavo J. Lascano
Fermentation 2024, 10(10), 506; https://doi.org/10.3390/fermentation10100506 - 1 Oct 2024
Viewed by 728
Abstract
Including dietary fat can increase the energy density of diets fed to ruminants, reducing dry matter intake (DMI). Effects of different fat sources on nutrient digestion and fermentation can vary depending on dietary fat concentration and the forage-to-concentrate ratio (F:C). Therefore, this study’s [...] Read more.
Including dietary fat can increase the energy density of diets fed to ruminants, reducing dry matter intake (DMI). Effects of different fat sources on nutrient digestion and fermentation can vary depending on dietary fat concentration and the forage-to-concentrate ratio (F:C). Therefore, this study’s objective was to screen the effects of fat sources supplemented at different concentrations to high- and low-forage diets on in vitro digestibility and fermentation. Treatments included either low forage (LF; 35%) or high forage (HF; 70%) with two fat levels (6 or 9% DM) using six different fat sources, plus control. The control diet (CON) had a basal level of fat in the diet (3% fat; 0% fat inclusion), and fat sources were added to attain 6% or 9% dietary fat and consisted of the following: Coconut oil, CO; Poultry fat, PF; Palm oil, PO; Palm kernel oil, PKO; Soybean oil, SOY; and Ca Salts, MEG. In vitro Gas Production (GP) modules were randomly assigned to treatments in a 2 × 2 × 7 factorial design and were incubated for four 24 h runs. The CO-fed module had the highest dry matter (DM) apparent digestibility (AD) (p < 0.01), followed by SOY and PF. The true DM digestibility (TDMD) and organic matter (OM) AD were the highest in CO (p < 0.01) than the other fat types. The AD for DM, OM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) was higher in LF (p < 0.01). The 6% fat inclusion had a higher GP (109 vs. 103 mL ± 2.09; p < 0.03). Total volatile fatty acid (VFA) concentration was lower in different fat types than the CON and the acetate molar proportion (p > 0.01). The propionate was the lowest for the CON, which increased the acetate to propionate (A:P) ratio (p < 0.01). These results suggest that LF diets with high fat concentrations can be utilized, and different fat sources may improve DM and fiber digestibility. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
15 pages, 2920 KiB  
Article
Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms
by Myungsun Park, Sangbuem Cho, Eunjeong Jeon and Nag-Jin Choi
Fermentation 2024, 10(8), 410; https://doi.org/10.3390/fermentation10080410 - 8 Aug 2024
Viewed by 975
Abstract
(1) Background: This study explores the correlation between volatile fatty acid (VFA) concentrations and methanogenesis in ruminants, focusing on how the nutritional composition of their diets affects these processes. (2) Methods: We developed predictive models using multiple linear regression, artificial neural networks, and [...] Read more.
(1) Background: This study explores the correlation between volatile fatty acid (VFA) concentrations and methanogenesis in ruminants, focusing on how the nutritional composition of their diets affects these processes. (2) Methods: We developed predictive models using multiple linear regression, artificial neural networks, and k-nearest neighbor algorithms. The models are based on data extracted from 31 research papers and 16 ruminal in vitro fermentation tests to predict VFA concentrations from nutrient intake. Methane production estimates were derived by converting and clustering these predicted VFA values into molar ratios. (3) Results: This study found that acetate concentrations correlate significantly with neutral detergent fiber intake. Conversely, propionate and butyrate concentrations are highly dependent on dry matter intake. There was a notable correlation between methane production and the concentrations of acetate and butyrate. Increases in neutral detergent fiber intake were associated with higher levels of acetate, butyrate, and methane production. Among the three methods, the k-nearest neighbor algorithm performed best in terms of statistical fitting. (4) Conclusions: It is vital to determine the optimal intake levels of neutral detergent fiber to minimize methane emissions and reduce energy loss in ruminants. The predictive accuracy of VFA and methane models can be enhanced through experimental data collected from diverse environmental conditions, which will aid in determining optimal VFA and methane levels. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

18 pages, 1916 KiB  
Article
SF6 Tracer Technique to Estimate Methane Emission in a Dual-Flow Continuous Culture System: Test and Application
by Richard R. Lobo, Gerald Salas-Solis, Juan Vargas, Alyce Monteiro, Sarah S. da Silva, Kaliu Silva, Jose Arce-Cordero, Diwakar Vyas, Nicolas DiLorenzo, Jhones O. Sarturi and Antonio P. Faciola
Fermentation 2024, 10(8), 394; https://doi.org/10.3390/fermentation10080394 - 31 Jul 2024
Viewed by 1095
Abstract
This study aimed to evaluate the sulfur hexafluoride (SF6) tracer technique for estimating methane (CH4) emissions in dual-flow continuous culture systems (DFCCS). In experiment 1 (Exp1), fermenters were filled with water, and known CH4 concentrations (0, 1.35, 2.93, [...] Read more.
This study aimed to evaluate the sulfur hexafluoride (SF6) tracer technique for estimating methane (CH4) emissions in dual-flow continuous culture systems (DFCCS). In experiment 1 (Exp1), fermenters were filled with water, and known CH4 concentrations (0, 1.35, 2.93, or 4.43 g/d) were injected using permeation tubes with SF6 release rates (3.30 or 9.65 mg/d). Headspace gas was collected using canisters, and the SF6 technique estimated CH4 recovery. Experiment 2 (Exp2) involved a DFCCS fermentation trial with ruminal fluid from three Holstein cows, testing diets with soybean meal or its partial replacement (50%) by Chlorella or Spirulina. Headspace gas was collected at intervals post-feeding. Standard curves for SF6 and CH4 quantification were inadequate for DFCCS samples, with the CH4:SF6 ratio differing from standards, indicating the data needs further SF6 release rate evaluation. In Exp1, a high correlation (r = 0.97) was found between infused and calculated CH4, indicating good repeatability. Low and high SF6 rates performed similarly at low CH4 infusion, but high SF6 overestimated CH4 at high infusion. Exp2 showed CH4 emissions irrespective of SF6 rate and indicated reduced CH4 emissions and increased NDF degradation with algae-containing diets. Further evaluation of the SF6 tracer technique is warranted for DFCCS. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

11 pages, 478 KiB  
Article
The Anti-Methanogenic Activity of Lovastatin in Batch Cultures Using Rumen Inoculum from Sheep, Goats, and Cows
by Amaury Ábrego-García, Gustavo Gerardo Medina-Mendoza and Luis Alberto Miranda-Romero
Fermentation 2024, 10(8), 393; https://doi.org/10.3390/fermentation10080393 - 30 Jul 2024
Viewed by 983
Abstract
Enteric methanogenesis in ruminants is identified as one of the primary anthropogenic sources of total atmospheric methane. Recent evidence suggests that rumen methanogenesis is significantly suppressed by lovastatin. Nevertheless, it has not been reported whether the methane reduction by lovastatin depends on ruminant [...] Read more.
Enteric methanogenesis in ruminants is identified as one of the primary anthropogenic sources of total atmospheric methane. Recent evidence suggests that rumen methanogenesis is significantly suppressed by lovastatin. Nevertheless, it has not been reported whether the methane reduction by lovastatin depends on ruminant livestock type, nor has fiber degradability been examined. The current research aimed to analyze the in vitro effect of lovastatin on the major fermentation end-products, gas production (GP) kinetics, and fiber degradation of a forage-based diet using rumen inoculum from sheep, goats, and cows. The experiment was conducted as a 3 × 3 factorial arrangement of treatments (dose of lovastatin: 0, 80, and 160 mg/L and three inoculum sources) in a completely randomized design. The results suggested that lovastatin did not affect the GP kinetics parameters. The anti-methanogenic properties of lovastatin were variable depending on dose and inoculum source. Lovastatin demonstrated a superior methane-lowering effect in sheep rumen inoculum compared with goat and cow inocula. The total volatile fatty acid (VFA) production was unaffected by lovastatin, but changes in acetate and valerate proportions were registered. Remarkably, lovastatin decreased the NH3-N concentration with goat and sheep inocula and the in vitro neutral fiber detergent (NDF) degradation for all inoculum sources. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

13 pages, 277 KiB  
Article
In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam
by Huyen Thi Duong Nguyen, Jan Thomas Schonewille, Wilbert Frans Pellikaan, Trach Xuan Nguyen and Wouter Hendrikus Hendriks
Fermentation 2024, 10(6), 280; https://doi.org/10.3390/fermentation10060280 - 25 May 2024
Viewed by 910
Abstract
The relationship between DM yield/cutting and the fermentable organic matter (FOM) content of tropical grasses was appropriately investigated to re-assess optimal grass maturity to feed dairy cattle. Nine different grass species belonging to the genera Brachiaria spp. (Mulato II, Ruzi), Panicum spp. (Guinea, [...] Read more.
The relationship between DM yield/cutting and the fermentable organic matter (FOM) content of tropical grasses was appropriately investigated to re-assess optimal grass maturity to feed dairy cattle. Nine different grass species belonging to the genera Brachiaria spp. (Mulato II, Ruzi), Panicum spp. (Guinea, Hamil, Mombasa, TD58), and Pennisetum spp. (King, Napier, VA06) were chemically analysed and subjected to an in vitro gas production (IVGP) test. For 72 h, gas production (GP) was continuously recorded with fully automated equipment. A triphasic, nonlinear, regression procedure was applied to analyse GP profiles. Across all the grasses, it was found that the neutral detergent fibre (NDF) contents increased with increasing maturity of the grass while the CP contents decreased with increasing NDF contents. In all nine grasses, digestible organic matter (dOM) was significantly affected by the week of cutting but IVGP was similar between the weeks of cutting in Ruzi, Hamil, Mombasa, and Napier grasses. Except for Guinea grass, the lowest dOM values were found when the grasses were cut after ≥5 weeks of regrowth. Harvesting grass one or two weeks earlier than the normal cutting time is a practically relevant intervention in increasing forage quality and productivity of dOM and fermentation potential. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
13 pages, 278 KiB  
Article
Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC)
by Joel O. Alabi, Peter A. Dele, Deborah O. Okedoyin, Michael Wuaku, Chika C. Anotaenwere, Oludotun O. Adelusi, DeAndrea Gray, Kelechi A. Ike, Olatunde A. Oderinwale, Kiran Subedi and Uchenna Y. Anele
Fermentation 2024, 10(2), 114; https://doi.org/10.3390/fermentation10020114 - 19 Feb 2024
Cited by 4 | Viewed by 1952
Abstract
This study investigated the combined impact of essential oil blends (EOBs) and fumaric acid (FA) on ruminal fermentation in dairy cows using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows served as inoculum donors. The substrate, a total mixed [...] Read more.
This study investigated the combined impact of essential oil blends (EOBs) and fumaric acid (FA) on ruminal fermentation in dairy cows using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows served as inoculum donors. The substrate, a total mixed ration (TMR), comprised corn silage, alfalfa hay, and a concentrate mix in a 3:1:1 ratio. The four treatments evaluated were Control (TMR without additives), EFA1 (TMR + EOB1 + FA), EFA2 (TMR + EOB2 + FA), and EFA3 (TMR + EOB3 + FA). Sixteen fermentation chambers were randomly assigned to the treatments, each with four replicates, following a completely randomized design during a 9-day experimental period. EOBs and FA were added at 10 µL/g feed and 3% of TMR, respectively. After a 4-day adaptation, samples were collected for 5 days. Results revealed that EFA1 significantly reduced (p = 0.0351) CH4 emissions by 60.2% without negatively impacting dry matter disappearance, fiber fraction digestibility, pH, or gas volume. All EFAs increased (p < 0.001) the propionate molar proportion and decreased (p < 0.001) the acetate-to-propionate ratio. EFA2 decreased (p < 0.05) the acetate proportion by 3.3% compared to the control. In conclusion, EFA1 is recommended as an effective nutritional intervention to mitigate CH4 emissions and optimize ruminal fermentation in dairy cows. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
10 pages, 249 KiB  
Article
Feeding Value Assessment of Five Varieties Whole-Plant Cassava in Tropical China
by Mao Li, Hanlin Zhou, Xuejuan Zi, Renlong Lv, Jun Tang, Wenjun Ou and Songbi Chen
Fermentation 2024, 10(1), 45; https://doi.org/10.3390/fermentation10010045 - 6 Jan 2024
Cited by 1 | Viewed by 1769
Abstract
The feeding value of five varieties of whole-plant cassava (SC5, SC7, SC9, SC14, and SC205) was assessed through analysis of the nutritional composition and in situ ruminal degradability. The results showed abundant nutrients in whole-plant cassava, and the means of starch and crude [...] Read more.
The feeding value of five varieties of whole-plant cassava (SC5, SC7, SC9, SC14, and SC205) was assessed through analysis of the nutritional composition and in situ ruminal degradability. The results showed abundant nutrients in whole-plant cassava, and the means of starch and crude protein (CP) were 267.7 and 176.8 (g kg−1), and ranged from 223.7 g kg−1 (SC9) to 296.4 g kg−1 (SC14) and from 142.4 g kg−1 (SC5) to 195.8 g kg−1 (SC9) (p < 0.05), respectively. Meanwhile, the moderate neutral detergent fiber (NDF) of whole-plant cassava was also observed and ranged from 266.2 g kg−1 in SC9 to 286.6 g kg−1 in SC14 (p < 0.05). In addition, the trace elements, such as Fe, Mn, Cu, and Zn, in whole-plant cassava were relatively enriched, and their mean concentrations were 135.8, 1225.2, 5.8, and 105.3 mg kg−1 (p < 0.05), respectively. Both the highest essential amino acid and total amino acid concentrations were obtained in SC7 (p < 0.01). The hydrogen cyanide (HCN) content of fresh and dried whole-plant cassava ranged from 76.5 to 131.6 and from 36.0 to 56.7 mg kg−1 (p < 0.05), respectively. The in situ dry matter ruminal degradability and metabolizable energy (ME) varied significantly (p < 0.05) and were consistently lowest and highest in SC9 and SC14, ranging from 50.9% to 80.0% and from 7.5 to 12.3 MJ kg−1, respectively. Collectively, all varieties of whole-plant cassava had a high feeding value, as reflected by abundant starch, minerals, amino acid, and water-soluble carbohydrates, while having a low fiber content and HCN toxicity, as well as excellent ruminal digestibility characteristics, and they could be used as a potential feed resource for ruminants. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
16 pages, 3415 KiB  
Article
Impact of High-Moisture Ear Corn on Antioxidant Capacity, Immunity, Rumen Fermentation, and Microbial Diversity in Pluriparous Dairy Cows
by Songlin Shang, Jiajun Li, Wenjing Zhang, Xinrui Zhang, Jinni Bai, Zhiye Yang, Xiangguo Wang, Riccardo Fortina, Laura Gasco and Kaijun Guo
Fermentation 2024, 10(1), 44; https://doi.org/10.3390/fermentation10010044 - 6 Jan 2024
Viewed by 2010
Abstract
Due to the increasing costs of livestock farming, it is important to find cost-effective alternatives of feed stuffs. This study investigated the effects of high-moisture ear corn (HMEC) feeding on the production performance, serum antioxidant capacity, immunity, and ruminal fermentation and microbiome of [...] Read more.
Due to the increasing costs of livestock farming, it is important to find cost-effective alternatives of feed stuffs. This study investigated the effects of high-moisture ear corn (HMEC) feeding on the production performance, serum antioxidant capacity, immunity, and ruminal fermentation and microbiome of dairy cows. Thirty pluriparous Chinese Holstein cows were randomly allocated to two groups: steam-flaked corn (SFC) and HMEC (replacement of 2 kg equal dry matter SFC) and fed for a 60 day trial. The results showed replacing SFC with HMEC significantly increased dry matter intake, milk yield, and 4% fat-corrected milk yield (p < 0.05). Serum levels of superoxide dismutase, glutathione peroxidase, and immunoglobulins G, M, and A were significantly higher, and those of creatinine and cholesterol were significantly lower, in the HMEC group than in the SFC group (p < 0.05). HMEC also significantly increased total volatile fatty acid and acetate (p < 0.05) concentrations. In both groups, the dominant phyla of ruminal bacteria were Bacteroidetes, Firmicutes, and Actinobacteria, and the dominant genera were Prevotella, NK4A214-group, and Succiniclasticum. Mogibacterium, Eubacterium nodatum group, norank-f-Lachnospiraceae, and Eubacterium brachy group were significantly enriched in the ruminal fluid of HMEC-group cows (p < 0.05). In conclusion, replacing SFC with HMEC improved production performance, antioxidant capacity, and immunity, while regulating both ruminal fermentation and the composition of the ruminal microbiome in dairy cows. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

Other

Jump to: Research

7 pages, 217 KiB  
Brief Report
Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota
by Jourdan E. Lakes, Brittany E. Davis and Michael D. Flythe
Fermentation 2024, 10(6), 267; https://doi.org/10.3390/fermentation10060267 - 21 May 2024
Viewed by 923
Abstract
Amino-acid-fermenting bacteria are wasteful organisms within the rumens of beef cattle that remove dietary amino nitrogen by producing ammonia, which is then excreted renally. There are currently no on-label uses for the control of this microbial guild, but off-label use of broad-spectrum antimicrobials [...] Read more.
Amino-acid-fermenting bacteria are wasteful organisms within the rumens of beef cattle that remove dietary amino nitrogen by producing ammonia, which is then excreted renally. There are currently no on-label uses for the control of this microbial guild, but off-label use of broad-spectrum antimicrobials has shown efficacy, which contributes to antimicrobial resistance. Plant-derived antimicrobials supplemented into the diets of cattle may offer worthwhile alternatives. This study sought to investigate the role of cannabidiol (CBD) as a terpenophenolic antimicrobial. Ex vivo cell suspensions were harvested from the rumen fluid of Angus × Holstein steers in non-selective media with amino acid substrates. The suspensions were treated with five concentrations of CBD (860 μg mL−1–0.086 μg mL−1) and incubated (24 h), after which ammonia production and viable number of cells per substrate and treatment were measured. The data demonstrated a ~10–15 mM reduction in ammonia produced at the highest concentration of CBD and negligible changes in the viable number of amino-acid-fermenting bacteria. CBD does not appear to be a biologically or economically viable terpenophenolic candidate for the control of amino acid fermentation in beef cattle. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Back to TopTop