Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Descriptive Statistics
2.2. In Vitro Batch Fermentation
2.3. Measurement of Rumen Fermentation Parameters
2.4. Development of the Prediction Models
2.5. Statistics Analysis
3. Results and Discussion
3.1. Development of a Predictive Model for Dry Matter Intake Using In Vitro Volatile Fatty Acids in the Rumen
3.2. Volatile Fatty Acid Prediction Model Using Nutrient Intake of Cattle
3.3. Development of a Methane Prediction Model Using k Clusters of Volatile Fatty Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siciliano-Jones, J.; Murphy, M. Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage: Concentrate and forage physical form. J. Dairy Sci. 1989, 72, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; Forbes, J.M.; France, J. Quantitative Aspects of Ruminant Digestion and Metabolism; CABI Publishing: Wallingford, UK, 2005. [Google Scholar]
- Eom, J.-S.; Lee, S.-J.; Lee, Y.-G.; Lee, S.-S. Comparison of volatile fatty acids, monosaccharide analysis and metabolic profiling in rumen fluid according to feeding methods. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 814–824. [Google Scholar] [CrossRef]
- Grant, D.; Patel, P. Changes of protein composition of milk by ratio of roughage to concentrate. J. Dairy Sci. 1980, 63, 756–761. [Google Scholar] [CrossRef]
- Urrutia, N.L.; Harvatine, K.J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef]
- Church, D.C. The Ruminant Animal: Digestive Physiology and Nutrition; Waveland Press: Long Grove, IL, USA, 1993. [Google Scholar]
- Ko, M.-J.; Kim, D.-S.; Jeong, S.-Y.; Kim, B.; Kang, O.-D.; Lee, S.-C.; Lee, W.-S.; Farm, N.D. The effects of sodium bicarbonate and liquid buffer on milk yield, milk composition and blood metabolites of Holstein dairy cows. J. Agric. Life Sci. 2014, 48, 243–251. [Google Scholar] [CrossRef]
- Sander, E.; Warner, R.; Harrison, H.; Loosli, J. The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. J. Dairy Sci. 1959, 42, 1600–1605. [Google Scholar] [CrossRef]
- Ha, J.; Lee, S.; Moon, Y.; Kim, C.; Seo, S.; Beak, M.; Lee, S.; Lee, S.; Lee, W.; Jang, J. Ruminant Nutrition and Physiology; Seoul National University Press: Seoul, Republic of Korea, 2005. [Google Scholar]
- Grobner, M.; Johnson, D.; Goodall, S.; Benz, D. Sarsaponin Effects on in vitro Continuous Flow Fermentation of a High Grain Diet. In Proceedings of the Annual Meeting, New York, NY, USA, 28–30 December 1982; American Society for Animal Science Western Section: Champaign, IL, USA, 1982. [Google Scholar]
- Jouany, J.-P.; Morgavi, D. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yoon, Y.-M.; Kim, C.-H. Effects of supplementation of mixed methanogens and rumen cellulolytic bacteria on biochemical Methane potential. Korean J. Soil Sci. Fertil. 2012, 45, 515–523. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sveinbjörnsson, J.; Huhtanen, P.; Udén, P. The Nordic dairy cow model, Karoline-development of volatile fatty acid sub-model. In Nutrient Digestion and Utilization in Farm Animals: Modelling Approaches; CABI Publishing: Wallingford UK, 2006; pp. 1–14. [Google Scholar]
- Bannink, A.; Kogut, J.; Dijkstra, J.; France, J.; Kebreab, E.; Van Vuuren, A.; Tamminga, S. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 2006, 238, 36–51. [Google Scholar] [CrossRef]
- Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. J. Dairy Sci. 2011, 94, 3063–3080. [Google Scholar] [CrossRef]
- Robinson, D.L.; Goopy, J.; Hegarty, R. Can rumen Methane production be predicted from volatile fatty acid concentrations? Anim. Prod. Sci. 2010, 50, 630–636. [Google Scholar] [CrossRef]
- Jayanegara, A.; Ikhsan, I.; Toharmat, T. Assessment of Methane estimation from volatile fatty acid stoichiometry in the rumen in vitro. J. Indones. Trop. Anim. Agric. 2013, 38, 103–108. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict Methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef] [PubMed]
- van Lingen, H.J.; Fadel, J.G.; Moraes, L.E.; Bannink, A.; Dijkstra, J. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and Methane production in the bovine rumen. J. Theor. Biol. 2019, 480, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B. Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput. Electron. Agric. 2008, 60, 226–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Morgan, M.A.; Sun, Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid. Redox Signal. 2014, 21, 2383–2400. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Sengupta, S.; Hanigan, M.D. Using artificial neural networks to predict pH, ammonia, and volatile fatty acid concentrations in the rumen. J. Dairy Sci. 2019, 102, 8850–8861. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liang, J.; Lu, J.; Zhao, X. An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Ahn, J.-S.; Shin, J.-S.; Chung, K.-Y.; Lim, H.; Choi, J.-G.; Kim, J.-H.; Kwon, E.-G.; Park, B.-K. Changes in ruminal fermentable characteristics and nutrient degradabilities of corn flake according to chamber type in Hanwoo: Chamber type for corn flake in the rumen of Hanwoo. Korean J. Agric. Sci. 2018, 45, 695–706. [Google Scholar] [CrossRef]
- Beauchemin, K.; McGinn, S. Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 2005, 83, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.; McGinn, S. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci. 2006, 84, 1489–1496. [Google Scholar] [CrossRef]
- Beauchemin, K.; McGinn, S.; Martinez, T.; McAllister, T. Use of condensed tannin extract from quebracho trees to reduce Methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef]
- Beauchemin, K.; McGinn, S.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on Methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.; Julien, C.; Petit, H.; Massé, D. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on Methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.A.; Lee, S.S.; Mamuad, L.L.; Kim, S.H.; Choi, Y.J.; Lee, C.; Lee, K.; Bae, G.S.; Lee, S.S. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and Methane emission of Hanwoo steers fed high concentrate diets. Anim. Sci. J. 2018, 89, 114–121. [Google Scholar] [CrossRef]
- Bougouin, A.; Ferlay, A.; Doreau, M.; Martin, C. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric Methane emissions and milk fatty acid composition in dairy cows. J. Dairy Sci. 2018, 101, 6085–6097. [Google Scholar] [CrossRef] [PubMed]
- Bougouin, A.; Martin, C.; Doreau, M.; Ferlay, A. Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows. Animal 2019, 13, 1421–1431. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Meunier, B.; Doreau, M.; Morgavi, D.; Silberberg, M.; Rochette, Y.; Gerard, C.; Loncke, C.; Martin, C. Additive Methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 2015, 93, 3564–3577. [Google Scholar] [CrossRef]
- Hassanat, F.; Gervais, R.; Massé, D.; Petit, H.; Benchaar, C. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage-or alfalfa silage-based diets. J. Dairy Sci. 2014, 97, 6463–6474. [Google Scholar] [CrossRef]
- Hatew, B.; Podesta, S.; Van Laar, H.; Pellikaan, W.; Ellis, J.; Dijkstra, J.; Bannink, A. Effects of dietary starch content and rate of fermentation on Methane production in lactating dairy cows. J. Dairy Sci. 2015, 98, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Holtshausen, L.; Chaves, A.; Beauchemin, K.; McGinn, S.; McAllister, T.; Odongo, N.; Cheeke, P.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric Methane production in dairy cows. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef]
- Jeon, S.; Jeong, S.; Lee, M.; Seo, J.; Kam, D.K.; Kim, J.H.; Park, J.; Seo, S. Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos Taurus coreanae). Asian-Australas. J. Anim. Sci. 2019, 32, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-D.; Mamuad, L.L.; Ko, J.Y.; Sung, H.G.; Park, K.K.; Lee, Y.K.; Lee, S.-S. Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue. J. Anim. Sci. Technol. 2016, 58, 4. [Google Scholar] [CrossRef]
- Kim, S.; Alam, M.; Gu, M.; Park, K.; Jeon, C.O.; Ha, J.K.; Cho, K.; Lee, S. Effect of total mixed ration with fermented feed on ruminal in vitro fermentation, growth performance and blood characteristics of Hanwoo steers. Asian-Australas. J. Anim. Sci. 2012, 25, 213. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, S.; Jeong, S.; Park, J.; Shin, T.; Cho, B.; Cho, S.; Kim, B.; Seo, J. Nutrient analysis and in vitro rumen fermentation of commercial formulated concentrates for finishing Hanwoo steers. Korean J. Agric. Sci. 2016, 43, 802–809. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.Y.; Choi, C.W. Comparison of in vitro ruminal fermentation between different originated corn grains. Korean J. Agric. Sci. 2017, 44, 541–548. [Google Scholar] [CrossRef]
- Kim, S.H.; Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Park, K.K.; Cho, Y.I.; Son, A.; Lee, S.-S. Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue. J. Anim. Sci. Technol. 2020, 62, 812–823. [Google Scholar] [CrossRef]
- Kook, K.; Chung, W.-T.; Park, H.-S.; Jang, K.-Y.; Lee, J.-W.; Moon, S.-J.; Kim, K.-H. The Effects of Aqueous Fibrolytic Enzyme Products Supplementation on In vitro Fermentation and Growth Performance of Hanwoo Steers. J. Anim. Sci. Technol. 2009, 51, 39–44. [Google Scholar] [CrossRef]
- Lee, A.; Shin, S.-J.; Yang, J.; Cho, S.; Choi, N.-J. Effect of lactic acid bacteria and enzyme supplementation on fermentative patterns of ensiling silages, their in vitro ruminal fermentation, and digestibility. J. Korean Soc. Grassl. Forage Sci. 2016, 36, 7–14. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, S.D.; Lee, S.; Sun, S.; Kim, M.; Choi, H.; Lee, Y.; Baek, Y.-C. Comparative evaluation of nutritional values in different forage sources using in vitro and in vivo rumen fermentation in Hanwoo cattle. Korean J. Agric. Sci. 2020, 47, 941–949. [Google Scholar] [CrossRef]
- Mamuad, L.L.; Kim, S.H.; Ku, M.J.; Lee, S.S. Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers. Asian-Australas. J. Anim. Sci. 2020, 33, 1087–1095. [Google Scholar] [CrossRef]
- Miguel, M.; Mamuad, L.; Ramos, S.; Ku, M.J.; Jeong, C.D.; Kim, S.H.; Cho, Y.I.; Lee, S.S. Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Anim. Biosci. 2021, 34, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Moate, P.; Williams, S.; Jacobs, J.; Hannah, M.; Beauchemin, K.; Eckard, R.; Wales, W. Wheat is more potent than corn or barley for dietary mitigation of enteric Methane emissions from dairy cows. J. Dairy Sci. 2017, 100, 7139–7153. [Google Scholar] [CrossRef] [PubMed]
- Nogoy, K.M.C.; Yu, J.; Song, Y.G.; Li, S.; Chung, J.-W.; Choi, S.H. Evaluation of the Nutrient Composition, In Vitro Fermentation Characteristics, and In Situ Degradability of Amaranthus caudatus, Amaranthus cruentus, and Amaranthus hypochondriacus in Cattle. Animals 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Baek, Y.C.; Lee, S.; Kim, B.H.; Ryu, C.H. Evaluation the Feed Value of Whole Crop Rice Silage and Comparison of Rumen Fermentation according to Its Ratio. J. Korean Soc. Grassl. Forage Sci. 2020, 40, 236–243. [Google Scholar] [CrossRef]
- Van Zijderveld, S.; Fonken, B.; Dijkstra, J.; Gerrits, W.; Perdok, H.; Fokkink, W.; Newbold, J. Effects of a combination of feed additives on Methane production, diet digestibility, and animal performance in lactating dairy cows. J. Dairy Sci. 2011, 94, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Jung, E.-S.; Kim, H.-B.; Shin, T.-S.; Cho, B.-W.; Cho, S.-K.; Kim, B.-W.; Seo, J.-K. Nutritional evaluation of rice with different processing treatments on in vitro rumen fermentation characteristics and in situ degradation. Korean J. Org. Agric. 2018, 26, 281–296. [Google Scholar] [CrossRef]
- Yang, S.J.; Kim, H.B.; Moon, J.B.; Kim, N.E.; Park, J.K.; Park, B.K.; Lee, S.Y.; Seo, J. Nutritional evaluation of total mixed rations containing rice grain in an in vitro rumen fermentation system. Korean J. Agric. Sci. 2018, 45, 741–748. [Google Scholar] [CrossRef]
- Yoo, D.-K.; Moon, J.-B.; Kim, H.-B.; Yang, S.-J.; Park, J.-K.; Lee, S.-Y.; Seo, J.-K. Rumen Fermentation was Changed by Feed Inoculation Method in In Vitro. Ann. Anim. Resour. Sci. 2019, 30, 111–120. [Google Scholar] [CrossRef]
- McDougall, E. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.; Valdes, C.; Newbold, C.; Wallace, R. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 1999, 81, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.; Marco, G.J.; Emery, E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Lee, G. Spatial hedonic modeling using geographically weighted LASSO model. J. Korean Geogr. Soc. 2014, 49, 917–934. [Google Scholar]
- Chu, J.; Liu, X.; Zhang, Z.; Zhang, Y.; He, M. A novel method overcomeing overfitting of artificial neural network for accurate prediction: Application on thermophysical property of natural gas. Case Stud. Therm. Eng. 2021, 28, 101406. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Um, Y. Testing the Equality of Two Linear Regression Models: Comparison between Chow Test and a Permutation Test. J. Korea Soc. Comput. Inf. 2021, 26, 157–164. [Google Scholar] [CrossRef]
- Bannink, A.; De Visser, H.; Klop, A.; Dijkstra, J.; France, J. Causes of Inacurate Prediction of Volatile Fatty Acids by Simulation Models of Rumen Function in Lactating Cows. J. Theor. Biol. 1997, 189, 353–366. [Google Scholar] [CrossRef]
- Schären, M.; Seyfang, G.; Steingass, H.; Dieho, K.; Dijkstra, J.; Hüther, L.; Frahm, J.; Beineke, A.; von Soosten, D.; Meyer, U. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J. Dairy Sci. 2016, 99, 3549–3565. [Google Scholar] [CrossRef]
- Jonker, A.; Hickey, S.; Boma, P.; Woju, C.W.; Sandoval, E.; MacLean, S.; Calzada, M.G.R.; Yu, W.; Lewis, S.; Janssen, P.H. Individual-level correlations of rumen volatile fatty acids with enteric Methane emissions for ranking Methane yield in sheep fed fresh pasture. Anim. Prod. Sci. 2020, 61, 300–305. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on determining number of Cluster in K-Means Clustering. Int. J. 2013, 1, 90–95. [Google Scholar]
Study * | Animal | Type | N | DMI | C2 | C3 | C4 | TVFA | CH4 |
---|---|---|---|---|---|---|---|---|---|
Ahn et al. [26] | Beef | vit | - | - | 26.64 | 19.41 | 11.60 | 57.66 | - |
Beauchemin et al. [27] | Beef | vivo | 4 | 8.61 | 52.68 | 34.03 | 9.43 | 97.53 | 110.70 |
Beauchemin et al. [28] | Beef | vivo | 4 | 6.42 | 53.86 | 18.66 | 8.53 | 85.05 | 150.25 |
Beauchemin et al. [29] | Beef | vivo | 3 | 5.69 | 65.27 | 19.20 | 10.50 | 103.17 | 99.17 |
Beauchemin et al. [30] | Dairy | vivo | 4 | 19.33 | 60.45 | 25.93 | 9.14 | 110.50 | 265.75 |
Benchaar et al. [31] | Dairy | vivo | 4 | 24.45 | 62.00 | 22.33 | 12.50 | 95.03 | 484.25 |
Biswas et al. [32] | Beef | vivo, vit | 5 | 6.04 | 35.12 | 16.71 | 17.61 | 69.43 | - |
Bougouin et al. [33] | Dairy | vivo | 4 | 22.80 | 37.96 | 8.96 | 5.60 | 54.20 | 438.50 |
Bougouin et al. [34] | Dairy | vivo | 4 | 18.50 | 38.66 | 11.31 | 6.70 | 59.10 | 355.78 |
Guyader et al. [35] | Dairy | vit | 2 | - | 70.40 | 16.13 | 9.84 | 90.66 | 251.55 |
Hassanat et al. [36] | Dairy | vivo | 3 | 23.60 | 67.23 | 19.33 | 10.67 | 98.11 | 483.33 |
Hatew et al. [37] | Dairy | vivo | 4 | 18.98 | 68.48 | 16.13 | 11.40 | 99.96 | 415.25 |
Holtshausen et al. [38] | Dairy | vit | 3 | - | 58.67 | 23.20 | 13.56 | 140.65 | 377.90 |
Jeon et al. [39] | Beef | vivo, vit | 24 | 7.35 | 48.50 | 15.19 | 11.10 | 75.08 | - |
Jeong et al. [40] | Beef | vit | - | - | 35.54 | 15.84 | 11.76 | 64.69 | - |
Kim et al. [41] | Beef | vit | - | - | 48.34 | 39.44 | 7.34 | 95.13 | - |
Kim et al. [42] | Beef | vit | - | - | 56.74 | 28.18 | 12.93 | 102.23 | - |
Kim et al. [43] | Beef | vit | - | - | 61.04 | 27.66 | 23.52 | 118.05 | - |
Kim et al. [44] | Beef | vivo, vit | 5 | 6.03 | 23.45 | 14.46 | 15.47 | 53.37 | - |
Kook et al. [45] | Beef | vivo, vit | 45 | 6.89 | 68.37 | 26.75 | 17.26 | 122.30 | - |
Lee et al. [46] | Beef | vit | - | - | 37.83 | 14.951 | 7.9 | 64.06 | - |
Lee et al. [47] | Beef | vivo, vit | 4 | 8.43 | 32.87 | 10.64 | 5.26 | 51.20 | - |
Mamuad et al. [48] | Beef | vivo, vit | 27 | 9.35 | 41.98 | 16.81 | 13.48 | 72.27 | - |
Miguel et al. [49] | Beef | vit | - | - | 55.32 | 18.98 | 13.00 | 87.29 | - |
Moate et al. [50] | Dairy | vivo | 32 | 22.15 | 64.43 | 25.24 | 10.56 | 104.25 | 449.25 |
Nogoy et al. [51] | Beef | vivo, situ | 2 | 5.63 | 37.47 | 14.74 | 2.52 | 60.68 | - |
Park et al. [52] | Beef | vit | - | - | 13.29 | 8.92 | 2.23 | 58.58 | - |
van Zijderveid et al. [53] | Dairy | vit | - | 19.90 | 77.68 | 27.88 | 18.91 | 130.6 | 343.50 |
Yang et al. [54] | Beef | vit, situ | 2 | - | 25.30 | 14.58 | 5.15 | 47.53 | - |
Yang et al. [55] | Beef | vit | - | - | 49.23 | 20.48 | 12.82 | 87.15 | - |
Yoo et al. [56] | Beef | vit | - | - | 44.84 | 16.22 | 10.71 | 80.71 | - |
Item 1 | N | Mean | SD 2 | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
Nutrient intake (kg/d) | ||||||
DM | 98 | 14.34 | 6.20 | 5.63 | 13.65 | 25.20 |
CP | 71 | 2.06 | 1.22 | 0.68 | 1.29 | 4.23 |
EE | 8 | 0.57 | 0.47 | 0.23 | 0.28 | 1.22 |
OM | 24 | 11.97 | 6.66 | 5.63 | 6.81 | 21.44 |
NDF | 68 | 5.11 | 2.39 | 1.08 | 4.09 | 9.81 |
ADF | 68 | 2.97 | 1.61 | 0.30 | 2.38 | 5.87 |
Diet composition (% of DM) | ||||||
CP | 219 | 13.12 | 4.45 | 1.44 | 14.50 | 19.58 |
EE | 160 | 2.52 | 1.32 | 0.46 | 2.31 | 7.16 |
OM | 176 | 94.01 | 3.22 | 86.11 | 94.20 | 98.88 |
NDF | 211 | 36.88 | 16.97 | 2.70 | 1.70 | 70.88 |
ADF | 205 | 22.10 | 11.82 | 1.70 | 22.48 | 49.83 |
TDN | 23 | 73.88 | 6.93 | 54.80 | 71.45 | 88.00 |
Ruminal production (mM) | ||||||
C2 | 251 | 50.57 | 15.12 | 12.61 | 52.40 | 81.35 |
C3 | 251 | 19.24 | 6.60 | 5.14 | 17.98 | 45.70 |
C4 | 251 | 9.56 | 5.38 | 0.39 | 10.10 | 34.44 |
TVFA | 251 | 85.15 | 24.85 | 24.74 | 87.39 | 156.52 |
Methane (g/d) | 88 | 304.86 | 151.09 | 62.10 | 419.35 | 635.00 |
Models * | b1 | b2 | b3 | b4 | b5 | b6 | b7 | a | p-Value |
---|---|---|---|---|---|---|---|---|---|
MC2 | −2.64 | 0.19 | 0.26 | 0.97 | 0.80 | −0.19 | 1.00 | 0.54 | <0.05 |
MC3 | 1.14 | −0.19 | −0.27 | −0.38 | −0.37 | −0.16 | −1.11 | 0.93 | <0.05 |
MC4 | 1.57 | −0.21 | −0.07 | −0.19 | −0.12 | −0.07 | −0.30 | 0.12 | <0.05 |
TVFA | 2.74 | −0.17 | −0.20 | −1.00 | −1.03 | 0.30 | −1.15 | 0.58 | <0.05 |
Variable | KM0 2 | KM1 | KM2 | |
---|---|---|---|---|
N | 18 | 51 | 19 | |
Observed mean | 317.88 | 313.46 | 269.46 | |
Predicted mean | ||||
MLR 1 | 317.88 | 313.46 | 269.46 | |
KNN | 327.15 | 313.46 | 269.46 | |
ANN | 312.82 | 338.98 | 279.93 | |
R2 | ||||
MLR | 0.83 | 0.56 | 0.80 | |
KNN | 0.95 | 1.00 | 1.00 | |
ANN | 0.94 | 0.88 | 0.99 | |
MAE | ||||
MLR | 0.09 | 0.16 | 0.12 | |
KNN | 0.02 | 0.00 | 0.00 | |
ANN | 0.05 | 0.08 | 0.03 | |
RMSE | ||||
MLR | 0.11 | 0.21 | 0.14 | |
KNN | 0.06 | 0.00 | 0.00 | |
ANN | 0.07 | 0.11 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Cho, S.; Jeon, E.; Choi, N.-J. Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms. Fermentation 2024, 10, 410. https://doi.org/10.3390/fermentation10080410
Park M, Cho S, Jeon E, Choi N-J. Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms. Fermentation. 2024; 10(8):410. https://doi.org/10.3390/fermentation10080410
Chicago/Turabian StylePark, Myungsun, Sangbuem Cho, Eunjeong Jeon, and Nag-Jin Choi. 2024. "Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms" Fermentation 10, no. 8: 410. https://doi.org/10.3390/fermentation10080410
APA StylePark, M., Cho, S., Jeon, E., & Choi, N. -J. (2024). Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms. Fermentation, 10(8), 410. https://doi.org/10.3390/fermentation10080410