Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Medium
2.2. Animals and Rumen Fluid Microbial Cell Suspensions
2.3. Ex Vivo Cannabidiol Experiment, Viable Number, and Ammonia Production
3. Results
3.1. CBD Affects Ex Vivo Ammonia Production at High Concentration
3.2. Ex Vivo Cell Suspension Growth Is Unaffected by CBD
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huffman, C. Ruminant nutrition. Annu. Rev. Biochem. 1953, 22, 399–422. [Google Scholar] [CrossRef]
- Krause, D.; Nagaraja, T.; Wright, A.; Callaway, T. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 2013, 91, 331–341. [Google Scholar] [CrossRef]
- Satter, L.; Slyter, L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Chen, G.; Russell, J. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol. 1989, 55, 1052–1057. [Google Scholar] [CrossRef]
- Russell, J.; Strobel, H.; Chen, G. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol. 1988, 54, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Strobel, H. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 1989, 55, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse-Lawson, K.R.; Calvo, M.S.; Place, S.E.; Armitage, T.L.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Growth promoting technologies reduce greenhouse gas, alcohol, and ammonia emissions from feedlot cattle. J. Anim. Sci. 2013, 91, 5438–5447. [Google Scholar] [CrossRef] [PubMed]
- Kirchhelle, C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef]
- Herbert, R.B. The Biosynthesis of Secondary Metabolites; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Flythe, M.D.; Harrison, B.; Kagan, I.A.; Klotz, J.L.; Gellin, G.L.; Goff, B.; Aiken, G.E. Antimicrobial activity of red clover (Trifolium pratense L.) extract on caprine hyper ammonia-producing bacteria. Agric. Food Anal. Bacteriol. 2013, 3, 176–185. [Google Scholar]
- Liu, S.; Zhang, Z.; Hailemariam, S.; Zheng, N.; Wang, M.; Zhao, S.; Wang, J. Biochanin A inhibits ruminal nitrogen-metabolizing bacteria and alleviates the decomposition of amino acids and urea in vitro. Animals 2020, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Melchior, E.A.; Myer, P.R. Fescue toxicosis and its influence on the rumen microbiome: Mitigation of production losses through clover isoflavones. J. Appl. Anim. Res. 2018, 46, 1280–1288. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Goodman, J.P.; Klotz, J.L.; Aiken, G.E. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. PLoS ONE 2020, 15, e0229200. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.S.; Lanaridi, O.; Stagel, K.; Halbwirth, H.; Schnürch, M.; Bica-Schröder, K. Extraction techniques for bioactive compounds of cannabis. Nat. Prod. Rep. 2023, 40, 676–717. [Google Scholar] [CrossRef] [PubMed]
- Sleha, R.; Radochova, V.; Mikyska, A.; Houska, M.; Bolehovska, R.; Janovska, S.; Pejchal, J.; Muckova, L.; Cermak, P.; Bostik, P. Strong antimicrobial effects of xanthohumol and beta-acids from hops against Clostridioides difficile infection in vivo. Antibiotics 2021, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Lakes, J.E.; Ferrell, J.L.; Berhow, M.A.; Flythe, M.D. Antimicrobial effects of cannabidiol on select agriculturally important Clostridia. Anaerobe 2024, 87, 102843. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S. FASS Guide for the care and use of agricultural animals in agricultural research and teaching. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2012, 51, 298–300. [Google Scholar] [PubMed]
- Harlow, B.E.; Flythe, M.D.; Aiken, G.E. Biochanin A improves fibre fermentation by cellulolytic bacteria. J. Appl. Microbiol. 2018, 124, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Cotta, M.A.; Russell, J.B. Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J. Dairy Sci. 1982, 65, 226–234. [Google Scholar] [CrossRef]
- Fallahi, S.; Bobak, Ł.; Opaliński, S. Hemp in animal diets–cannabidiol. Animals 2022, 12, 2541. [Google Scholar] [CrossRef] [PubMed]
- Mead, G.C. The amino acid-fermenting clostridia. Microbiology 1971, 67, 47–56. [Google Scholar] [CrossRef]
- Wassmann, C.S.; Højrup, P.; Klitgaard, J.K. Cannabidiol is an effective helper compound in combination with bacetracin to kill Gram-positive bacteria. Sci. Rep. 2020, 10, 4112. [Google Scholar] [CrossRef]
- Gries, C.M.; Sadykov, M.R.; Bulock, L.L.; Chaudhari, S.S.; Thomas, V.C.; Bose, J.L.; Bayles, K.W. Potassium uptake modulates Staphylococcus aureus metabolism. mSphere 2016, 1, e00125-16. [Google Scholar] [CrossRef] [PubMed]
- Strobel, H.J.; Russell, J.B.; Driessen, A.J.; Konings, W.N. Transport of amino acids in Lactobacillus casei by proton-motive-force-dependent and non-proton-motive-force-dependent mechanisms. J. Bacteriol. 1989, 171, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.M.; Russell, J.B. Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol. 1992, 58, 1115–1120. [Google Scholar] [CrossRef]
- Anderson, R.C.; Flythe, M.D.; Krueger, N.A.; Callaway, T.R.; Edrington, T.S.; Harvey, R.B.; Nisbet, D.J. Decreased competiveness of the foodborne pathogen Campylobacter jejuni during co-culture with the hyper-ammonia producing anaerobe Clostridium aminophilum. Folia Microbiol. 2010, 55, 309–311. [Google Scholar] [CrossRef]
Cannabidiol Concentration (μg mL−1) | Average | Maximum | Minimum | SD | p-Value * |
---|---|---|---|---|---|
0 (control) | 43.88 | 47.30 | 40.41 | 3.44 | - |
0.086 | 43.31 | 46.53 | 37.85 | 4.76 | 0.999 |
0.86 | 46.70 | 48.30 | 44.12 | 2.26 | 0.911 |
8.6 | 45.78 | 49.61 | 43.34 | 3.36 | 0.982 |
86 | 44.98 | 45.84 | 43.68 | 1.14 | 0.999 |
860 | 30.25 | 35.43 | 27.08 | 4.53 | 0.005 |
Cannabidiol Concentration (μg mL−1) | Average | Maximum | Minimum | SD | p-Value * |
---|---|---|---|---|---|
0 (control) | 46.17 | 46.65 | 45.25 | 0.80 | - |
0.086 | 50.87 | 53.84 | 48.52 | 2.71 | 0.752 |
0.86 | 52.95 | 56.74 | 49.31 | 3.72 | 0.416 |
8.6 | 54.67 | 63.37 | 48.09 | 7.86 | 0.212 |
86 | 50.70 | 52.84 | 48.94 | 1.98 | 0.777 |
860 | 35.06 | 38.56 | 29.89 | 4.57 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakes, J.E.; Davis, B.E.; Flythe, M.D. Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota. Fermentation 2024, 10, 267. https://doi.org/10.3390/fermentation10060267
Lakes JE, Davis BE, Flythe MD. Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota. Fermentation. 2024; 10(6):267. https://doi.org/10.3390/fermentation10060267
Chicago/Turabian StyleLakes, Jourdan E., Brittany E. Davis, and Michael D. Flythe. 2024. "Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota" Fermentation 10, no. 6: 267. https://doi.org/10.3390/fermentation10060267
APA StyleLakes, J. E., Davis, B. E., & Flythe, M. D. (2024). Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota. Fermentation, 10(6), 267. https://doi.org/10.3390/fermentation10060267