In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grass Collection
2.2. Chemical Analyses
2.3. In Vitro Gas and CH4 Production
2.4. Curve Fitting and Calculations
2.5. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition of Tropical Grasses at Different Regrowth Ages
3.2. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Brachiaria Genus
3.3. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Panicum Genus
3.4. In Vitro Gas and CH4 Production Parameters of Grasses Belonging to the Pennisetum Genus
3.5. Relative Yield (%) of FOM Indices of Three Grasses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.; Phan, T.; Tran, P.; Tran, T. The factors affecting milk production of dairy cows in Ho Chi Minh City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2023, 1155, 012036. [Google Scholar] [CrossRef]
- Hieu, V.N.; Lambertz, C.; Gauly, M. Factors influencing milk yield, quality and revenue of dairy farms in Southern Vietnam. Asian-Australas. J. Anim. Sci. 2016, 10, 290–299. [Google Scholar] [CrossRef]
- Wongpom, B.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T. Milk yield, fat yield and fat percentage associations in a Thai multibreed dairy population. Agric. Nat. Resour. 2017, 51, 218–222. [Google Scholar] [CrossRef]
- Boonkum, W.; Misztal, I.; Duangjinda, M.; Pattarajinda, V.; Tumwasorn, S.; Sanpote, J. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds. J. Dairy Sci. 2011, 94, 487–492. [Google Scholar] [CrossRef]
- Ashes, J.R.; Gulati, S.K.; Scott, T.W. Potential to alter the content and composition of milk fat through nutrition. J. Dairy Sci. 1997, 80, 2204–2212. [Google Scholar] [CrossRef]
- Tyznik, W.J. The Effect of the Amount and Physical State of the Roughage upon the Rumen Fatty Acids and Milk Fat of Dairy Cows. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1951; p. 110. [Google Scholar]
- Shabi, Z.; Arieli, A.; Bruckental, I.; Aharoni, Y.; Zamwel, S.; Bor, A.; Tagari, H. Effect of the synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows. J. Dairy Sci. 1998, 81, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Huyen, T.D.N.; Schonewille, J.T.; Pellikaan, W.F.; Nguyen, X.T.; Hendriks, W.H. In vitro gas and methane production of some common feedstuffs used for dairy rations in Vietnam and Thailand. Asian-Australas. J. Anim. Sci. 2023, 37, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Cone, J.W.; van Gelder, A.H.; Visscher, G.J.W.; Oudshoorn, L. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 1996, 61, 113–128. [Google Scholar] [CrossRef]
- Pellikaan, W.F.; Hendriks, W.H.; Uwimana, G.; Bongers, L.J.G.M.; Becker, P.M.; Cone, J. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim. Feed Sci. Technol. 2011, 168, 196–205. [Google Scholar] [CrossRef]
- Macome, F.M.; Pellikaan, W.F.; Hendriks, W.H.; Warner, D.; Schonewille, J.T.; Cone, J.W. In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data. J. Anim. Physiol. Anim. Nutr. 2018, 102, 843–852. [Google Scholar] [CrossRef]
- Ha, N.T.T. Improved Manure Management in Vietnam. 2015. Available online: https://www.ccacoalition.org/sites/default/files/resources/161019_Training_Improved-Manure-Management-Vietnam_EN.pdf (accessed on 8 April 2024).
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Rockville, MD, USA, 1990. [Google Scholar]
- NEN-ISO 5983-2; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. ISO: Geneva, Switzerland, 2009.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Collaborative study of acid detergent fibre and lignin. J. Assoc. Off. Anal. Chem. 1970, 56, 781–784. [Google Scholar] [CrossRef]
- Pellikaan, W.F.; Stringano, E.; Leenaars, J.; Bongers, D.J.G.M.; van Laar-van Schuppen, S.; Plant, J.; Mueller-Harvey, I. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim. Feed Sci. Technol. 2011, 166–167, 377–390. [Google Scholar] [CrossRef]
- SAS Institute. User’s Guide: Statistics Version 9.4; SAS Institute Inc SAS Release 9.4: Cary, NC, USA, 2012. [Google Scholar]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Van Gelder, A.H.; Hetta, M.; Rodrigues, M.A.M.; De Boever, J.L.; Den Hartigh, H.; Rymer, C.; van Oostrum, M.; van Kaathoven, R.; Cone, J.W. Ranking of in vitro fermentability of 20 feedstuffs with an automated gas production technique: Results of a ring test. Anim. Feed Sci. Technol. 2005, 123–124, 243–253. [Google Scholar] [CrossRef]
- Cone, J.W.; van Gelder, A.H.; Driehuis, F. Description of gas production profiles with a three-phasic model. Anim. Feed Sci. Technol. 1997, 66, 31–45. [Google Scholar] [CrossRef]
- Ørskov, E. Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 1975, 22, 152–182. [Google Scholar]
- Hare, M.; Phengphet, S.; Songsiri, T.; Sutin, N.; Stern, E. Effect of cutting interval on yield and quality of three Brachiaria hybrids in Thailand. Trop. Grassl. 2013, 1, 84–86. [Google Scholar] [CrossRef]
- Hare, M.; Phengphet, S.; Songsiri, T.; Sutin, N.; Stern, E. Effect of cutting interval on yield and quality of two Panicum maximum cultivars in Thailand. Trop. Grassl. 2013, 1, 87–89. [Google Scholar] [CrossRef]
- Sales, F.A.; Caramori, P.H.; Ricce, W.d.S.; Costa, M.A.M.S.; Zaro, G.C. Biomass of elephant grass and leucaena for bioenergy production. Semin. Cienc. Agrar. 2015, 36, 3567–3578. [Google Scholar] [CrossRef]
- Mutimura, M.; Ebong, C.; Rao, I.; Nsahlai, I. Effect of cutting time on agronomic and nutritional characteristics of nine commercial cultivars of Brachiaria grass compared with Napier grass during establishment under semi-arid conditions in Rwanda. Afr. J. Agric. Res. 2017, 12, 2692–2703. [Google Scholar] [CrossRef]
- Ansah, T.; Osafo, E.L.K.; Hansen, H.H. Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agric. Biol. J. N. Am. 2010, 1, 923–929. [Google Scholar] [CrossRef]
- Zailan, M.Z.; Yaakub, H.; Jusoh, S. Yield and nutritive value of four Napier (Pennisetum purpureum) cultivars at different harvesting ages. Agric. Biol. J. N. Am. 2016, 7, 213–219. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Chen, Z.; Karowe, D.N.; Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Chang. Biol. 2004, 10, 1565–1575. [Google Scholar] [CrossRef]
- Elizalde, J.C.; Merchen, N.R.; Faulkner, D.B. In situ dry matter and crude protein degradation of fresh forages during the spring growth. J. Dairy Sci. 1999, 82, 1978–1990. [Google Scholar] [CrossRef]
- Lopes, J.C. Nutrient Composition and Fiber Digestibility Measurements of Tropical Forages Collected from Intensively Managed Rotational Grazing Systems. Master’s Thesis, University of Wisconsin, Madison, WI, USA, 2011. [Google Scholar]
- Ortega-Gómez, R.; Castillo-Gallegos, E.; Rodríguez, J.; Escobar-Hernández, R.; Ocaña-Zavaleta, E.; Valles, B. Nutritive quality of ten grasses during the rainy season in a hot-humid climate and ultisol soil. Trop. Subtrop. Agroecosyst. 2011, 13, 481–491. [Google Scholar]
- Cone, J.W.; van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Man, N.; Wiktorsson, H. Forage yield, nutritive value, feed intake and digestibility of three grass species as affected by harvest frequency. Trop. Grassl. 2003, 37, 101–110. [Google Scholar]
- Chaves, A.V.; Waghorn, G.C.; Brookes, I.M.; Woodfield, D.R. Effect of maturation and initial harvest dates on the nutritive characteristics of ryegrass (Lolium perenne L.). Anim. Feed Sci. Technol. 2006, 127, 293–318. [Google Scholar] [CrossRef]
- Teklehaimanot, H.S.; Tritschler, J.P. Evaluation of spineless cactus (Opuntia ficus-indicus) as an alternative feed and water source for animals during dry season in Eritrea. In Sustainable Agricultural Development: Recent Approaches in Resources Management and Environmentally-Balanced Production Enhancement; Behnassi, M., Shahid, S.A., D’Silva, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 245–252. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council, National Academies Press: Washington, DC, USA, 2001; p. 408. [Google Scholar]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Rodehutscord, M. Screening of common tropical grass and legume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop. Grassl. 2017, 5, 163. [Google Scholar] [CrossRef]
- Neto, A.J.; Messana, J.D.; Granja-Salcedo, Y.T.; Castagnino, P.S.; Fiorentini, G.; Reis, R.A.; Berchielli, T.T. Effect of starch level in supplement with or without oil source on diet and apparent digestibility, rumen fermentation and microbial population of Nellore steers grazing tropical grass. Livest. Sci. 2017, 202, 171–179. [Google Scholar] [CrossRef]
- Ruggieri, A.C.; Cardoso, A.d.S.; Ongaratto, F.; Casagrande, D.R.; Barbero, R.P.; Brito, L.d.F.; Azenha, M.V.; Oliveira, A.A.; Koscheck, J.F.W.; Reis, R.A. Grazing intensity impacts on herbage mass, sward structure, greenhouse gas emissions, and animal performance: Analysis of Brachiaria pastureland. Agron. J. 2020, 10, 1750. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares Filho, S.C.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Bowen, M.K.; Poppi, D.P.; McLennan, S.R. Ruminal protein degradability of a range of tropical pastures. Aust. J. Exp. Agric. 2008, 48, 806–810. [Google Scholar] [CrossRef]
- Musco, N.; Koura, I.B.; Tudisco, R.; Awadjihè, G.; Adjolohoun, S.; Cutrignelli, M.I.; Mollica, M.P.; Houinato, M.; Infascelli, F.; Calabrò, S. Nutritional characteristics of forage grown in south of Benin. Asian-Australas. J. Anim. Sci. 2016, 29, 51–61. [Google Scholar] [CrossRef]
Grass | Week | OM | CP | EE | NDF | ADF | ADL | Grass | Week | OM | CP | EE | NDF | ADF | ADL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mulato II | 2 | 851 | 226 | 28.8 | 519 | 255 | 20.3 | TD58 | 4 | 873 | 138 | 24.5 | 644 | 310 | 18.1 |
4 | 846 | 147 | 25.7 | 498 | 234 | 19.3 | 5 | 855 | 148 | 27.5 | 676 | 362 | 21.2 | ||
6 | 858 | 113 | 19.2 | 607 | 316 | 24.5 | 6 | 863 | 165 | 24.3 | 667 | 350 | 16.9 | ||
8 | 860 | 118 | 18.1 | 656 | 362 | 30.9 | King | 3 | 859 | 181 | 24.8 | 598 | 336 | 17.2 | |
Ruzi | 2 | 889 | 179 | 32.2 | 536 | 268 | 21.5 | 5 | 869 | 136 | 33.4 | 602 | 336 | 19.4 | |
4 | 878 | 163 | 25.7 | 505 | 234 | 21.4 | 7 | 896 | 87 | 27.9 | 646 | 377 | 23.6 | ||
6 | 915 | 116 | 24.5 | 660 | 354 | 26.7 | 9 | 920 | 103 | 23.7 | 659 | 409 | 47.3 | ||
8 | 888 | 162 | 25.6 | 622 | 328 | 29.8 | Napier | 2 | 881 | 161 | 30.9 | 620 | 331 | 21.3 | |
Guinea | 1 | 864 | 226 | 24.4 | 600 | 327 | 21.2 | 3 | 859 | 165 | 26.7 | 581 | 316 | 22.5 | |
2 | 882 | 218 | 28.7 | 599 | 313 | 20.2 | 4 | 879 | 184 | 25.9 | 538 | 270 | 20.5 | ||
3 | 912 | 175 | 26.5 | 657 | 349 | 26.5 | 5 | 871 | 176 | 28.9 | 569 | 310 | 23.6 | ||
4 | 877 | 180 | 26.3 | 677 | 375 | 31.6 | 6 | 858 | 167 | 29.0 | 594 | 318 | 27.9 | ||
5 | 870 | 143 | 31.7 | 659 | 366 | 30.6 | 7 | 882 | 140 | 28.0 | 646 | 353 | 28.0 | ||
6 | 876 | 137 | 28.5 | 675 | 373 | 30.6 | 8 | 890 | 117 | 24.7 | 670 | 362 | 23.6 | ||
Hamil | 2 | 844 | 254 | 29.7 | 572 | 293 | 14.9 | 9 | 911 | 132 | 18.7 | 696 | 397 | 33.1 | |
4 | 876 | 97 | 23.3 | 732 | 413 | 27.5 | VA06 | 1 | 824 | 298 | 28.8 | 491 | 276 | 21.4 | |
5 | 845 | 96 | - | - | 410 | - | 2 | 811 | 223 | 23.6 | 541 | 287 | 30.0 | ||
6 | 840 | 85 | - | - | 409 | - | 3 | 867 | 256 | 23.7 | 560 | 304 | 19.4 | ||
Mombasa | 2 | 871 | 171 | 25.5 | 641 | 350 | 20.2 | 4 | 851 | 156 | 25.8 | 593 | 324 | 22.5 | |
4 | 860 | 124 | 28.6 | 669 | 365 | 20.1 | 5 | 872 | 139 | 26.8 | 646 | 354 | 25.8 | ||
5 | 876 | 114 | 26.5 | 696 | 375 | 19.0 | 6 | 892 | 102 | 26.8 | 682 | 395 | 32.1 | ||
6 | 884 | 90 | 23.4 | 730 | 406 | 24.4 | 7 | 913 | 88 | 24.7 | 694 | 395 | 35.5 | ||
TD58 | 1 | 827 | 226 | 22.3 | 565 | 270 | 19.1 | 8 | 902 | 74 | 20.4 | 717 | 436 | 51.5 | |
2 | 857 | 107 | 28.6 | 673 | 364 | 22.2 | 9 | 902 | 89 | 23.6 | 706 | 411 | 44.0 | ||
3 | 875 | 132 | 28.6 | 688 | 372 | 20.1 |
Grass | Week | dOM | GP-72 | A1 + A2 | CH4-72 | CH4:GP-72 | TVFA | BCVFA | NGR | A:P |
---|---|---|---|---|---|---|---|---|---|---|
g/kg OM | mL/g OM | % of GP-72 | mM | % of TVFA | mol/mol | |||||
Mulato II | 2 | 781 ab | 259 | 199 | 44.5 b | 17.2 | 75.4 | 3.15 a | 3.33 | 2.80 |
Mulato II | 4 | 791 a | 275 | 218 | 49.5 a | 18.1 | 77.7 | 2.86 ab | 3.50 | 3.04 |
Mulato II | 6 * | 724 b | 246 | 183 | 41.4 c | 17.0 | 71.4 | 2.58 b | 3.38 | 2.76 |
Mulato II | 8 | 726 b | 234 | 180 | 39.7 d | 17.1 | 75.9 | 2.60 b | 3.40 | 2.81 |
Pooled SE | 6.36 | 9.70 | 10.8 | 1.84 | 1.00 | 1.89 | 0.09 | 0.13 | 0.19 | |
p value | 0.031 | 0.100 | 0.091 | <0.001 | 0.510 | 0.065 | 0.035 | 0.811 | 0.150 | |
Ruzi | 2 | 775 | 267 | 222 x | 46.1 | 17.4 | 79.7 ab | 3.08 | 3.45 | 3.01 |
Ruzi | 4 | 794 | 272 | 216 x | 47.8 | 17.8 | 80.5 a | 2.68 | 3.60 | 3.01 |
Ruzi | 6 * | 710 | 247 | 193 y | 42.6 | 17.3 | 75.3 ab | 2.53 | 3.32 | 2.88 |
Ruzi | 8 | 735 | 249 | 187 y | 38.4 | 15.6 | 74.4 b | 2.80 | 3.33 | 2.84 |
Pooled SE | 8.90 | 12.5 | 8.97 | 3.02 | 1.46 | 2.01 | 0.07 | 0.16 | 0.17 | |
p value | 0.052 | 0.215 | 0.047 | 0.150 | 0.233 | 0.030 | 0.093 | 0.227 | 0.358 |
Grass | Week | dOM | GP-72 | A1 + A2 | CH4-72 | CH4:GP-72 | TVFA | BCVFA | NGR | A:P |
---|---|---|---|---|---|---|---|---|---|---|
g/kg OM | mL/g OM | % of GP-72 | mM | % of TVFA | mol/mol | |||||
Guinea | 1 | 739 ab | 251 ab | 182 ab | 46.1 a | 18.5 | 74.9 | 3.69 a | 3.68 | 3.24 |
Guinea | 2 | 762 a | 251 a | 190 a | 48.0 a | 19.4 | 78.0 | 3.74 a | 3.72 | 3.31 |
Guinea | 3 | 713 c | 248 a | 180 ab | 47.1 a | 19.2 | 77.6 | 3.44 ab | 3.77 | 3.34 |
Guinea | 4 | 625 e | 189 c | 116 c | 27.2 b | 14.4 | 71.3 | 3.01 c | 3.68 | 3.20 |
Guinea | 5 * | 678 d | 249 ab | 182 ab | 46.4 a | 18.5 | 73.1 | 3.35 ab | 3.58 | 3.12 |
Guinea | 6 | 645 e | 220 bc | 167 b | 43.2 a | 19.7 | 70.2 | 3.25 ab | 3.65 | 3.17 |
Pooled SE | 4.28 | 7.59 | 5.58 | 2.83 | 1.74 | 2.25 | 0.11 | 0.14 | 0.18 | |
p value | <0.001 | 0.007 | <0.001 | 0.002 | 0.070 | 0.079 | 0.023 | 0.323 | 0.264 | |
Hamil | 2 | 768 a | 254 | 193 | 49.5 | 19.5 | 78.0 a | 3.86 a | 3.56 | 3.17 |
Hamil | 4 | 669 b | 255 | 183 | 49.7 | 18.3 | 74.4 ab | 2.93 b | 3.61 | 3.11 |
Hamil | 5 * | 670 b | 234 | 181 | 47.8 | 19.3 | 73.5 ab | 2.90 b | 3.60 | 3.13 |
Hamil | 6 | 621 b | 237 | 172 | 42.3 | 18.9 | 70.7 b | 2.89 b | 3.53 | 3.07 |
Pooled SE | 7.13 | 15.1 | 12.3 | 4.62 | 1.57 | 2.48 | 0.09 | 0.12 | 0.16 | |
p value | 0.011 | 0.500 | 0.299 | 0.560 | 0.384 | 0.016 | 0.008 | 0.777 | 0.320 | |
Mombasa | 2 | 709 | 252 | 187 | 47.5 | 18.9 | 73.9 | 3.25 a | 3.59 | 3.14 |
Mombasa | 4 | 726 | 280 | 210 | 52.2 | 18.7 | 76.3 | 3.20 a | 3.58 | 3.15 |
Mombasa | 5 * | 704 | 273 | 211 | 46.9 | 17.1 | 81.7 | 2.95 b | 3.57 | 3.08 |
Mombasa | 6 | 672 | 265 | 188 | 45.4 | 17.3 | 74.8 | 2.80 c | 3.60 | 3.10 |
Pooled SE | 11.1 | 7.36 | 4.26 | 3.41 | 1.73 | 2.08 | 0.03 | 0.10 | 0.16 | |
p value | 0.310 | 0.378 | 0.225 | 0.072 | 0.575 | 0.405 | 0.002 | 0.727 | 0.725 | |
TD58 | 1 | 797 a | 286 | 197 | 54.2 ab | 19.1 | 78.0 | 4.19 a | 3.92 a | 3.36 a |
TD58 | 2 | 774 ab | 267 | 203 | 51.8 ab | 19.2 | 76.3 | 3.34 b | 3.53 b | 3.07 b |
TD58 | 3 | 735 bc | 270 | 201 | 49.3 ab | 18.2 | 77.4 | 2.94 c | 3.56 b | 3.07 b |
TD58 | 4 | 773 ab | 293 | 207 | 53.9 a | 18.5 | 79.2 | 3.19 bc | 3.73 ab | 3.16 b |
TD58 | 5 * | 728 c | 271 | 200 | 49.2 ab | 18.3 | 73.5 | 3.16 bc | 3.63 b | 3.14 b |
TD58 | 6 | 740 bc | 264 | 195 | 45.1 b | 17.3 | 75.1 | 3.24 bc | 3.68 ab | 3.16 b |
Pooled SE | 7.08 | 5.43 | 6.97 | 2.61 | 1.02 | 1.7 | 0.08 | 0.12 | 0.15 | |
p value | 0.009 | 0.087 | 0.670 | 0.009 | 0.171 | 0.115 | <0.001 | 0.028 | 0.016 |
Grass | Week | dOM | GP-72 | A1 + A2 | CH4-72 | CH4:GP-72 | TVFA | BCVFA | NGR | A:P |
---|---|---|---|---|---|---|---|---|---|---|
g/kg OM | ml/g OM | % of GP-72 | mM | % of TVFA | mol/mol | |||||
King | 3 | 731 a | 241 b | 179 c | 42.2 b | 17.6 | 73.7 | 3.27 a | 3.82 | 3.37 a |
King | 5 | 751 a | 271 a | 211 a | 50.9 a | 18.9 | 77.9 | 3.09 a | 3.68 | 3.13 b |
King | 7 * | 703 a | 262 a | 204 b | 48.6 a | 18.6 | 76.7 | 2.62 b | 3.65 | 3.03 b |
King | 9 | 623 b | 240 b | 183 c | 43.0 b | 17.9 | 71.7 | 2.62 b | 3.65 | 3.10 b |
Pooled SE | 8.08 | 9.66 | 9.23 | 2.54 | 1.40 | 1.17 | 0.10 | 0.13 | 0.17 | |
p value | 0.009 | 0.006 | 0.002 | 0.003 | 0.051 | 0.149 | 0.043 | 0.091 | 0.026 | |
Napier | 2 | 758 | 269 | 210 | 50.8 ab | 18.9 ab | 76.8 | 3.20 ab | 3.73 a | 3.33 a |
Napier | 3 | 757 | 265 | 195 | 52.7 a | 20.0 a | 76.9 | 3.25 a | 3.78 a | 3.34 a |
Napier | 4 | 762 | 285 | 206 | 53.2 a | 18.7 ab | 78.5 | 3.16 ab | 3.79 a | 3.24 ab |
Napier | 5 | 760 | 284 | 218 | 50.8 ab | 18.0 ab | 77.3 | 3.20 ab | 3.74 a | 3.23 ab |
Napier | 6 | 751 | 285 | 213 | 51.9 a | 18.3 ab | 76.3 | 3.20 abc | 3.76 a | 3.26 ab |
Napier | 7 * | 770 | 278 | 217 | 52.3 a | 18.9 ab | 79.8 | 2.85 abc | 3.65 a | 3.15 b |
Napier | 8 | 740 | 287 | 211 | 52.2 a | 18.2 ab | 77.3 | 2.89 bc | 3.67 a | 3.18 b |
Napier | 9 | 728 | 271 | 207 | 46.2 b | 17.1 b | 77.8 | 2.67 c | 3.53 b | 2.98 b |
Pooled SE | 8.56 | 11.3 | 11.2 | 2.56 | 1.26 | 1.97 | 0.08 | 0.12 | 0.17 | |
p value | 0.087 | 0.160 | 0.120 | 0.013 | 0.029 | 0.804 | 0.009 | 0.003 | 0.012 | |
VA06 | 1 | 764 a | 216 c | 152 b | 39.6 c | 18.1 | 69.9 c | 4.16 a | 3.77 ab | 3.41 a |
VA06 | 2 | 737 ab | 245 ab | 184 ab | 46.0 b | 18.8 | 73.8 bc | 3.46 bc | 3.84 a | 3.40 a |
VA06 | 3 | 756 a | 274 a | 204 a | 51.8 a | 19.0 | 77.1 ab | 3.49 b | 3.72 ab | 3.31 ab |
VA06 | 4 | 766 a | 276 a | 214 a | 53.7 a | 19.3 | 77.6 ab | 3.23 c | 3.81 ab | 3.32 ab |
VA06 | 5 | 758 a | 289 a | 217 a | 54.1 a | 18.9 | 78.4 a | 2.91 d | 3.71 ab | 3.20 bc |
VA06 | 6 | 702 b | 261 ab | 185 ab | 50.6 a | 19.5 | 74.3 abc | 3.38 bc | 3.71 ab | 3.22 bc |
VA06 | 7 * | 706 b | 287 a | 212 a | 51.8 a | 18.1 | 78.5 a | 2.69 d | 3.75 ab | 3.21 bc |
VA06 | 8 | 627 c | 253 ab | 184 ab | 45.6 b | 18.1 | 71.0 c | 2.78 d | 3.66 b | 3.09 c |
VA06 | 9 | 643 bc | 254 ab | 187 ab | 46.7 b | 18.5 | 75.6 ab | 2.68 d | 3.76 ab | 3.22 bc |
Pooled SE | 10.2 | 11.6 | 12.3 | 2.73 | 1.25 | 1.77 | 0.11 | 0.12 | 0.18 | |
p value | <0.001 | 0.01 | 0.008 | <0.001 | 0.442 | <0.001 | <0.001 | 0.048 | <0.001 |
Grass | Mombasa | Mulato II | King | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regrowth Week | 2 | 4 | 5 | 6 | 2 | 4 | 6 | 8 | 3 | 5 | 7 | 9 |
DM | 95.8 | 98.6 | 100 | 101 | 68.4 | 84.2 | 100 | 116 | 116 | 108 | 100 | 92.2 |
dOM | 95.1 | 99.0 | 100 | 96.8 | 73.8 | 92.0 | 100 | 116 | 115 | 112 | 100 | 83.9 |
GP | 112 | 127 | 100 | 126 | 71.5 | 92.8 | 100 | 110 | 102 | 108 | 100 | 86.7 |
A1 + A2 | 101 | 114 | 100 | 107 | 73.8 | 98.9 | 100 | 114 | 97.3 | 108 | 100 | 84.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.T.D.; Schonewille, J.T.; Pellikaan, W.F.; Nguyen, T.X.; Hendriks, W.H. In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam. Fermentation 2024, 10, 280. https://doi.org/10.3390/fermentation10060280
Nguyen HTD, Schonewille JT, Pellikaan WF, Nguyen TX, Hendriks WH. In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam. Fermentation. 2024; 10(6):280. https://doi.org/10.3390/fermentation10060280
Chicago/Turabian StyleNguyen, Huyen Thi Duong, Jan Thomas Schonewille, Wilbert Frans Pellikaan, Trach Xuan Nguyen, and Wouter Hendrikus Hendriks. 2024. "In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam" Fermentation 10, no. 6: 280. https://doi.org/10.3390/fermentation10060280
APA StyleNguyen, H. T. D., Schonewille, J. T., Pellikaan, W. F., Nguyen, T. X., & Hendriks, W. H. (2024). In Vitro Gas Production of Common Southeast Asian Grasses in Response to Variable Regrowth Periods in Vietnam. Fermentation, 10(6), 280. https://doi.org/10.3390/fermentation10060280