Effects of One-Step Abrupt Temperature Change on Anaerobic Co-Digestion of Kitchen Waste with Dewatered Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Pretreatment
2.2. Experimental Design
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Digestion Performance
3.1.1. pH, TAN, FAN
3.1.2. SCOD, VFA, TA, VFA/TA
3.2. Methane Yield
3.3. Microbial Community
3.3.1. Bacterial Community
3.3.2. Archaea Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.T.T.; Malek, L.; Umberger, W.J.; O’Connor, P.J. Motivations behind daily preventative household food waste behaviours: The role of gain, hedonic, normative, and competing goals. Sustain. Prod. Consump. 2023, 43, 278–296. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Li, Y.; Yuantao, W. Characteristics of denitrification activity, functional genes, and denitrifying community composition in the composting process of kitchen and garden waste. Bioresour. Technol. 2023, 381, 129137. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yu, Y.; Tang, J.; Li, X.; Ke, C.; Yao, Z. Application fields of kitchen waste biochar and its prospects as catalytic material: A review. Sci. Total Environ. 2022, 810, 152171. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Champagne, P.; Anderson, B.C. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste. Water Sci. Technol. 2014, 69, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, Q.; Liu, Z.; Qu, J.; Chu, X.; Li, N.; Noor, R.S.; Liu, C.; Qu, B.; Sun, Y. Evaluation of methane production and energy conversion from corn stalk using furfural wastewater pretreatment for whole slurry anaerobic co-digestion. Bioresour. Technol. 2019, 293, 121962. [Google Scholar] [CrossRef] [PubMed]
- Dinh Duc, N.; Chang, S.W.; Jeong, S.Y.; Jeung, J.; Kim, S.; Guo, W.; Huu Hao, N. Dry thermophilic semi-continuous anaerobic digestion of food waste: Performance evaluation, modified Gompertz model analysis, and energy balance. Energy Convers. Manag. 2016, 128, 203–210. [Google Scholar]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Han, W.; Zhao, Y.; Chen, H. Study on Biogas Production of Joint Anaerobic Digestion with Excess Sludge and Kitchen Waste. In Proceedings of the 5th International Conference on Solid Waste Management (IconSWM), Bengaluru, India, 25–27 November 2015; pp. 756–762. [Google Scholar]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Van Epps, A.; Blaney, L. Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Curr. Pollut. Rep. 2016, 2, 135–155. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y.; Yu, B.; Yang, M. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Res. 2016, 98, 261–269. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degreve, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Mohammadi, S.; Monsalvete alvarez de Uribarri, P.; Eicker, U. Decentral Energy Generation Potential of Anaerobic Digestion of Black Water and Kitchen Refuse for Eco-District Planning. Energies 2021, 14, 2948. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, W.; Sheng, J.; Peng, C.; Wang, T. Comparison of Anaerobic Co-Digestion of Buffalo Manure and Excess Sludge with Different Mixing Ratios under Thermophilic and Mesophilic Conditions. Sustainability 2023, 15, 6690. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, C.; Pu, J.; Feng, Y.; Zhu, H.; Yang, M.; Xu, Z.; Zhang, Y.; Yang, L.; Luo, D.; et al. Intermittent energization improves anaerobic digestion of microbial electrolysis cell-assisted nitrogen-rich sludge under mesophilic and thermophilic conditions. J. Environ. Chem. Eng. 2024, 12, 111630. [Google Scholar] [CrossRef]
- Antony, D.; Murugavelh, S. Anaerobic co-digestion of kitchen waste and wastewater sludge: Biogas-based power generation. Biofuels 2018, 9, 157–162. [Google Scholar] [CrossRef]
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, M.; Mou, H.; An, Z.; Fu, H.; Su, X.; Chen, C.; Chen, J.; Lin, H.; Sun, F. Comparation of mesophilic and thermophilic anaerobic co-digestion of food waste and waste activated sludge driven by biochar derived from kitchen waste. J. Clean. Prod. 2023, 408, 137123. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, L.; Fu, X.; Pan, F.; Shi, X.; Wang, T. Comparison of anaerobic co-digestion of pig manure and sludge at different mixing ratios at thermophilic and mesophilic temperatures. Bioresour. Technol. 2021, 337, 125425. [Google Scholar] [CrossRef]
- Forster-Carneiro, T.; Perez, M.; Romero, L.I. Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes. Bioresour. Technol. 2007, 98, 3354–3366. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Zhang, D.; Hu, Z.; Sun, Y. Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. Sci. Total Environ. 2021, 752, 141932. [Google Scholar] [CrossRef]
- Westerholm, M.; Isaksson, S.; Lindsjo, O.K.; Schnurer, A. Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Appl. Energy 2018, 226, 838–848. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Q.; Zha, J.; Wu, Y.; Wu, L.; Li, H.; Tang, M.; Sun, Y.; Guo, W.; Feng, Q.; et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review. J. Hazard. Mater. 2020, 383, 121176. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhang, Y.; Li, Y.; Chi, Y.; Yang, M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Res. 2015, 69, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Fang, H.; Li, Y.; Wu, H.; Liu, R.; Niu, Q. Single and simultaneous effects of naphthalene and salinity on anaerobic digestion: Response surface methodology, microbial community analysis and potential functions prediction. Environ. Pollut. 2021, 291, 118188. [Google Scholar] [CrossRef] [PubMed]
- Mellyanawaty, M.; Nakakoji, S.; Tatara, M.; Marbelia, L.; Sarto; Prijambada, I.D.; Budhijanto, W.; Ueno, Y. Enrichment of thermophilic methanogenic microflora from mesophilic waste activated sludge for anaerobic digestion of garbage slurry. J. Biosci. Bioeng. 2021, 132, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Varsha, S.S.V.; Soomro, A.F.; Baig, Z.T.; Vuppaladadiyam, A.K.; Murugavelh, S.; Antunes, E. Methane production from anaerobic mono- and co-digestion of kitchen waste and sewage sludge: Synergy study on cumulative methane production and biodegradability. Biomass Convers. Biorefinery 2020, 12, 3911–3919. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination Water and Wastewater; Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Lu, F.; Hao, L.; Zhu, M.; Shao, L.; He, P. Initiating methanogenesis of vegetable waste at low inoculum-to-substrate ratio: Importance of spatial separation. Bioresour. Technol. 2012, 105, 169–173. [Google Scholar] [CrossRef]
- Abid, M.; Wu, J.; Seyedsalehi, M.; Hu, Y.; Tian, G. Novel insights of impacts of solid content on high solid anaerobic digestion of cow manure: Kinetics and microbial community dynamics. Bioresour. Technol. 2021, 333, 125205. [Google Scholar] [CrossRef]
- Peng, Y.; Li, L.; Dong, Q.; Yang, P.; Liu, H.; Ye, W.; Wu, D.; Peng, X. Evaluation of digestate-derived biochar to alleviate ammonia inhibition during long-term anaerobic digestion of food waste. Chemosphere 2022, 311 Pt 2, 137150. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Liu, X.; Mei, Z.; Ren, H.; Cao, Q.; Yan, Z. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresour. Technol. 2017, 245, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Gavala, H.N.; Yenal, U.; Skiadas, I.V.; Westermann, P.; Ahring, B.K. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res. 2003, 37, 4561–4572. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hao, L.; Guan, D.; Qi, Y.; Shao, L.; He, P. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. Water Res. 2013, 47, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, P.; Zhang, X.; Zhou, Q.; Yang, Q.; Xu, B.; Yang, P.; Zhou, T. Effects of Mixing Ratio on Dewaterability of Digestate of Mesophilic Anaerobic Co-Digestion of Food Waste and Sludge. Waste Biomass Valorization 2018, 9, 87–93. [Google Scholar] [CrossRef]
- Latifi, P.; Karrabi, M.; Danesh, S. Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids). Renew. Sustain. Energy Rev. 2019, 107, 288–296. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, K.; Chen, X.; Xiao, B. Effects of substrate organic composition on mesophilic and thermophilic anaerobic co-digestion of food waste and paper waste. Chemosphere 2022, 291, 132933. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, S.; Zhang, L. Study on Anaerobic Digestion Performance of Kitchen Wastes: Inhibition of ammonia nitrogen and volatile acid on the anaerobic methanogenesis. In Proceedings of the International Conference on Energy, Environment and Sustainable Development (ICEESD 2011), Shanghai, China, 21–23 October 2011; pp. 2497–2503. [Google Scholar]
- Wang, T.; Xing, Z.; Zeng, L.; Peng, C.; Shi, H.; Cheng, J.; Zhang, Q. Anaerobic codigestion of excess sludge with chicken manure with a focus on methane yield and digestate dewaterability. Bioresour. Technol. Rep. 2022, 19, 101127. [Google Scholar] [CrossRef]
- Beno, Z.; Boran, J.; Houdkova, L.; Dlabaja, T.; Sponar, J. Cofermentation of kitchen waste with sewage sludge. In Proceedings of the 12th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, Rome, Italy, 10 February–13 May 2009; pp. 677–682. [Google Scholar]
- Cai, Y.; Gallegos, D.; Zheng, Z.; Stinner, W.; Wang, X.; Proter, J.; Schafer, F. Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models. Bioresour. Technol. 2021, 337, 125328. [Google Scholar] [CrossRef]
- De Vrieze, J.; Saunders, A.M.; He, Y.; Fang, J.; Nielsen, P.H.; Verstraete, W.; Boon, N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015, 75, 312–323. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Zhang, S.; Wang, Y.; Shao, X.; Wu, D. Analysis of raw materials and products characteristics from composting and anaerobic digestion in rural areas. J. Clean. Prod. 2022, 338, 130455. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, T.; Zeng, L.; Bai, C.; Wu, R.; Xing, Z.; Xiao, G.; Shi, X. Enhanced sludge thermophilic anaerobic digestion performance by single-chambered microbial electrolysis cells under ammonia inhibition. J. Environ. Chem. Eng. 2022, 10, 107802. [Google Scholar] [CrossRef]
- An, D.; Wang, T.; Zhou, Q.; Wang, C.; Yang, Q.; Xu, B.; Zhang, Q. Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Manag. 2017, 62, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Narihiro, T.; Nobu, M.; Kim, N.; Kamagata, Y.; Liu, W. The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ. Microbiol. 2015, 17, 1707–1720. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Li, J.; Feng, L.; Gao, T.; Osman, Y.I.A.; Zhang, X. Optimization of the Proportions of Kitchen Waste and Municipal Sludge in Anaerobic Co-Digestion. J. Biosci. Bioeng. 2019, 13, 155–160. [Google Scholar] [CrossRef]
- Chen, H.; Huang, R.; Wu, J.; Zhang, W.; Han, Y.; Xiao, B.; Wang, D.; Zhou, Y.; Liu, B.; Yu, G. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresour. Technol. 2021, 320, 124303. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhao, Y.; He, H.; Cai, Y.; Zhao, Y.; Wang, H.; Zhu, W.; Yuan, X.; Cui, Z. Anaerobic co-digestion of dairy manure and maize stover with different total solids content: From the characteristics of digestion to economic evaluation. J. Environ. Chem. Eng. 2022, 10, 107602. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, N. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew. Sustain. Energy Rev. 2016, 58, 429–438. [Google Scholar] [CrossRef]
- Ai, S.; Liu, H.; Wu, M.; Zeng, G.; Yang, C. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge. Front. Environ. Sci. Eng. 2018, 12, 3. [Google Scholar] [CrossRef]
- Perman, E.; Schnurer, A.; Bjorn, A.; Moestedt, J. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass Bioenergy 2022, 161, 106478. [Google Scholar] [CrossRef]
- Liang, B.; Wang, L.; Mbadinga, S.; Liu, J.; Yang, S.; Gu, J.; Mu, B. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 2015, 5, 37. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Ziganshin, A.M. Anaerobic Digestion of Chicken Manure in the Presence of Magnetite, Granular Activated Carbon, and Biochar: Operation of Anaerobic Reactors and Microbial Community Structure. Microorganisms 2022, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Usman, M.; He, J.; Chen, H.; Zhang, S.; Luo, G. Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge. Water Res. 2021, 205, 117679. [Google Scholar] [CrossRef] [PubMed]
- Kimisto, A.K.; Muia, A.W.; Ong’ondo, G.O.; Ndung’u, K.C. Molecular characterization of microorganisms with industrial potential for methane production in sludge from Kangemi sewage treatment plant, Nyeri county-Kenya. Heliyon 2023, 9, e15715. [Google Scholar] [CrossRef] [PubMed]
- Ziganshina, E.E.; Ziganshin, A.M. Magnetite Nanoparticles and Carbon Nanotubes for Improving the Operation of Mesophilic Anaerobic Digesters. Microorganisms 2023, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Jing, Y.; Zhang, S.; Angelidaki, I.; Luo, G. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. Water Res. 2016, 102, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, T.; Xing, Z.; Ma, Y.; Nan, F.; Pan, L.; Chen, J. Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: Digestion performance, microbial community, and biogas slurry fertility. Bioresour. Technol. 2022, 363, 127976. [Google Scholar] [CrossRef]
MAS | TAS | DS | KW | |
---|---|---|---|---|
TS (%) | 1.67 ± 0.01 | 1.48 ± 0.03 | 24.75 ± 0.13 | 23.76 ± 0.31 |
VS (%) | 0.92 ± 0.01 | 0.80 ± 0.02 | 10.23 ± 0.11 | 18.99 ± 0.27 |
pH | 7.48 ± 0.21 | 7.69 ± 0.15 | 5.20 ± 1.06 | |
SCOD (mg/L) | 2926.2 ± 22.4 | 3850.7 ± 62.0 | 80,644.8 ± 903.7 | |
TA (mg/L) | 1860.2 ± 0.0 | 2340.2 ± 22.2 | 594.4 ± 60.4 | |
TAN (mg/L) | 493.6 ± 4.6 | 385.62 ± 62.0 | 423.5 ± 0.5 |
Temperature Change | Ratio of Inoculation after Temperature Change | ||||
---|---|---|---|---|---|
0% | 5% | 10% | 15% | 20% | |
Always 35 °C | M0 | ||||
Always 55 °C | T0 | ||||
Change from 35 °C to 55 °C (Inoculation with TAS on day 10) | T1 | T2 | T3 | T4 | T5 |
Change from 55 °C to 35 °C (Inoculation with MAS on day 10) | M1 | M2 | M3 | M4 | M5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Zhou, Y.; Zhu, H.; Wang, T. Effects of One-Step Abrupt Temperature Change on Anaerobic Co-Digestion of Kitchen Waste with Dewatered Sludge. Fermentation 2024, 10, 5. https://doi.org/10.3390/fermentation10010005
Hu W, Zhou Y, Zhu H, Wang T. Effects of One-Step Abrupt Temperature Change on Anaerobic Co-Digestion of Kitchen Waste with Dewatered Sludge. Fermentation. 2024; 10(1):5. https://doi.org/10.3390/fermentation10010005
Chicago/Turabian StyleHu, Weijie, Youfei Zhou, Hong Zhu, and Tianfeng Wang. 2024. "Effects of One-Step Abrupt Temperature Change on Anaerobic Co-Digestion of Kitchen Waste with Dewatered Sludge" Fermentation 10, no. 1: 5. https://doi.org/10.3390/fermentation10010005
APA StyleHu, W., Zhou, Y., Zhu, H., & Wang, T. (2024). Effects of One-Step Abrupt Temperature Change on Anaerobic Co-Digestion of Kitchen Waste with Dewatered Sludge. Fermentation, 10(1), 5. https://doi.org/10.3390/fermentation10010005