Effects of Short Retention Times and Ultrasound Pretreatment on Ammonium Concentration and Organic Matter Transformation in Anaerobic Digesters Treating Sewage Sludge
Abstract
:1. Introduction
1.1. Application and Limitations of Anaerobic Digestion for Sewage Sludge Treatment
1.2. Use of Pretreatments to Improve the AD Process
1.3. Ammonium as an Inhibitor of the AD Process
2. Materials and Methods
2.1. Sewage Sludge and Bacterial Inoculum
2.2. Ultrasound Pretreatment of Sludge
2.3. Operation of the Anaerobic Digesters
- CH4–COD: methane output, expressed as COD (g/day);
- CODS–E: soluble COD in the reactor effluent (g/day);
- CODT–I: total COD in the influent sludge (g/day);
- CODVFA–E: VFA in the reactor effluent, expressed as COD (g/day).
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mainardis, M.; Buttazzoni, M.; Gievers, F.; Vance, C.; Magnolo, F.; Murphy, F.; Goi, D. Life cycle assessment of sewage sludge pretreatment for biogas production: From laboratory tests to full-scale applicability. J. Clean. Prod. 2021, 322, 129056. [Google Scholar] [CrossRef]
- Neumann, P.; Riquelme, C.; Cartes, C.; Kuschel-Otárola, M.; Hospido, A.; Vidal, G. Relevance of sludge management practices and substance modeling in LCA for decision-making: A case study in Chile. J. Environ. Manag. 2022, 324, 116357. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Burton, F.; Stensel, D. Wastewater Engineering: Treatment and Reuse; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Chen, G.; van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design, 2nd ed.; IWA Publishing: London, UK, 2023. [Google Scholar]
- Mikkelsen, L.H.; Keiding, K. Physico-chemical characteristics of full-scale sewage sludges with implications to dewatering. Water Res. 2002, 36, 2451–2462. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; La, D.D.; Nguyen, X.C.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Neumann, P.; Barriga, F.; Álvarez, C.; González, Z.; Vidal, G. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound–thermal (55 °C) pre-treatment. Bioresour. Technol. 2018, 262, 42–51. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Thomsen, T.R.; Nielsen, J.L. Bacterial composition of activated sludge—Importance for floc and sludge properties. Water Sci. Technol. 2004, 49, 51–58. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Kang, X.; Yuan, Y.; Du, M. Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: Effect of alkaline adjustment. Int. Biodeterior. Biodegrad. 2014, 94, 128–133. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Bhat, A.P.; Gogate, P.R. Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: A review. J. Environ. Chem. Eng. 2021, 9, 104743. [Google Scholar] [CrossRef]
- Khanal, S.K.; Grewell, D.; Sung, S.; Van Leeuwen, J. Ultrasound applications in wastewater sludge pretreatment: A review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 277–313. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; González, Z.; Vidal, G. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion. Bioresour. Technol. 2017, 234, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy. 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy. 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Elvira, S.; Fdz-Polanco, M.; Plaza, D.; Garralón, G.; Fdz-Polanco, F. Ultrasound pre-treatment for anaerobic digestion improvement. Water Sci. Technol. 2009, 60, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Procházka, J.; Dolejš, P.; MácA, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Sung, S.; Liu, T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 2003, 53, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, M.; Hsieh, C.F.; Figueroa, C.; Campos, J.L.; Vidal, G. Effect of free ammonia nitrogen on the methanogenic activity of swine wastewater. Electron. J. Biotechnol. 2011, 14, 11. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.C.; Soto, M.; Méndez, R.; Lema, J.M. A new device for measurement and control of gas production by bench scale anaerobic digesters. Water Res. 1990, 24, 1551–1554. [Google Scholar] [CrossRef]
- El-Mashad, H.M.; Zeeman, G.; Van Loon, W.K.P.; Bot, G.P.A.; Lettinga, G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004, 95, 191–201. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washingto, DC, USA, 2017. [Google Scholar]
- Ruffino, B.; Campo, G.; Genon, G.; Lorenzi, E.; Novarino, D.; Scibilia, G.; Zanetti, M. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy, and economical assessment. Bioresour. Technol. 2015, 175, 298–308. [Google Scholar] [CrossRef]
- Amani, T.; Nosrati, M.; Sreekrishnan, T.R. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—A review. Environ. Res. 2010, 18, 255–278. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manag. 2012, 95, 139–143. [Google Scholar] [CrossRef]
- Dhar, B.P.; Nakhla, G.; Ray, M.B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag. 2012, 32, 542–549. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cesaro, A.; Belgiorno, V. Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason. Sonochem. 2013, 20, 931–936. [Google Scholar] [CrossRef]
- Çelebi, E.B.; Aksoy, A.; Sanin, F.D. Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion. Energy 2021, 221, 119876. [Google Scholar] [CrossRef]
Parameter (n) | Unit | Range | Average | ||
---|---|---|---|---|---|
RS | US | RS | US | ||
pH (11) | - | 5.59–5.74 | 5.46–5.90 | 5.66 ± 0.1 | 5.76 ± 0.1 |
Conductivity (11) | mS/cm | 1.71–4.90 | 3.03–5.87 | 3.29 ± 1.1 | 3.65 ± 0.9 |
ORP (11) | mV | −203.6–−85.7 | −283.8–−87.3 | −171.86 ± 61 | −165.05 ± 70.8 |
CODt (11) | g/L | 31–97.6 | 26.4–113.8 | 52.5 ± 18.6 | 58.9 ± 24.3 |
CODs (11) | g/L | 5.8–18.1 | 5.6–23.4 | 9.7 ± 6.9 | 11.5 ± 9.3 |
Total solids (11) | g/L | 17.4–40.9 | 16.8–37.7 | 29.6 ± 9.3 | 30.8 ± 8.2 |
Volatile solids (11) | g/L | 13.5–31.5 | 13.1–28.6 | 24.6 ± 6.8 | 23.7 ± 6.5 |
NH4+-N (10) | g/L | 0.2–1.5 | 0.2–1.4 | 0.6 ± 0.5 | 1.0 ± 0.5 |
Acetic acid (7) | g/L | 0.17–0.28 | 0.22–0.39 | 0.21 ± 0.05 | 0.29 ± 0.06 |
Propionic acid (7) | g/L | 0.19–0.40 | 0.36–0.59 | 0.36 ± 0.08 | 0.51 ± 0.09 |
Butyric acid (7) | g/L | 0.06–0.25 | 0.13–0.31 | 0.13 ± 0.08 | 0.23 ± 0.08 |
N-valeric acid (7) | g/L | 0.05–0.12 | 0.07–0.16 | 0.08 ± 0.03 | 0.12 ± 0.03 |
Total VFA * | gCOD/L | 0.53–0.93 | 0.93–1.36 | 0.83 ± 0.15 | 1.16 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivera, M.; Barriga, F.; Neumann, P.; Gómez, G.; Vidal, G. Effects of Short Retention Times and Ultrasound Pretreatment on Ammonium Concentration and Organic Matter Transformation in Anaerobic Digesters Treating Sewage Sludge. Fermentation 2024, 10, 63. https://doi.org/10.3390/fermentation10010063
Olivera M, Barriga F, Neumann P, Gómez G, Vidal G. Effects of Short Retention Times and Ultrasound Pretreatment on Ammonium Concentration and Organic Matter Transformation in Anaerobic Digesters Treating Sewage Sludge. Fermentation. 2024; 10(1):63. https://doi.org/10.3390/fermentation10010063
Chicago/Turabian StyleOlivera, Matías, Felipe Barriga, Patricio Neumann, Gloria Gómez, and Gladys Vidal. 2024. "Effects of Short Retention Times and Ultrasound Pretreatment on Ammonium Concentration and Organic Matter Transformation in Anaerobic Digesters Treating Sewage Sludge" Fermentation 10, no. 1: 63. https://doi.org/10.3390/fermentation10010063
APA StyleOlivera, M., Barriga, F., Neumann, P., Gómez, G., & Vidal, G. (2024). Effects of Short Retention Times and Ultrasound Pretreatment on Ammonium Concentration and Organic Matter Transformation in Anaerobic Digesters Treating Sewage Sludge. Fermentation, 10(1), 63. https://doi.org/10.3390/fermentation10010063