Comparison of Aroma and Taste Profiles Between Two Fermented Pea Pastes Using Intelligent Sensory Analysis and Gas Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. PP Production
2.2. Intelligent Sense Analysis of PP
2.2.1. E-Nose Analysis
2.2.2. E-Tongue Analysis
2.3. Free Amino Acid Analysis
2.4. Organic Acid Analysis
2.5. Analysis of Aroma Components
2.6. Statistical Analysis
3. Results
3.1. Intelligent Sensory Analysis of PP
3.2. Analysis of the Aroma Profile in PP
3.3. Analysis of Free Amino Acids in PP
3.4. Analysis of Organic Acids in PP
3.5. Correlation Analysis of Flavor and Taste
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Hatcher, D.W.; Gawalko, E.J. Effect of Variety and Processing on Nutrients and Certain Anti-Nutrients in Field Peas (Pisum sativum). Food Chem. 2008, 111, 132–138. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Yang, H.; Liu, Y.; Zhang, Y.; Zhang, Z.; Li, Y.; Wang, X.; Xu, Z.; Deng, J. Comparison Analysis of Bioactive Metabolites in Soybean, Pea, Mung Bean, and Common Beans: Reveal the Potential Variations of Their Antioxidant Property. Food Chem. 2024, 457, 140137. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of Lactic Acid Bacteria in Flavor Development in Traditional Chinese Fermented Foods: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2741–2755. [Google Scholar] [CrossRef]
- Jiang, J.; Xie, Y.; Cui, M.; Ma, X.; Yin, R.; Chen, Y.; Li, Y.; Hu, Y.; Cheng, W.; Gao, F. Characterization of Differences in Physicochemical Properties, Volatile Organic Compounds and Non-Volatile Metabolites of Prune Wine by Inoculation of Different Lactic Acid Bacteria during Malolactic Fermentation. Food Chem. 2024, 452, 139616. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, S.; Liu, Z.; Wang, T.; Cai, S.; Chu, C.; Hu, X.; Yi, J. Effect of Inoculating Pichia Spp. Starters on Flavor Formation of Fermented Chili Pepper: Metabolomics and Genomics Approaches. Food Res. Int. 2023, 173, 113397. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, X.; Dong, L.; Zhao, Y.; He, L.; Li, C.; Wang, X.; Zeng, X. Effects of Dual-Strain Fermentation on Physicochemical Properties of Rosa Roxburghii Tratt and Coix Seed Beverage. LWT 2024, 194, 115813. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces Cerevisiae and Non-Saccharomyces Strains on Alcoholic Fermentation Behavior and Aroma Profile of Yellow-Fleshed Peach Wine. LWT 2022, 155, 112993. [Google Scholar] [CrossRef]
- Liu, H.; Ni, Y.; Yu, Q.; Fan, L. Evaluation of Co-Fermentation of L. Plantarum and P. Kluyveri of a Plant-Based Fermented Beverage: Physicochemical, Functional, and Sensory Properties. Food Res. Int. 2023, 172, 113060. [Google Scholar] [CrossRef]
- Gao, X.; Shan, P.; Feng, T.; Zhang, L.; He, P.; Ran, J.; Fu, J.; Zhou, C. Enhancing Selenium and Key Flavor Compounds Contents in Soy Sauce Using Selenium-Enriched Soybean. J. Food Compos. Anal. 2022, 106, 104299. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, R.; Zhang, Y.; Li, X.; Gooneratne, R.; Li, J. Comparative Analysis of Flavor, Taste, and Volatile Organic Compounds in Opossum Shrimp Paste during Long-Term Natural Fermentation Using E-Nose, E-Tongue, and HS-SPME-GC-MS. Foods 2022, 11, 1938. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Yang, J.; Wang, X.; Lü, X. Unraveling the Difference in Physicochemical Properties, Sensory, and Volatile Profiles of Dry Chili Sauce and Traditional Fresh Dry Chili Sauce Fermented by Lactobacillus Plantarum PC8 Using Electronic Nose and HS-SPME-GC-MS. Food Biosci. 2022, 50, 102057. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, K.; Li, W.; Peng, Y.; Yi, Y.; Qiao, M.; Fu, Y. Characterization of Flavor and Taste Profile of Different Radish (Raphanus sativus L.) Varieties by Headspace-Gas Chromatography-Ion Mobility Spectrometry (GC/IMS) and E-Nose/Tongue. Food Chem. X 2024, 22, 101419. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhu, C.; Deng, J.; Dong, P.; Xiong, Y.; Wu, H. Effect of Sichuan Pepper (Zanthoxylum genus) Addition on Flavor Profile in Fermented Ciba Chili (Capsicum genus) Using GC-IMS Combined with E-Nose and E-Tongue. Molecules 2023, 28, 5884. [Google Scholar] [CrossRef]
- GB 5009.157-2016; National Standard for Food Safety—Determination of Organic Acids in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Characteristic Fingerprints and Volatile Flavor Compound Variations in Liuyang Douchi during Fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2021, 361, 130055. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2022, 12, 146. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.; Liu, J.; Zhang, X.; Lu, Y. Analysis of the Volatile Flavor Compounds of Pomegranate Seeds at Different Processing Temperatures by GC-IMS. Molecules 2023, 28, 2717. [Google Scholar] [CrossRef]
- Fang, X.; Xu, W.; Jiang, G.; Sui, M.; Xiao, J.; Ning, Y.; Niaz, R.; Wu, D.; Feng, X.; Chen, J.; et al. Monitoring the Dynamic Changes in Aroma during the Whole Processing of Qingzhuan Tea at an Industrial Scale: From Fresh Leaves to Finished Tea. Food Chem. 2024, 439, 137810. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B (Methodol.) 2018, 26, 211–243. [Google Scholar] [CrossRef]
- Ye, Z.; Shang, Z.; Zhang, S.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Dynamic Analysis of Flavor Properties and Microbial Communities in Chinese Pickled Chili Pepper (Capsicum frutescens L.): A Typical Industrial-Scale Natural Fermentation Process. Food Res. Int. 2022, 153, 110952. [Google Scholar] [CrossRef]
- Li, S.; Bi, P.; Sun, N.; Gao, Z.; Chen, X.; Guo, J. Effect of Sequential Fermentation with Four Non-Saccharomyces and Saccharomyces Cerevisiae on Nutritional Characteristics and Flavor Profiles of Kiwi Wines. J. Food Compos. Anal. 2022, 109, 104480. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, C.; He, Z.; Lin, X.; Chen, B.; Li, W. Changes in Characteristic Volatile Aroma Substances during Fermentation and Deodorization of Gracilaria Lemaneiformis by Lactic Acid Bacteria and Yeast. Food Chem. 2023, 405, 134971. [Google Scholar] [CrossRef] [PubMed]
- Lleixà, J.; Martín, V.; Portillo, M.D.C.; Carrau, F.; Beltran, G.; Mas, A. Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora Vineae and Saccharomyces Cerevisiae. Front. Microbiol. 2016, 7, 338. [Google Scholar] [CrossRef]
- Madzgalj, V.; Petrovic, A.; Cakar, U.; Maras, V.; Sofrenic, I.; Tesevic, V. The Influence of Different Enzymatic Preparations and Skin Contact Time on Aromatic Profile of Wines Produced from Autochthonous Grape Varieties Krstac and Zizak. J. Serb. Chem. Soc. 2023, 88, 11–23. [Google Scholar] [CrossRef]
- Lian, Y.; Jing, D.; Jian, Z.; Tian, W.; Bao, W.; Yu, Y.; Ming, Q.; Shi, Z.; Hua., W. Effect of five aroma-producing yeasts on volatile flavor compounds of fermented pea paste. Food Ferment. Ind. 2023, 50, 1–9. [Google Scholar] [CrossRef]
- Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef]
- Yao, D.; Xu, L.; Wu, M.; Wang, X.; Zhu, L.; Wang, C. Effects of Microbial Community Succession on Flavor Compounds and Physicochemical Properties during CS Sufu Fermentation. LWT 2021, 152, 112313. [Google Scholar] [CrossRef]
- Zhao, S.; Sai, Y.; Liu, W.; Zhao, H.; Bai, X.; Song, W.; Zheng, Y.; Yue, X. Flavor Characterization of Traditional Fermented Soybean Pastes from Northeast China and Korea. Foods 2023, 12, 3294. [Google Scholar] [CrossRef]
- An, F.; Li, M.; Zhao, Y.; Zhang, Y.; Mu, D.; Hu, X.; You, S.; Wu, J.; Wu, R. Metatranscriptome-Based Investigation of Flavor-Producing Core Microbiota in Different Fermentation Stages of Dajiang, a Traditional Fermented Soybean Paste of Northeast China. Food Chem. 2021, 343, 128509. [Google Scholar] [CrossRef]
- Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of Aroma Profiles of Commercial Soy Sauce by Odour Activity Value and Omission Test. Food Chem. 2015, 167, 220–228. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Y.; Hou, Q.; Zhang, Z.; Tang, F.; Shan, C.; Yang, X.; Guo, Z. Rice Varieties Affect Bacterial Diversity, Flavor, and Metabolites of Zha-Chili. Food Res. Int. 2021, 147, 110556. [Google Scholar] [CrossRef]
- Shin, D.S.; Park, C.H.; Han, S.I.; Choi, H.S. Evaluation of the Fermentation Properties of Different Soybean (Glycine max L.) Cultivars. Legume Res. 2020, 43, 75–80. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Sofou, A.; Tsakalidou, E.; Kalantzopoulos, G. Flour Carbohydrate Catabolism and Metabolite Production by Sourdough Lactic Acid Bacteria. World J. Microbiol. Biotechnol. 2007, 23, 1417–1423. [Google Scholar] [CrossRef]
- Zhao, G.; Hou, L.; Yao, Y.; Wang, C.; Cao, X. Comparative Proteome Analysis of Aspergillus Oryzae 3.042 and A. Oryzae 100–8 Strains: Towards the Production of Different Soy Sauce Flavors. J. Proteom. 2012, 75, 3914–3924. [Google Scholar] [CrossRef]
- Chen, Z.; Geng, Y.; Wang, M.; Lv, D.; Huang, S.; Guan, Y.; Hu, Y. Relationship between Microbial Community and Flavor Profile during the Fermentation of Chopped Red Chili (Capsicum annuum L.). Food Biosci. 2022, 50, 102071. [Google Scholar] [CrossRef]
- Meng, J.; Wang, J.-L.; Hao, Y.-P.; Zhu, M.-X.; Wang, J. Effects of Lactobacillus Fermentum GD01 Fermentation on the Nutritional Components and Flavor Substances of Three Kinds of Bean Milk. LWT 2023, 184, 115006. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, B.; Xu, C.; Wang, J.; Wang, Z.; Huang, Y.; Ma, C. Impact of Enzymatic Fermentation on Taste, Chemical Compositions and in Vitro Antioxidant Activities in Chinese Teas Using E-Tongue, HPLC and Amino Acid Analyzer. LWT 2022, 163, 113549. [Google Scholar] [CrossRef]
- Du Toit, S.C.; Rossouw, D.; Du Toit, M.; Bauer, F.F. Enforced Mutualism Leads to Improved Cooperative Behavior between Saccharomyces Cerevisiae and Lactobacillus Plantarum. Microorganisms 2020, 8, 1109. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of Volatile Flavour Compounds in Finger Citron (Citrus Medica L. Var. Sarcodactylis) Pickling Process Revealed by E-Nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Lan, T.; Gao, C.; Yuan, Q.; Wang, J.; Zhang, H.; Sun, X.; Lei, Y.; Ma, T. Analysis of the Aroma Chemical Composition of Commonly Planted Kiwifruit Cultivars in China. Foods 2021, 10, 1645. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.; Chen, F.; Guan, H.; Liu, L.; Zhang, C.; Zhu, P.; Liu, Y.; et al. HS-GC-IMS with PCA to Analyze Volatile Flavor Compounds across Different Production Stages of Fermented Soybean Whey Tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef]
- Miao, Y.; Hu, G.; Sun, X.; Li, Y.; Huang, H.; Fu, Y. Comparing the Volatile and Soluble Profiles of Fermented and Integrated Chinese Bayberry Wine with HS-SPME GC–MS and UHPLC Q-TOF. Foods 2023, 12, 1546. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Xing, X.; Zhang, Z.; Hu, X.; Liu, F. A Comparative Study of the Nutritional Values, Volatiles Compounds, and Sensory Qualities of Pea pastes Cooked in Iron Pot and Clay Pot. J. Food Process. Preserv. 2018, 42, e13328. [Google Scholar] [CrossRef]
- Keenan, D.F.; Brunton, N.P.; Mitchell, M.; Gormley, R.; Butler, F. Flavour Profiling of Fresh and Processed Fruit Smoothies by Instrumental and Sensory Analysis. Food Res. Int. 2012, 45, 17–25. [Google Scholar] [CrossRef]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus Plantarum Fermentation on the Volatile Flavors of Mung Beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
- Zhu, W.; Luan, H.; Bu, Y.; Li, X.; Li, J.; Ji, G. Flavor Characteristics of Shrimp Sauces with Different Fermentation and Storage Time. LWT 2019, 110, 142–151. [Google Scholar] [CrossRef]
Compound # | CAS | Threshold Value (mg/kg) | Descriptor | ROAV | |
---|---|---|---|---|---|
ZL | SL | ||||
Ethyl isobutyrate | 97-62-1 | 0.00011 | Apple, floral, cream | 43.05 | <0.01 |
Isoamyl acetate | 123-92-2 | 0.13 | Apple, banana | 0.1 | <0.01 |
Isobutyl acetate | 110-19-0 | 0.038 | Apple, banana, floral | 0.03 | <0.01 |
Ethyl acetate | 141-78-6 | 0.005 | Fruit, grape | 22.72 | 17.29 |
Ethyl lactate | 97-64-3 | 0.014 | Rum, creamy | 0.03 | 11.27 |
Methyl formate | 107-31-3 | 325 | Fruit, wine | <0.01 | <0.01 |
Ethyl butyrate | 105-54-4 | 0.000053 | Anise, pineapple | 19.49 | <0.01 |
Ethyl propionate | 105-37-3 | 1.1 | Rum, pineapple | <0.01 | <0.01 |
Ethyl 3-methylvalerate | 5870-68-8 | 0.000008 | Pineapple | 100 | <0.01 |
Acetone | 67-64-1 | 59 | Ether, hay | <0.01 | 0.04 |
Acetoin | 513-86-0 | 0.014 | Butter, cream | 0.02 | <0.01 |
2-Pentanone | 107-87-9 | 0.35 | Paraffin, orange peel | <0.01 | 0.29 |
2-Heptanone | 110-43-0 | 0.023 | Sweet pepper, cinnamon | <0.01 | 3.07 |
Styrene | 100-42-5 | 0.068 | Balsam | 0.01 | <0.01 |
Glutaric acid | 110-94-1 | 24 | / | <0.01 | <0.01 |
Formic acid | 64-18-6 | 0.98 | Spicy | 1.08 | 6.04 |
Glycine | 56-40-6 | 4630 | / | <0.01 | <0.01 |
Propionic acid | 29102 | 0.05 | Raspberry | <0.01 | <0.01 |
Benzoic acid | 65-85-0 | 1 | Pungent, sour odor | <0.01 | <0.01 |
3-Hydroxybutyric acid | 625-71-8 | 42 | Butter | <0.01 | <0.01 |
Hexanal | 66-25-1 | 0.005 | Grassy, apple flavor | 0.06 | 0.22 |
Ethylbenzene | 100-41-4 | 0.026 | Aromatic | <0.01 | <0.01 |
Dimethyl ether | 115-10-6 | 430 | Sweet, pungent odor | <0.01 | <0.01 |
3-Methyl-1-butanol | 123-51-3 | 0.01 | Banana, cheese | <0.01 | <0.01 |
2-Methyl-1-propanol | 78-83-1 | 0.033 | Alcohol, cocoa, malt | 1.86 | <0.01 |
Isopropyl alcohol | 67-63-0 | 0.065 | Fruit, grape | 20.5 | 100 |
Ethanol | 64-17-5 | 100 | Wine, floral | 0.01 | <0.01 |
Propylene glycol | 57-55-6 | 16 | Orange | <0.01 | <0.01 |
3-Methyl-2-butanol | 598-75-4 | 0.41 | / | <0.01 | <0.01 |
2-Butanol | 78-92-2 | 0.66 | Wine aroma | 0.02 | <0.01 |
2,4-Pentanediol | 625-69-4 | 9.6 | / | <0.01 | <0.01 |
2,3-Butanediol | 513-85-9 | 0.02 | Creamy, floral | 0.03 | <0.01 |
1-Pentanol | 71-41-0 | 0.36 | Almonds, balsamic | 0.68 | 0.33 |
Amino-2-propanol | 78-96-6 | 28 | / | <0.01 | <0.01 |
Compounds | CAS | Content (mg/kg) | Taste Characteristics | |
---|---|---|---|---|
SL | ZL | |||
Asp | 6899-03-2 | 166.96 ± 8.46 a | 83.40 ± 3.40 b | Umami |
Glu | 56-86-0 | 511.04 ± 10.56 b | 577.17 ± 6.14 a | Umami |
Pro | 609-36-9 | 73.09 ± 4.62 a | 87.15 ± 4.10 a | Sweet |
Gly | 56-40-6 | 115.48 ± 4.40 a | 100.28 ± 1.81 b | Sweet |
Thr | 72-19-5 | 68.72 ± 4.34 a | 39.27 ± 1.55 b | Sweet |
Ser | 302-84-1 | 187.98 ± 7.18 a | 58.89 ± 1.71 b | Sweet |
Asn | 132388-64-8 | 55.01 ± 2.75 b | 123.04 ± 3.16 a | Sweet |
Ala | 338-69-2 | 223.06 ± 4.83 a | 111.81 ± 2.26 b | Sweet |
Val | 7004-03-7 | 128.86 ± 7.42 a | 118.38 ± 2.98 a | Sweet |
Met | 63-68-3 | 29.61 ± 1.49 a | 8.96 ± 0.85 b | Bitter |
Ile | 73-32-5 | 36.68 ± 2.95 a | 10.09 ± 0.38 b | Bitter |
Leu | 3588-60-1 | 89.54 ± 4.55 a | 29.42 ± 2.61 b | Bitter |
Tyr | 70642-86-3 | 49.30 ± 4.47 a | 22.36 ± 0.57 b | Bitter |
Phe | 673-31-4 | 68.55 ± 4.74 a | 46.47 ± 1.42 b | Bitter |
His | 71-00-1 | 19.11 ± 1.11 b | 25.75 ± 2.32 a | Bitter |
Lys | 56-87-1 | 87.01 ± 3.80 a | 76.13 ± 1.29 b | Bitter |
Arg | 74-79-3 | 963.99 ± 25.52 a | 1008.03 ± 5.41 a | Bitter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yang, L.; Tang, W.; Yuan, H.; Zeng, C.; Dong, P.; Yi, Y.; Deng, J.; Wu, H.; Guan, J. Comparison of Aroma and Taste Profiles Between Two Fermented Pea Pastes Using Intelligent Sensory Analysis and Gas Chromatography–Mass Spectrometry. Fermentation 2024, 10, 543. https://doi.org/10.3390/fermentation10110543
Wang T, Yang L, Tang W, Yuan H, Zeng C, Dong P, Yi Y, Deng J, Wu H, Guan J. Comparison of Aroma and Taste Profiles Between Two Fermented Pea Pastes Using Intelligent Sensory Analysis and Gas Chromatography–Mass Spectrometry. Fermentation. 2024; 10(11):543. https://doi.org/10.3390/fermentation10110543
Chicago/Turabian StyleWang, Tianyang, Lian Yang, Wanting Tang, Haibin Yuan, Chuantao Zeng, Ping Dong, Yuwen Yi, Jing Deng, Huachang Wu, and Ju Guan. 2024. "Comparison of Aroma and Taste Profiles Between Two Fermented Pea Pastes Using Intelligent Sensory Analysis and Gas Chromatography–Mass Spectrometry" Fermentation 10, no. 11: 543. https://doi.org/10.3390/fermentation10110543
APA StyleWang, T., Yang, L., Tang, W., Yuan, H., Zeng, C., Dong, P., Yi, Y., Deng, J., Wu, H., & Guan, J. (2024). Comparison of Aroma and Taste Profiles Between Two Fermented Pea Pastes Using Intelligent Sensory Analysis and Gas Chromatography–Mass Spectrometry. Fermentation, 10(11), 543. https://doi.org/10.3390/fermentation10110543