Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy
Abstract
:1. Introduction
2. Bioactivities in Photodynamic Therapy (PDT)
2.1. Antibacterial and Antifungal Activities
2.2. Antitumor and Antiviral Activities
2.3. Challenges of HYPs in PDT Application
3. Techniques for Production of HYPs
3.1. Extraction and Chemical Synthesis
3.2. Biological Production of HYPs Through Fermentation
3.2.1. The Biosynthesis Pathway of HYPs
3.2.2. Fermentation Techniques for Production of HYPs
3.3. Methods for Improving the Biosynthesis of HYPs
3.3.1. Medium and Process Optimization
3.3.2. Surfactant Additives and Ultrasonic Stimulation
3.3.3. Metal Ion Additives
3.3.4. Light Stimulation and Oxidative Stress
3.3.5. Temperature Regulation
3.3.6. Microbial Cocultivation
3.3.7. Mutagenesis and Genetic Engineering
3.4. Challenges and Solutions in HYPs Production Techniques
4. Techniques to Improve the PDT Performance of HYPs
4.1. Chemical Modification Methods
4.1.1. Amination
4.1.2. Sulfonation
4.1.3. Derivation with Biomacromolecules
4.1.4. Chelation with Metal Ions
4.2. Physical Modification Techniques
4.2.1. Liposomes
4.2.2. Nanoparticles
4.2.3. Cosolvent Additives
4.3. Challenges and Solutions in Enhancing HYPs PDT Performance
5. Conclusions and Prospects
5.1. Structure Modification for Improved Performance in PDT
5.2. Technique Development for Improved Productivity During Fermentation of HYPs
5.3. Biotechnology for Emerging New HYP Derivatives
5.4. Industrialization of HYP Biosynthesis for Advanced Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, L.; Qing, C.; Shao, H.; Yang, Y.; Dong, Z.; Wang, F.; Zhao, W.; Yang, W.; Liu, J. Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J. Antibiot. 2006, 59, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Chen, Y.T.; Wang, X.Y.; Friedrichs, E.; Puff, H.; Breitmaier, E. Structure of hypocrellin and its photooxidation product peroxyhypocrellin. Liebigs Ann. Chem. 1982, 13, 1880–1885. [Google Scholar]
- Smith, K.C. The Science of Photobiology; Plenum Press: New York, NY, USA; London, UK, 1981. [Google Scholar]
- Lijin, J.; Yuying, H. Photophysics, photochemistry and photobiology of hypocrellin photosensitizers. Chin. Sci. Bull. 2001, 46, 6–16. [Google Scholar]
- Du, W.; Sun, C.; Liang, Z.; Han, Y.; Yu, J. Antibacterial activity of hypocrellin A against Staphylococcus aureus. World J. Microbiol. Biotechnol. 2012, 28, 3151–3157. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Liu, C.; Deng, H.; Li, J.; Ma, W.; Zeng, X.; Ji, Y. In vitro photodynamic inactivation effects of hypocrellin B on azole-sensitive and resistant Candida albicans. Photodiagn. Photodyn. 2019, 27, 419–427. [Google Scholar] [CrossRef]
- Ma, G.; Khan, S.I.; Jacob, M.R.; Tekwani, B.L.; Li, Z.; Pasco, D.S.; Walker, L.A.; Khan, I.A. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob. Agents Chemother. 2004, 48, 4450–4452. [Google Scholar] [CrossRef]
- Su, Y.; Sun, J.; Rao, S.; Cai, Y.; Yang, Y. Photodynamic antimicrobial activity of hypocrellin A. J. Photochem. Photobiol. B Biol. 2011, 103, 29–34. [Google Scholar] [CrossRef]
- Su, Y.; Yin, X.; Rao, S.; Cai, Y.; Reuhs, B.; Yang, Y. Natural colourant from Shiraia bambusicola: Stability and antimicrobial activity of hypocrellin extract. Int. J. Food Sci. Technol. 2009, 44, 2531–2537. [Google Scholar] [CrossRef]
- Xu, D.Q.; Xia, G.S. Biological activities of extracts of anamorphosis mycelium from Shiraia bambusicola. J. Nucl. Agric. Sci. 2010, 24, 1015–1019. [Google Scholar]
- Yang, Y.; Wang, C.; Zhuge, Y.; Zhang, J.; Xu, K.; Zhang, Q.; Zhang, H.; Chen, H.; Chu, M.; Jia, C. Photodynamic Antifungal Activity of Hypocrellin A Against Candida albicans. Front. Microbiol. 2019, 10, 1810. [Google Scholar] [CrossRef]
- Pengju, L.I.; Zhang, M.; Yin, H.; Zhao, X.; Zhu, X.; Zhu, Q.; Lin, H. Stability and antimicrobial activity of hypocrellin A and its cyclodextrin clathrate. Chin. J. Biol. Control 2014, 30, 801. [Google Scholar]
- Niu, T.; Tian, Y.; Shi, Y.; Guo, G.; Tong, Y.; Wang, G. Antifibrotic effects of Hypocrellin a combined with LED red light irradiation on keloid fibroblasts by counteracting the TGF-β/Smad/autophagy/apoptosis signaling pathway. Photodiagn. Photodyn. 2021, 34, 102202. [Google Scholar] [CrossRef] [PubMed]
- Debele, T.; Peng, S.; Tsai, H. Drug carrier for photodynamic cancer therapy. Int. J. Mol. Sci. 2015, 16, 22094–22136. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Zhou, Z.; Chen, S.; Zhang, M.; Shen, T. New longwavelength ethanolamino-substituted hypocrellin: Photodynamic activity and toxicity to MGC803 cancer cell. Dye. Pigment. 2006, 68, 1–10. [Google Scholar] [CrossRef]
- Shi, W.Y.; Lv, P. A mini review of progress in chemical synthesis and photochemistry of hypocrollins. Adv. Mater. Res. 2012, 554–556, 1867–1871. [Google Scholar] [CrossRef]
- Song, S.; Sun, X.; Meng, L.; Wu, Q.; Wang, K.; Deng, Y. Antifungal activity of hypocrellin compounds and their synergistic effects with antimicrobial agents against Candida albicans. Microb. Biotechnol. 2021, 14, 430–443. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Liao, Q.; Xie, M.; Tao, H.; Wang, H.L. Synergistic effect of hypocrellin B and curcumin on photodynamic inactivation of Staphylococcus aureus. Microb. Biotechnol. 2021, 14, 692–707. [Google Scholar] [CrossRef]
- Chio-Srichan, S.; Oudrhiri, N.; Bennaceur-Griscelli, A.; Turhan, A.G.; Dumas, P.; Refregiers, M. Toxicity and phototoxicity of Hypocrellin a on malignant human cell lines, evidence of a synergistic action of photodynamic therapy with Imatinib mesylate. J. Photochem. Photobiol. B Biol. 2010, 99, 100–104. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Cao, Y.; Li, W.; Wang, Y.; Xu, J.; Xu, G. Molecular evidence for better efficacy of hypocrellin A and oleanolic acid combination in suppression of HCC growth. Eur. J. Pharmacol. 2019, 842, 281–290. [Google Scholar] [CrossRef]
- Yang, H.; Huang, F. Quantum chemical and statistical study of hypocrellin dyes with phototoxicity against tumor cells. Dye. Pigment. 2007, 74, 416–423. [Google Scholar] [CrossRef]
- Cao, E.H.; Xin, S.M.; Cheng, L.S. DNA damage induced by hypocrellin—A photosensitization. Int. J. Radiat. Biol. 1992, 61, 213. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Z.; Zhang, W. Raman spectroscopic characteristics of microcosmic and photosensitive damage on space structure of liposomes sensitized by hypocrellin and its derivatives. Sci. China Ser. C.-Life Sci. 1998, 41, 459. [Google Scholar] [CrossRef]
- Mulrooney, C.A.; O’Brien, E.M.; Morgan, B.J.; Kozlowski, M.C. Perylenequinones: Isolation, synthesis, and biological activity. Eur. J. Org. Chem. 2012, 2012, 3887–3904. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, X.; Liu, Q.; Leung, A.W.; Wang, P.; Xu, C. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. Ultrasonics 2017, 73, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Guo, L.; Yan, S.; Lee, R.J.; Yu, S.; Chen, S. Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway. Acta Pharm. Sin. B 2019, 9, 279–293. [Google Scholar] [CrossRef]
- Al Subeh, Z.Y.; Raja, H.A.; Monro, S.; Flores-Bocanegra, L.; El-Elimat, T.; Pearce, C.J.; Mcfarland, S.A.; Oberlies, N.H. Enhanced production and anticancer properties of photoactivated perylenequinones. J. Nat. Prod. 2020, 83, 2490–2500. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Cao, Y.; Wang, Y.; Wang, F.; Zhang, F.; Zheng, S. Biodegradable Hypocrellin B nanoparticles coated with neutrophil membranes for hepatocellular carcinoma photodynamics therapy effectively via JUNB/ROS signaling. Int. Immunopharmacol. 2021, 99, 107624. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, W.; Yao, Y.; Xie, M.; Lv, S.; Cheng, J.; Cai, G.; Zhao, H.; Zhao, C.; Wang, L.; et al. Hypocrellin A exerts antitumor effects by inhibiting the FGFR1 signaling pathway in non-small cell lung cancer. Phytomedicine 2022, 97, 153924. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Zhang, G.; Wu, N.; Shi, L.; Pan, S. Efficient photoluminescence of mn2+-Doped ZnS quantum dots sensitized by hypocrellin A. Adv. Mater. Sci. Eng. 2015, 2015, 412476. [Google Scholar] [CrossRef]
- Ying, S.; Anhui, C.; Xiaojie, C. Extraction, purification and characterization of hypocrellin from liquid-cultured mycelia of Shiraia bambusicola. Food Sci. 2016, 37, 139–144. [Google Scholar]
- Yuan, Z.; Dan, D.; Guiyang, S.; Wei, C. Study on the extraction process of liquid fermented bamboo red mycotoxin. Food Sci. Tech. 2002, 42. [Google Scholar] [CrossRef]
- Diwu, Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 1995, 61, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.J.; Mulrooney, C.A.; O Brien, E.M.; Kozlowski, M.C. Perylenequinone natural products: Total syntheses of the diastereomers (+)-Phleichrome and (+)-Calphostin d by assembly of centrochiral and axial chiral fragments. J. Org. Chem. 2010, 75, 30–43. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.M.; Morgan, B.J.; Kozlowski, M.C. Dynamic stereochemistry transfer in a transannular aldol reaction: Total synthesis of hypocrellin A. Angew. Chem. 2008, 120, 6983–6986. [Google Scholar] [CrossRef]
- Morgan, B.J.; Mulrooney, C.A.; Kozlowski, M.C. Perylenequinone natural products: Evolution of the total synthesis of cercosporin. J. Org. Chem. 2010, 75, 45–46. [Google Scholar] [CrossRef]
- de Jonge, R.; Mk, E.; Cr, H. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc. Natl. Acad. Sci. USA 2018, 115, E5459–E5466. [Google Scholar] [CrossRef]
- Newman, A.G.; Townsend, C.A. Molecular characterization of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J. Am. Chem. Soc. 2016, 138, 4219–4228. [Google Scholar] [CrossRef]
- Huilin, Y.; Ya, W.; Zhibin, Z.; Riming, Y.; Du, Z. Whole-Genome shotgun assembly and analysis of the genome of Shiraia sp. Strain slf14, a novel endophytic fungus producing huperzine A and hypocrellin A. PLoS ONE 2014, 2, e11–e14. [Google Scholar]
- Zhao, N.; Lin, X.; Qi, S.; Luo, Z.; Chen, S.; Yan, S. De novo transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of hypocrellin A. Int. J. Mol. Sci. 2016, 17, 311. [Google Scholar] [CrossRef]
- Lei, X.Y.; Zhang, M.Y.; Ma, Y.J.; Wang, J.W. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J. Ind. Microbiol. Biotechnol. 2017, 44, 1415–1429. [Google Scholar] [CrossRef]
- Deng, H.; Gao, R.; Liao, X.; Cai, Y. Genome editing in Shiraia bambusicola using CRISPR–Cas9 system. J. Biotechnol. 2017, 259, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Li, D.; Guo, B.; Tao, X.; Lin, X.; Yan, S.; Chen, S. Genome sequencing and analysis of the hypocrellin-producing fungus Shiraia bambusicola s4201. Front. Microbiol. 2020, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Hölker, U.; Lenz, J. Solid-state fermentation—Are there any biotechnological advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, D.; Lou, Z.; Cai, Y. Study on fermentation hypocrellin pigments by Shiraia bambusicola Henn under liquid condition. Pharm. Biotechnol. 2004, 11, 299–301. [Google Scholar]
- Yang, H.; Xiao, C.; Ma, W.; He, G. The production of hypocrellin colorants by submerged cultivation of the medicinal fungus Shiraia bambusicola. Dye. Pigment. 2009, 82, 142–146. [Google Scholar] [CrossRef]
- Xiang, X.Y. Optimization of Shiraia bambusicola P. Henn. under liquid fermentation. Biotechnology 2010, 20, 73–75. [Google Scholar]
- Shen, X.; Hu, Y.; Song, L.; Hou, C. Improvement of hypocrellin production by a new fungal source and optimization of cultivation conditions. Biotechnol. Biotechnol. Equip. 2016, 30, 819–826. [Google Scholar] [CrossRef]
- Cai, Y.; Liao, X.; Liang, X.; Ding, Y.; Sun, J.; Zhang, D. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. New Biotechnol. 2011, 28, 588–592. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, Y.; Ma, Y.J.; Wang, J.W.; Zheng, L.P. Nitric oxide and hydrogen peroxide signaling in extractive Shiraia fermentation by Triton x-100 for hypocrellin A production. Int. J. Mol. Sci. 2020, 21, 882. [Google Scholar] [CrossRef]
- Sun, C.X.; Ma, Y.J.; Wang, J.W. Enhanced production of hypocrellin a by ultrasound stimulation in submerged cultures of Shiraia bambusicola. Ultrason. Sonochem. 2017, 38, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Bao, J.; Zhang, Z.; Yan, R.; Wang, Y.; Yang, H.; Zhu, D. Enhanced production of perylenequinones in the endophytic fungus Shiraia sp. Slf14 by calcium/calmodulin signal transduction. Appl. Microbiol. Biot. 2018, 102, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.Y.; Zheng, A.F.; Xie, L. Effect of different metal ions for submerged culture of Shiraia bambusicola. Chin. Tradit. Herb. Drugs 2011, 42, 164–166. [Google Scholar]
- Lu, C.; Ma, Y.; Wang, J. Lanthanum elicitation on hypocrellin a production in mycelium cultures of Shiraia bambusicola is mediated by ROS generation. J. Rare Earth. 2019, 37, 895–902. [Google Scholar] [CrossRef]
- Sun, C.X.; Ma, Y.J.; Wang, J.W. Improved hypocrellin a production in Shiraia bambusicola by light-dark shift. J. Photochem. Photobiol. B Biol. 2018, 182, 100–107. [Google Scholar] [CrossRef]
- Ma, Y.J.; Sun, C.X.; Wang, J.W. Enhanced production of hypocrellin A in submerged cultures of Shiraia bambusicola by red light. Photochem. Photobiol. 2019, 95, 812–822. [Google Scholar] [CrossRef]
- Deng, H.; Chen, J.; Gao, R.; Liao, X.; Cai, Y. Adaptive responses to oxidative stress in the filamentous fungal Shiraia bambusicola. Molecules 2016, 21, 1118. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, Y.; Yue, Y.; Dou, M.; Guo, B.; Yan, S.; Chen, S. Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide. Sci. Rep. 2021, 11, 2365. [Google Scholar] [CrossRef]
- Du, W.; Liang, J.; Han, Y.; Yu, J.; Liang, Z. Nitric oxide mediates hypocrellin accumulation induced by fungal elicitor in submerged cultures of Shiraia bambusicola. Biotechnol. Lett. 2015, 37, 153–159. [Google Scholar] [CrossRef]
- Du, W.; Liang, Z.; Zou, X.; Han, Y.; Liang, J.; Yu, J.; Chen, W.; Wang, Y.; Sun, C. Effects of microbial elicitor on production of hypocrellin by Shiraia bambusicola. Folia Microbiol. 2013, 58, 283–289. [Google Scholar] [CrossRef]
- Du, W.; Sun, C.; Wang, B.; Wang, Y.; Dong, B.; Liu, J.; Xia, J.; Xie, W.; Wang, J.; Sun, J.; et al. Response mechanism of hypocrellin colorants biosynthesis by Shiraia bambusicola to elicitor PB90. AMB Express 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Zheng, L.P.; Wang, J.W. Bacteria associated with Shiraia fruiting bodies influence fungal production of hypocrellin A. Front. Microbiol. 2019, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Yuanyuan, J.I.; Yang, Z.; Wang, J. Screening of high-yield hypocrellin A producing mutants from Shiraia sp. S8 by protoplast mutagenesis and ultraviolet irradiation. Chin. J. Bioprocess Eng. 2012, 10, 18–23. [Google Scholar]
- Gao, R.; Xu, Z.; Deng, H.; Guan, Z.; Liao, X.; Zhao, Y.; Zheng, X.; Cai, Y. Enhanced hypocrellin production of Shiraia sp. SUPER-H168 by overexpression of alpha-amylase gene. PLoS ONE 2018, 13, e196519. [Google Scholar] [CrossRef]
- Deng, H.; Liang, W.; Fan, T.; Zheng, X.; Cai, Y. Modular engineering of Shiraia bambusicola for hypocrellin production through an efficient CRISPR system. Int. J. Biol. Macromol. 2020, 165, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shen, X.; Fan, L.; Gao, J.; Hou, C. High-efficiency biosynthesis of hypocrellin A in Shiraia sp. using gamma-ray mutagenesis. Appl. Microbiol. Biot. 2016, 100, 4875–4883. [Google Scholar] [CrossRef]
- Cai, Y.J.; Ding, Y.R.; Zhang, D.B.; Lou, Z.H.; Shi, G.Y. Study on Fermentation hypocrellin pigments by Shiraia bambusicola Henn. under solid condition. Biotechnology 2004, 14, 46–47. [Google Scholar]
- Liang, X.; Cai, Y.; Liao, X.; Wu, K.; Wang, L.; Zhang, D.; Meng, Q. Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol. Res. 2009, 164, 9–17. [Google Scholar] [CrossRef]
- Cai, Y.; Liang, X.; Liao, X.; Ding, Y.; Sun, J.; Li, X. High-Yield hypocrellin A production in Solid-State fermentation by Shiraia sp. SUPER-H168. Appl. Biochem. Biotech. 2010, 160, 2275–2286. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, X.; Wu, Z.; Qi, H.; Wang, Z. Export of intracellular Monascus pigments by two-stage microbial fermentation in nonionic surfactant micelle aqueous solution. J. Biotechnol. 2012, 162, 202–209. [Google Scholar] [CrossRef]
- Pawar, S.V.; Rathod, V.K. Role of ultrasound in assisted fermentation technologies for process enhancements. Prep. Biochem. Biotechnol. 2020, 50, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Babitha, S.; Carvahlo, J.C.; Soccol, C.R.; Pandey, A. Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J. Microbiol. Biotechnol. 2008, 24, 2671–2675. [Google Scholar] [CrossRef]
- Li, Q.; Bai, Z.; O Donnell, A.; Harvey, L.M.; Hoskisson, P.A.; Mcneil, B. Oxidative stress in fungal fermentation processes: The roles of alternative respiration. Biotechnol. Lett. 2011, 33, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Harvey, L.M.; Mcneil, B. Oxidative stress in industrial fungi. Crit. Rev. Biotechnol. 2009, 29, 199–213. [Google Scholar] [CrossRef]
- Donnell, A.; Bai, Y.; Bai, Z.; Mcneil, B.; Harvey, L.M. Introduction to bioreactors of shake-flask inocula leads to development of oxidative stress in Aspergillus niger. Biotechnol. Lett. 2007, 29, 895–900. [Google Scholar] [CrossRef]
- Miller, J.D. Mycotoxins in small grains and maize: Old problems, new challenges. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2008, 25, 219–230. [Google Scholar] [CrossRef]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef]
- Barry, D.J.; Chan, C.; Williams, G.A. Morphological quantification of filamentous fungal development using membrane immobilization and automatic image analysis. J. Ind. Microbiol. Biot. 2009, 36, 787–800. [Google Scholar] [CrossRef]
- Grimm, L.H.; Kelly, S.; Hengstler, J.; Göbel, A.; Krull, R.; Hempel, D.C. Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol. Bioeng. 2004, 87, 213–218. [Google Scholar] [CrossRef]
- Wen, Y.; Liao, B.; Yan, X.; Wu, Z.; Tian, X. Temperature-responsive regulation of the fermentation of hypocrellin A by Shiraia bambusicola (GDMCC 60438). Microb. Cell. Fact. 2022, 21, 135. [Google Scholar] [CrossRef]
- Kadrmas, J.L.; Beckerle, M.C. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Bio. 2004, 5, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Gao, R.; Liao, X.; Cai, Y. Reference genes selection and relative expression analysis from Shiraia sp. SUPER-H168 productive of hypocrellin. Gene 2016, 580, 67–72. [Google Scholar] [PubMed]
- Zhao, X.; Wang, Z.; Shu, S.; Wang, W.; Xu, H.; Ahn, Y.; Wang, M.; Hu, X. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS ONE 2013, 8, e61777. [Google Scholar] [CrossRef] [PubMed]
- Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 2015, 6, 299. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wen, Y.; Hu, M.; Wu, Z.; Tian, X. Promotion of the hypocrellin yield by a co-Culture of Shiraia bambusicola (GDMCC 60438) with Arthrinium sp. AF-5 fungus. Fermentation 2021, 7, 316. [Google Scholar] [CrossRef]
- Parekh, S.; Vinci, V.A.; Stroble, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biot. 2000, 54, 287–301. [Google Scholar] [CrossRef]
- Dong, T.; Pan, W.; Zhao, Y.; Lei, X.; Chen, K.; Wng, J. Screening of higher hypocrellin A with strains of Shiraia bambusicola by genome-shuffling. Chin. J. Bioprocess Eng. 2012, 10, 25–29. [Google Scholar]
- Du, W.; Wang, B. High efficiency hypocrellin production by a novel mutant isolated from Shiraia bambusicola. Asian Agric. Res. 2019, 11, 94–99. [Google Scholar]
- Li, T.; Hou, C.; Shen, X. Efficient agrobacterium-mediated transformation of Shiraia bambusicola and activation of a specific transcription factor for hypocrellin production. Biotech. Biotechnol. Equip. 2019, 33, 1365–1371. [Google Scholar] [CrossRef]
- Deng, H.; Gao, R.; Chen, J.; Liao, X.; Cai, Y. An efficient polyethylene glycol-mediated transformation system of lentiviral vector in Shiraia bambusicola. Process Biochem. 2016, 51, 1357–1362. [Google Scholar] [CrossRef]
- Li, D.; Zhao, N.; Guo, B.; Lin, X.; Chen, S.; Yan, S. Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201. J. Microbiol. 2019, 57, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Xiao, M.; Chai, S.; Zhu, Z.; Wang, Y.; Zhou, Z. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb. Biotechnol. 2020, 14, 2343–2355. [Google Scholar] [CrossRef]
- Wu, T.; Shen, J.; Song, A.; Chen, S.; Zhang, M.; Shen, T. Photodynamic action of amino-substituted hypocrellins: EPR studies on the photogeneration of active oxygen and free radical species. J. Photochem. Photobiol B 2000, 57, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Zeng, Z.; Xia, S.; Zhou, J.; Liu, Y.; Chen, J.; Wang, X.; Zhang, B. Using electrostatic interactions to increase the photodamaging ability of hypocrellin B: Synthesis and study of 2-(dimethylamino)ethanethiol-modified HB. New J. Chem. 2007, 31, 196. [Google Scholar] [CrossRef]
- Paul, B.T.; Babu, M.S.; Santhoshkumar, T.R.; Karunagaran, D.; Selvam, G.S.; Brown, K.; Woo, T.; Sharma, S.; Naicker, S.; Murugesan, R. Biophysical evaluation of two redshifted hypocrellin B derivatives as novel PDT agents. J. Photochem. Photobiol. B Biol. 2009, 94, 38–44. [Google Scholar] [CrossRef]
- Deng, H.; Li, T.; Xie, J.; Huang, N.; Gu, Y.; Zhao, J. Synthesis and bioevaluation of novel hypocrellin derivatives: Potential photosensitizers for photodynamic therapy of age-related macular degeneration. Dye. Pigment. 2013, 99, 930–939. [Google Scholar] [CrossRef]
- Zheng, X.; Ge, J.; Wu, J.; Liu, W.; Guo, L.; Jia, Q.; Ding, Y.; Zhang, H.; Wang, P. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials 2018, 185, 133–141. [Google Scholar] [CrossRef]
- Xu, S.; Chen, S.; Zhang, M.; Shen, T.; Zhang, X.; Wang, Z. Synthesis and characterization of three novel amphiphilic aminated hypocrellins as photodynamic therapeutic agents. Photochem. Photobiol. 2003, 78, 411–415. [Google Scholar] [CrossRef]
- Lee, H.; Chen, S.; Zhang, M.; Shen, T. Studies on the synthesis of two hydrophilic hypocrellin derivatives with enhanced absorption in the red spectral region and on their photogeneration of O2− and O2 (1 Δ g). J. Photochem. Photobiol. B Biol. 2003, 71, 43–50. [Google Scholar] [CrossRef]
- He, Y.; Liu, H.; An, J.; Han, R.; Jiang, L. Photodynamic action of hypocrellin dyes: Structure–activity relationships. Dye. Pigment. 1999, 44, 63–67. [Google Scholar] [CrossRef]
- He, Y.; An, J.; Jiang, L. Photochemistry of hypocrellin derivatives under aerobic conditions. Chin. Sci. Bull. 2000, 45, 1085–1092. [Google Scholar] [CrossRef]
- Yijin, T.; Hongyan, L.; Jingyi, A.; Rei, H. Synthesis, characterization and photodynamic activity of Amino-Substituted hypocrellin derivatives. Photochem. Photobiol. 2001, 74, 201–205. [Google Scholar]
- Song, Y.; An, J.; Jiang, L. ESR studies of the photodynamic properties of a longwavelength and water-soluble hypocrellin B derivative: Photogeneration of semiquinone radical anion and activated oxygen. J. Photochem. Photobiol. A Chem. 1999, 123, 39–46. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, L. Generation of semiquinone radical anion and reactive oxygen (1O2, O 2·− and ·OH) during the photosensitization of a water-soluble perylenequinone derivative. J. Photochem. Photobiol. B Biol. 1996, 33, 51–59. [Google Scholar] [CrossRef]
- Yizhen, H.; Jingyi, A.; Lijin, J. Effect of hypocrellin sulfonation reaction’s condition on photosulfonylation of hypocrellin b (HB). Photogr. Sci. Photochem. 1995, 13, 35–41. [Google Scholar]
- He, Y.Y.; An, J.Y.; Jiang, L.J. Glycoconjugated hypocrellin: Synthesis of [(beta-D-glucosyl)ethylthiyl]hypocrellins and photosensitized generation of singlet oxygen. Biochim. Biophys Acta 1999, 1472, 232–239. [Google Scholar] [CrossRef]
- Diwu, Z.J.; Lown, J.W. Photosensitization with anticancer agents14. Perylenequinonoid pigments as new potential photodynamic therapeutic agents—Formation of tautomeric semiquinone radicals. J. Photoch. Photobio. A 1992, 69, 191–199. [Google Scholar] [CrossRef]
- Hu, Y.; An, J.; Jiang, L.-C. Studies on the chelation of hypocrellin a with aluminum ion and the photodynamic action of the resulting complex. J. Photochem. Photobiol. B Biol. 1994, 22, 219–227. [Google Scholar] [CrossRef]
- Deng, H.; Liu, X.; Xie, J.; Yin, R.; Huang, N.; Gu, Y.; Zhao, J. Quantitative and Site-Directed chemical modification of hypocrellins toward direct drug delivery and effective photodynamic activity. J. Med. Chem. 2012, 55, 1910–1919. [Google Scholar] [CrossRef]
- Hu, Y.; An, J.; Jiang, L.-C. Studies of the sulfonation of hypocrellin a and the photodynamic actions of the product. J. Photochem. Photobiol. B Biol. 1993, 17, 195–201. [Google Scholar] [CrossRef]
- Weng, M.; Zhang, M.H.; Ma, L.; Shen, T.; Jiang, L.J. New longwavelength perylenequinones. The reaction between hypocrellin B and mercapto compounds. Dye. Pigment. 1997, 35, 297–310. [Google Scholar] [CrossRef]
- Miller, G.G.; Brown, K.; Ballangrud, A.M.; Barajas, O.; Xiao, Z.; Tulip, J.; Lown, J.W.; Leithoff, J.M.; Allalunis-Turner, M.J.; Mehta, R.D.; et al. Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: Progress update. Photochem. Photobiol. 1997, 65, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.Q.; Zhou, J.H.; Chen, J.R.; Wang, X.S.; Zhang, B.W. A tyrosine-modified hypocrellin B with affinity for and photodamaging ability towards calf thymus DNA Electronic supplementary information (ESI) available: Synthesis and ESR spectra of TYHB. Chem. Commun. 2003, 23, 2900–2901. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Xia, S.; Wang, X.; Zhang, B. Effect of chelation to lanthanum ions on the photodynamic properties of hypocrellin a. J. Phys. Chem. B 2005, 109, 19529–19535. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, Y.; Zhou, Q.; Lei, W.; Chen, J.; Wang, X.; Zhang, B. Dinuclear Cu(II) hypocrellin B complexes with enhanced photonuclease activity. Inorg. Chem. 2010, 49, 10108–10116. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, Y.; Zhou, Q.; Chen, J.; Zhang, B.; Wang, X. A new Co(III)–hypocrellin B complex with enhanced photonuclease activity. J. Inorg. Biochem. 2011, 105, 978–984. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, W.; Ge, J.; Jia, Q.; Nan, F.; Ding, Y.; Wu, J.; Zhang, W.; Lee, C.; Wang, P. Biodegradable natural Product-Based nanoparticles for Near-Infrared fluorescence Imaging-Guided sonodynamic therapy. ACS Appl. Mater. Inter. 2019, 11, 18178–18185. [Google Scholar] [CrossRef]
- Babu, A.; Periasamy, J.; Gunasekaran, A.; Kumaresan, G.; Naicker, S.; Gunasekaran, P.; Murugesan, R. Polyethylene Glycol-Modified Gelatin/Polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J. Biomed. Nanotechnol. 2013, 9, 177–192. [Google Scholar] [CrossRef]
- Dumas, S.; Jardon, P.; Lepretre, J.; Jeunet, A. Electrochemical study of Hypocrellin B in acetonitrile and aqueous micellar media. Comp. Hypocrellin a. New J. Chem. 2004, 28, 91. [Google Scholar] [CrossRef]
- Huizhu, H.; Xianfeng, J.; Duoyuan, W. The phptpphysical behaviors of hypocrellin A in miclles. Photogr. Sci. Photochem. 1992, 10, 193–199. [Google Scholar]
- Xu, S.; Chen, S.; Zhang, M.; Shen, T. Hypocrellin derivative with improvements of red absorption and active oxygen species generation. Bioorg. Med. Chem. Lett. 2004, 14, 1499–1501. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Wei, L.; Mingzhu, W.; Zhongzhou, Y.; Jucheng, Z. Selective photoinduced oxidation of 2,3,5-trimethylphenol to 2,3,5-trimethylbenzoquinone catalyzed by hypocrellins/CuCo2O4. Mendeleev Commun. 2010, 4, 218–219. [Google Scholar]
- Jucheng, Z.; Heping, Y.; Yashun, C.; Rui, C.; Ying, H.; Wei, L. Efficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2—Hypocrellin B complex. Photochem. Photobiol. 2016, 92, 644–648. [Google Scholar]
- Su, Z.; Guo, B.; Xu, H.; Yuan, Z.; Liu, H.; Guo, T.; Deng, Z.; Zhang, Y.; Yin, D.; Liu, C.; et al. Synthetic Biology-based Construction of Unnatural Perylenequinones with Improved Photodynamic Anticancer Activities. Angew. Chem. 2024, 136, e202317726. [Google Scholar] [CrossRef]
- Huang, Z. Photocatalytic Degradation of Organic Dyes in Dyeingindustry by Hypocrellin A. Master’s Thesis, South China University of Technology, Guangzhou, China, 2022. [Google Scholar]
Groups | Species | Origins | Compounds | Methods of Application | Inhibition Efficiency | References |
---|---|---|---|---|---|---|
Bacteria, G+ | B. subtilis | Plant pathogen | HA | 5000 Lux for 120 min | NA | [4] |
HA | 1 μM, 50 W halogen–tungsten lamp, as 30 mW/cm for 120 min | >99.9% | [8] | |||
HYPs | 4 mg/mL, fluorescent light, 2000 Lux for 2 h | MIC 3.0 μg/mL; MBC 6.0 μg/mL | [9] | |||
HYP | NA | IC50 3–10 μg/mL | [7] | |||
solvent extracts by petroleum ether, ethyl acetate, and methanol | 1 mg/mL, light resource NA | 17.88 ± 0.06% | [10] | |||
Bacillus pumilis | Plant pathogen | 25% acetone extract from stroma of H. bambusae | 5000 Lux for 120 min | Significant inhibitory effect | [4] | |
Corynebacterium pekinense | Plant pathogen | |||||
Sarcina flava | Plant pathogen | |||||
Staphylococcus albus | Plant pathogen | |||||
S. aureus (methicillin-resistant) | Human pathogen | HA | NA | IC50 3–10 μg/mL | [7] | |
HA | 1 μM, under 50 W halogen–tungsten lamp, as 30 mW/cm2 for 120 min | 99.98% | [8] | |||
HA | 1.5 μg/mL, under halogen–tungsten lamp, 600 Lux for 120 min | 100% | [5] | |||
HYPs | 4 mg/mL, under 2000 Lux fluorescent light for 2 h, | Zone of inhibition 18.5 ± 0.5 μg/mL; MIC 0.75 μg/mL; MBC 1.5 μg/mL | [9] | |||
L. monocytogenes | Human pathogen | HYPs | 4 mg/mL, fluorescent light, 2000 Lux, 2 h, | Zone of inhibition: 12.5 ± 0.5 μg/mL; MIC 6.0 μg/mL; MBC 12.0 μg/mL | [9] | |
Bacteria, G− | M. intracellulare | Human pathogen | HA | NA | IC50 3–10 μg/mL | [7] |
E. coli | Human pathogen | 25% acetone extract from H. bambusae | 5000 Lux for 120 min | 0 | [4] | |
HYPs | 4 mg/mL, under 2000 Lux fluorescent light for 2 h | 0 | [9] | |||
HA | 1 μM HA, 0.05 M CaCl2, 50 W halogen–tungsten lamp, as 30 mW/cm2 for 60 min | 98.80% | [8] | |||
HA | 1 μM HA, 0.05 M CaCl2, 50 W halogen–tungsten lamp, as 30 mW/cm2 for 60 min | 98.30% | [8] | |||
S. typhimurium | Human pathogen | HYPs | 4 mg/mL, under 2000 Lux fluorescent light for 2 h | 0 | [9] | |
HA | 1 μM HA, 0.05 M CaCl2, 50 W halogen–tungsten lamp, as 30 mW/cm2 for 60 min | 98.80% | [8] | |||
HA | 1 μM HA, 0.05 M CaCl2, 50 W halogen–tungsten lamp, as 30 mW/cm2 for 60 min | 98.30% | [8] | |||
P. aeruginosa | Human pathogen | 25% acetone extract from H. bambusae stroma | 5000 Lux,120 min | 0 | [4] | |
HA | NA | IC50 3–10 μg/mL | [7] | |||
P. vulgaris | Human pathogen | 25% acetone extract from H. bambusae stroma | 5000 Lux for 120 min | 0 | [4] | |
Fungi | C. albicans | Human pathogen | HA | NA | IC50 0.65 ± 0.14 μg/mL, MIC 1.41 ± 0.22 μg/mL, MFC 1.41 ± 0.22 μg/mL | [7] |
Methanol extract of S. bambusicola stroma | 1 mg/mL, light resource NA | 20.69 ± 0.26% | [10] | |||
HA | 1.0 μg/mL, 8 W incandescent lamp (400–780 nm), 1128 Lux for 30 min | 48.76 ± 4.39% | [11] | |||
Gibberella zeae | Plant pathogen | Methanol extract of S. bambusicola stroma | 1 mg/mL, light resource NA | 54.64 ± 0.55% | [10] | |
Fusarium oxysporum f. sp. vasinfectum | Plant pathogen | Methanol extract of S. bambusicola stroma | 1 mg/mL, light resource NA | 74.78 ± 0.49% | [10] | |
HA | 7200 Lux, light resource NA | IC50 7.2223 mg·L−1 | [12] | |||
Rhizoctonia solani | Plant pathogen | Methanol extract from S. bambusicola stroma | 1 mg/mL, light resource NA | 61.42 ± 0.57% | [10] | |
HA | 7200 Lux, light resource NA | IC50 6.9161 | [12] | |||
Fusariumgraminearum | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 4.2933 mg·L−1 | [12] | |
Fusariumgraminearum Schwabe | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 6.8587 mg·L−1 | [12] | |
Lecanostictaacicola | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 2.5773 mg·L−1 | [12] | |
Botrytis cinerea | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 3.9497 mg·L−1 | [12] | |
Valsa mali | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 4.2511 mg·L−1 | [12] | |
Sclerotinia sclerotiorum | Plant pathogen | HA | 7200 Lux, light resource NA | IC50 6.4766 mg·L−1 | [12] | |
Exserohilum turcicum | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 46.81% | [12] | |
Fusarium lateritium | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 44.96% | [12] | |
Fusarium oxysporum f. sp. cucumeris | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 47.28% | [12] | |
F. oxysporum | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 46.15% | [12] | |
Botryosphaeria dothidea | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 35.65% | [12] | |
Altemaria Solani | Plant pathogen | HA | 10 mg·L−1, 7200 Lux, light resource NA | 49.88% | [12] |
Cells | Compounds | Methods for Application | Inhibition Efficiency | References |
---|---|---|---|---|
MDA-MB-231 cell breast cancer | HB | 2.5 μM, by 0.72 W/cm2 ultrasound treatment | 42.69% | [25] |
A549 cells human lung adenocarcinoma | HA | Irradiation @ 470 nm for 24 h | IC50 < 0.05 μM | [26] |
human melanoma cancer cells SK-MEL-28 | HYPs | Under 100 J/cm2 broadband visible-light for 16 h | EC50 = 10.3–176.0 nM | [27] |
hepatocellular carcinoma HepG2 cells | biodegradable HB nanoparticles coated with neutrophil membranes | 20 μg·L−1, under 0.8 W cm2 laser stimulation | 50% | [28] |
human non-small-cell lung cancer cell lines H460, PC-9, and H1975 | HA | 48 h | IC50 = 0.22–0.62 μM | [29] |
Strain | Carbon and Nitrogen Sources (g/L or g/Kg) | Temperature (°C) | Fermentation Time (h) | Additive/Treatment | Product | Production Yield | Reference | |
---|---|---|---|---|---|---|---|---|
SMF | S. bambusicola LBR-SB6 | 30 glucose, 20 potato juice | 26 | 168 | NA | HYP | 40–50 mg/L | [46] |
S. bambusicola UV-62 | 1.93 glucose, 45.7 (NH4)2SO4 | 25 | 120 | NA | HA | 196.94 ± 6.93 mg/L | [47] | |
S. bambusicola P. Henn. | 20 glucose, 2 NaNO3 | 27 | 72 | NA | HYP | 28.04 mg/g | [48] | |
Shiraia sp. ZZZ816 | 40 maltose, 20 yeast extract, 4 urea | 25 | 144 | NA | HA | 921.6 mg/L | [49] | |
Shiraia sp. SUPER-H168 | 20 glucose 3 yeast extract | 30 | 72 | 0.6% Triton X-100 | HYP | 780.6 mg/L | [50] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 200 fresh potato, 20 glucose, 3 yeast extract, 10 peptone | 28 | 72 | 2.5% Triton X-100 | HA | 96 mg/L | [41] | |
Shiraia sp. S9 (CGMCC 16369) | Potato extract from 100 fresh potato, 20 starch, 100 potato, 4 NaNO3 | 28 | 192–240 | 2.5% Triton X-100 | HA | 206.2 mg/L | [51] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 100 fresh potato, 20 starch, 100 potato, 4 NaNO3 | 28 | 192–240 | ultrasound | HA | 247.67 mg/L | [52] | |
Shiraia sp. Slf14 | Potato extract from 200 fresh potato, 10 sucrose, 5 yeast extract | 28 | 336 | 6 g/L Ca2+ | PQ | 1894.66 ± 21.93 mg/L | [53] | |
Isolation from the stroma of S. bambusicola | 20 glucose, 3 NaNO3 | 27 | 96 | 0.03% Ca2+ | HYP | 8.12 mg/g | [54] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 100 fresh potato, 20 starch, 4 NaNO3 | 28 | 192 | 1 g/L La3+ | HA | 225.05 mg/L | [55] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 100 fresh potato, 20 starch, 4 NaNO3 | 28 | 192–240 | light/dark shift (24:24 h) | HA | 181.67 mg/L | [56] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 100 fresh potato, 20 starch, 4 NaNO3 | 28 | 192 | red LED light (627 nm) at 200 lux | HA | 175.53 mg/L | [57] | |
Shiraia sp. SUPER-H168 (CCTCC M 207104) | Potato extract from 200 fresh potato, 20 glucose, 3 yeast extract, 10 peptone | 30 | 72 | 10 mM H2O2 | HYP | increased by 27% | [58] | |
S. bambusicola S4201 | Potato extract from 200 fresh potato, 20 glucose | 28 | 120 | 0.01 mM sodium nitroprusside (nitric oxide donor) | PQ | increased by 156% | [59] | |
S. bambusicola GZUIFR-11K1 | 3 beef extract, 10 peptone | 26 | 168 | 80 μg/mL Aspergillus niger elicitor | HYP | approximately 90 mg/L | [60] | |
S. bambusicola GZUIFR-11K1 | 32.45 glucose, 2.99 yeast extract | 26 | 168 | 81.40 μg/mL Trametes sp. elicitor | HYP | 102.60 mg/L | [61] | |
S. bambusicola BZ-16 × 1 | 15 glucose, 1.5 NaNO3 | 26 | 288 | 5 nmol/L PB90 elicitor | HYP | 278.71 mg/L | [62] | |
Shiraia sp. S9 (CGMCC 16369) | Potato extract from 100 fresh potato, 20 starch, 4 NaNO3 | 28 | 192 | 400 cells/mL P. fulva SB1 | HA | 225.34 mg/L | [63] | |
S. bambusicola S8 (CGMCC3984) | Potato extract from 200 fresh potato, 20 glucose,5 yeast extract | 28 | 240 | UV, 15 W | HA | 28. 1 mg/L | [64] | |
Shiraia sp. SUPER-H168 | 50 carbon sources (glucose, sucrose, maltose, amylose, amylopectin or corn flour) and 10 yeast extract | 30 | 96 | through overexpression of alpha-amylase gene | HYP | 3521 mg/L | [65] | |
Shiraia sp. SUPER-H168 modified by CRISPR/Cas9 system | Potato extract from 200 fresh potato, 20 glucose, 3 yeast extract, 10 peptone | 30 | 120 | NA | HYP | 8632 mg/L | [66] | |
SSF | Shiraia sp. ZZZ816 | Potato extract from 200 fresh potato, 20 dextrose | 25 | 60 | γ-irradiation, 100 Gy | HA | 2018.3 mg/L | [67] |
S. bambusicola Henn. LBR-SB6 | 1% glucose, 20% rice bran 68.9% corn starch, 10% bran | 26 | 168 | NA | HYP | 40 mg/kg | [68] | |
Shiraia sp. SUPER-H168 | 20 g rice, moistened with 25 mL nutrient salt solution | 30 | 432 | NA | HA | 2.02 mg/g dry solid substrate | [69] | |
Shiraia sp. SUPER-H168 | 1.65 g glucose and 0.43 g NaNO3 with 100 g corn | 30 | 432 | NA | HA | 4.7 mg/g | [70] | |
Shiraia sp. SUPER-H168 | 1.65 g glucose and 0.43 g NaNO3 with 40 g corn | 30 | 360 | overexpression of alpha-amylase gene | HYP | 71.85 mg/g | [65] |
Compounds | Aqueous Solubility | Characteristic Wavelength | Quantum Yield | Reference | |
---|---|---|---|---|---|
1O2 Generation (Φsinglet oxygenType II) | O2·− Generation (ΦSuperoxide Type I) | ||||
2 | ++ | ++ | - | [94] | |
3 | ++ | + | - | +++ | [94] |
4 | ++ | NA | -- | +++ | [95] |
5 | NA | - | -- | + | [95] |
6 | ++ | - | - | ++ | [96] |
7 | ++ | -- | -- | + | [96] |
8 | ++ | - | + | + | [97] |
9 | NA | + | NA | NA | [98] |
10 | + | -- | + | [99] | |
11 | ++ | + | -- | - | [99] |
12 | ++ | + | -- | -- | [99] |
13 | + | + | -- | -- | [100] |
14 | + | ++ | -- | - | [100] |
15HA | Insoluble | - | + | + | [101] |
16HB | Insoluble | - | + | + | [101] |
17 | Insoluble | ++ | + | -- | [102] |
18 | Insoluble | +++ | + | +++ | [102] |
19 | ++ | ++ | + | -- | [102] |
20 | ++ | +++ | - | +++ | [102] |
21 | ++ | - | + | NA | [101] |
22 | ++ | -- | -- | NA | [101] |
23 | ++ | - | -- | ++ | [101] |
24 | ++ | - | --- | +++ | [101] |
25 | + | - | --- | +++ | [101] |
26 | ++ | - | --- | +++ | [101] |
27 | ++ | ++ | -- | NA | [103] |
28 | ++ | ++ | -- | NA | [103] |
29 | ++ | ++ | --- | NA | [103] |
30 | + | + | NA | [104] | |
31 | ++ | + | --- | NA | [105] |
32 | ++ | + | --- | NA | [105] |
33 | ++ | + | -- | NA | [105] |
34 | NA | NA | + | NA | [106] |
35 | ++ | + | -- | NA | [106] |
36 | + | + | -- | NA | [107] |
37 | + | + | -- | NA | [107] |
38 | + | - | --- | NA | [107] |
39 | + | - | --- | NA | [107] |
40 | + | - | --- | NA | [107] |
41 | + | - | --- | NA | [107] |
42 | + | - | --- | NA | [107] |
43 | + | - | --- | NA | [107] |
44 | + | + | --- | NA | [107] |
45 | + | + | -- | NA | [107] |
46 | ++ | + | - | NA | [108] |
47 | ++ | ++ | + | NA | [108] |
48 | ++ | + | NA | NA | [108] |
49 | ++ | ++ | - | NA | [108] |
50 | ++ | ++ | - | NA | [108] |
51 | ++ | - | NA | NA | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wei, Q.; Tian, L.; Huang, Z.; Tang, Y.; Wen, Y.; Yu, F.; Yan, X.; Zhao, Y.; Wu, Z.; et al. Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy. Fermentation 2024, 10, 559. https://doi.org/10.3390/fermentation10110559
Zhang X, Wei Q, Tian L, Huang Z, Tang Y, Wen Y, Yu F, Yan X, Zhao Y, Wu Z, et al. Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy. Fermentation. 2024; 10(11):559. https://doi.org/10.3390/fermentation10110559
Chicago/Turabian StyleZhang, Xiang, Qiulin Wei, Liwen Tian, Zhixian Huang, Yanbo Tang, Yongdi Wen, Fuqiang Yu, Xiaoxiao Yan, Yunchun Zhao, Zhenqiang Wu, and et al. 2024. "Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy" Fermentation 10, no. 11: 559. https://doi.org/10.3390/fermentation10110559
APA StyleZhang, X., Wei, Q., Tian, L., Huang, Z., Tang, Y., Wen, Y., Yu, F., Yan, X., Zhao, Y., Wu, Z., & Tian, X. (2024). Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy. Fermentation, 10(11), 559. https://doi.org/10.3390/fermentation10110559