Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Cloning and Recombinant Plasmid Construction
2.2. Sequence Analysis
2.3. Expression of RuXyn394
2.4. Characterization of RuXyn394
2.5. Hydrolysis Products of Wheat Straw Xylan
2.6. Hydrolysis of Wheat Straw by RuXyn394
2.7. In Vitro Fermentation
2.8. Statistical Analyses
3. Results
3.1. Sequence Analysis of RuXyn394
3.2. Expression and Characteristics of RuXyn394
3.3. Hydrolysis Products of Wheat Straw Xylan
3.4. Hydrolysis and In Vitro Ruminal Fermentation of Wheat Straw
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oenema, O.; de Klein, C.; Alfaro, M. Intensification of grassland and forage use: Driving forces and constraints. Crop Pasture Sci. 2014, 65, 524–537. [Google Scholar] [CrossRef]
- Devi, S.; Gupta, C.; Jat, S.L.; Parmar, M. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar] [CrossRef]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop residue management in India: Stubble burning vs. other utilizations including bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Y.; Huang, X.; Shi, J.; Xu, J.; He, Y. Does straw returning affect the root rot disease of crops in soil? A systematic review and meta-analysis. J. Environ. Manag. 2023, 336, 117673. [Google Scholar] [CrossRef]
- Liu, X.; Dou, S.; Zheng, S. Effects of Corn Straw and Biochar Returning to Fields Every Other Year on the Structure of Soil Humic Acid. Sustainability 2022, 14, 15946. [Google Scholar] [CrossRef]
- Rémond, C.; Aubry, N.; Crônier, D.; Noël, S.; Martel, F.; Roge, B.; Rakotoarivonina, H.; Debeire, P.; Chabbert, B. Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour. Technol. 2010, 101, 6712–6717. [Google Scholar] [CrossRef]
- Isci, A.; Thieme, N.; Lamp, A.; Zverlov, V.; Kaltschmitt, M. Production of xylo-oligosaccharides from wheat straw using microwave assisted deep eutectic solvent pretreatment. Ind. Crops Prod. 2021, 164, 113393. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, X.; Liu, D. Relative significance of the negative impacts of hemicelluloses on enzymatic cellulose hydrolysis is dependent on lignin content: Evidence from substrate structural features and protein adsorption. ACS Sustain. Chem. Eng. 2016, 4, 6668–6679. [Google Scholar] [CrossRef]
- Dos Santos, J.P.; da Rosa Zavareze, E.; Dias, A.R.G.; Vanier, N.L. Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. Int. J. Biol. Macromol. 2018, 118, 1676–1684. [Google Scholar] [CrossRef]
- Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels 2011, 4, 36. [Google Scholar] [CrossRef]
- Togtokhbayar, N.; Cerrillo, M.A.; Rodríguez, G.B.; Elghandour, M.M.; Salem, A.Z.; Urankhaich, C.; Jigjidpurev, S.; Odongo, N.E.; Kholif, A.E. Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw. Anim. Sci. J. 2015, 86, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qu, M.; Liu, C.; Xu, L.; Pan, K.; Song, X.; Ouyang, K.; Li, Y.; Zhao, X. Expression of a recombinant Lentinula edodes xylanase by Pichia pastoris and its effects on ruminal fermentation and microbial community in in vitro incubation of agricultural straws. Front. Microbiol. 2018, 9, 2944. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; McAllister, T.A.; Cheng, K.J. Effect of dietary or abomasal supplementation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 1998, 76, 3146–3156. [Google Scholar] [CrossRef]
- Hu, D.; Zhao, X. Characterization of a new xylanase found in the rumen metagenome and its effects on the hydrolysis of wheat. J. Agric. Food Chem. 2022, 70, 6493–6502. [Google Scholar] [CrossRef]
- Li, T.; Lei, X.; Wang, L.; Liu, C.; Qiu, Q.; Li, Y.; Song, X.; Xiong, X.; Zang, Y.; Qu, M.; et al. Production of xylo-oligosaccharides with degree of polymerization 3–5 from wheat straw xylan by a xylanase derived from rumen metagenome and utilization by probiotics. Food BioSci. 2023, 56, 103360. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, X.; Ouyang, K.; Zhang, W.; Liu, C.; Li, Y.; Qiu, Q.; Zang, Y.; Qu, M.; Pan, K. Characteristics of a recombinant lentinula edodes ferulic acid esterase and its adverse effects on in vitro fermentation of wheat straw. Fermentation 2023, 9, 683. [Google Scholar] [CrossRef]
- Jun, H.; Qi, M.; Ha, J.; Forsberg, C. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: Transition to the post genomic era. Asian-Australas. J. Anim. Sci. 2007, 20, 802–810. [Google Scholar] [CrossRef]
- Castro-Costa, A.; Salama, A.; Moll, X.; Aguiló, J.; Caja, G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in nonlactating dairy goats. J. Dairy Sci. 2015, 98, 4646–4658. [Google Scholar] [CrossRef]
- Kaur, R.; Garcia, S.; Horadagoda, A.; Fulkerson, W. Evaluation of rumen probe for continuous monitoring of rumen pH, temperature and pressure. Anim. Prod. Sci. 2010, 50, 98–104. [Google Scholar] [CrossRef]
- Loaces, I.; Bottini, G.; Moyna, G.; Fabiano, E.; Martínez, A.; Noya, F. EndoG: A novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. J. Mol. Catal. B Enzym. 2016, 126, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, Y.; He, B.; Jiang, L.S.; Liu, J.X.; Wang, J.K. Characterization of a novel xylanase gene from rumen content of Hu sheep. Appl. Biochem. Biotechnol. 2015, 177, 1424–1436. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Ding, M.; Bao, L.; Chen, Y.; Zhou, J.; Lu, H. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl. Microbiol. Biotechnol. 2011, 90, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.O.; de Alencar Guimarães, N.C.; de Carvalho Peixoto-Nogueira, S.; Betini, J.H.; Marchetti, C.R.; Zanoelo, F.F.; de Moraes, M.d.L.T.; Marques, M.R.; Giannesi, G.C. Production of cellulase-free xylanase by Aspergillus flavus: Effect of polyols on the thermostability and its application on cellulose pulp biobleaching. Afr. J. Biotechnol. 2015, 14, 3368–3373. [Google Scholar] [CrossRef]
- Sá-Pereira, P.; Mesquita, A.; Duarte, J.C.; Barros, M.R.A.; Costa-Ferreira, M. Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzym. Microb. Technol. 2002, 30, 924–933. [Google Scholar] [CrossRef]
- Lee, K.-T.; Toushik, S.H.; Baek, J.-Y.; Kim, J.-E.; Lee, J.-S.; Kim, K.-S. Metagenomic mining and functional characterization of a novel kg51 bifunctional cellulase/hemicellulase from black goat rumen. J. Agric. Food Chem. 2018, 66, 9034–9041. [Google Scholar] [CrossRef]
- Patel, A.B.; Patel, A.K.; Shah, M.P.; Parikh, I.K.; Joshi, C.G. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome. Biotechnol. Appl. Biochem. 2016, 63, 257–265. [Google Scholar] [CrossRef]
- Pai, C.K.; Wu, Z.Y.; Chen, M.J.; Zeng, Y.F.; Chen, J.W.; Duan, C.H.; Li, M.L.; Liu, J.R. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl. Microbiol. Biotechnol. 2010, 85, 1451–1462. [Google Scholar] [CrossRef]
- Tan, H.; Miao, R.; Liu, T.; Yang, L.; Yang, Y.; Chen, C.; Lei, J.; Li, Y.; He, J.; Sun, Q.; et al. A bifunctional cellulase–xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb. Biotechnol. 2018, 11, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Gavande, P.V.; Nath, P.; Kumar, K.; Ahmed, N.; Fontes, C.M.; Goyal, A. Highly efficient, processive and multifunctional recombinant endoglucanase RfGH5_4 from Ruminococcus flavefaciens FD-1 v3 for recycling lignocellulosic plant biomasses. Int. J. Biol. Macromol. 2022, 209, 801–813. [Google Scholar] [CrossRef]
- Meng, Z.; Ma, J.; Sun, Z.; Yang, C.; Leng, J.; Zhu, W.; Cheng, Y. Characterization of a novel bifunctional enzyme from buffalo rumen metagenome and its effect on in vitro ruminal fermentation and microbial community composition. Anim. Nutr. 2023, 13, 137–149. [Google Scholar] [CrossRef]
- Pavarina, G.C.; Lemos, E.G.d.M.; Lima, N.S.M.; Pizauro, J.M., Jr. Characterization of a new bifunctional endo-1, 4-β-xylanase/esterase found in the rumen metagenome. Sci. Rep. 2021, 11, 10440. [Google Scholar] [CrossRef] [PubMed]
- Gomez de Segura, B.; Fevre, M. Purification and characterization of two 1, 4-beta-xylan endohydrolases from the rumen fungus Neocallimastix frontalis. Appl. Environ. Microbiol. 1993, 59, 3654–3660. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kaufman, M.G.; Miazgowicz, K.L.; Bagdasarian, M.; Walker, E.D. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour. Technol. 2013, 128, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, C.L.; Silva-Lucca, R.A.; Ferreira, R.d.S.; Andrade Luz, L.; Oliva, M.L.V.; Kadowaki, M.K. Correlation of the conformational structure and catalytic activity of the highly thermostable xylanase of Thermomyces lanuginosus PC7S1T. Biocatal. Biotransform. 2021, 41, 81–92. [Google Scholar] [CrossRef]
- Liu, Y.D.; Yuan, G.; An, Y.T.; Zhu, Z.R.; Li, G. Molecular cloning and characterization of a novel bifunctional cellobiohydrolase/β-xylosidase from a metagenomic library of mangrove soil. Enzym. Microb. Technol. 2023, 162, 110141. [Google Scholar] [CrossRef]
- Han, C.; Yang, R.; Sun, Y.; Liu, M.; Zhou, L.; Li, D. Identification and characterization of a novel hyperthermostable bifunctional cellobiohydrolase-xylanase enzyme for synergistic effect with commercial cellulase on pretreated wheat straw degradation. Front. Bioeng. Biotechnol. 2020, 8, 296. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, F.; Yang, X.; Tang, S.; Ming, H.; Zhou, E.; Yin, Y.; Zhang, Y.; Li, W.J.C. Purification and properties of a SDS-resistant xylanase from halophilic Streptomonospora sp. YIM 90494. Cellulose 2013, 20, 1947–1955. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, C.; Li, Y.; Pan, K.; Ouyang, K.; Song, X.; Xiong, X.; Qu, M.; Zhao, X. Characteristics of recombinant xylanase from camel rumen metagenome and its effects on wheat bran hydrolysis. Int. J. Biol. Macromol. 2022, 220, 1309–1317. [Google Scholar] [CrossRef]
- Zheng, F.; Huang, J.; Yin, Y.; Ding, S. A novel neutral xylanase with high SDS resistance from Volvariella volvacea: Characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. J. Ind. Microbiol. Biotechnol. 2013, 40, 1083–1093. [Google Scholar] [CrossRef]
- Terrasan, C.R.F.; Guisan, J.M.; Carmona, E.C. Xylanase and β-xylosidase from Penicillium janczewskii: Purification, characterization and hydrolysis of substrates. Electron. J. Biotechnol. 2016, 23, 54–62. [Google Scholar] [CrossRef]
- Kim, H.B.; Lee, K.T.; Kim, M.J.; Lee, J.S.; Kim, K.S. Identification and characterization of a novel KG42 xylanase (GH10 family) isolated from the black goat rumen-derived metagenomic library. Carbohydr. Res. 2018, 469, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.; French, A.; Calamari, T., Jr. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl. Environ. Microbiol. 1991, 57, 3101–3106. [Google Scholar] [CrossRef] [PubMed]
- Kerley, M.; Fahey, G., Jr.; Gould, J.; Iannotti, E. Effects of lignification, cellulose crystallinity and enzyme accessible space on the digestibility of plant cell wall carbohydrates by the ruminant. Food Struct. 1988, 7, 59–65. [Google Scholar]
- Bao, L.; Huang, Q.; Chang, L.; Zhou, J.; Lu, H. Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome. J. Mol. Catal. B Enzym. 2011, 73, 104–110. [Google Scholar] [CrossRef]
- Fang, H.; Xia, L. Heterologous expression and production of Trichoderma reesei cellobiohydrolase II in Pichia pastoris and the application in the enzymatic hydrolysis of corn stover and rice straw. Biomass Bioenergy 2015, 78, 99–109. [Google Scholar] [CrossRef]
- Billard, H.; Faraj, A.; Lopes Ferreira, N.; Menir, S.; Heiss-Blanquet, S. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels 2012, 5, 9. [Google Scholar] [CrossRef]
- Zhang, J.; Siika-Aho, M.; Tenkanen, M.; Viikari, L. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol. Biofuels 2011, 4, 60. [Google Scholar] [CrossRef]
- Dijkstra, J. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
Substrates | Km (mg mL−1) | Vmax (µmol min−1 mg−1) | kcat/Km (mL mg−1 S−1) | Specific Activity (U/mg) |
---|---|---|---|---|
Wheat straw xylan | 5.30 | 262.2 | 34.7 | 190.2 |
p-NPA | 0.077 | 3.2 | 29.2 | 3.03 |
Avicel | 85.27 | 11.6 | 0.10 | 0.79 |
CMC-Na | 11.82 | 0.76 | 0.05 | 0.30 |
Protein Name | Resource | Characteristics and Kinetic Parameters | Function | Reference | |
---|---|---|---|---|---|
Substrate | Optimal pH, Temperature | ||||
EndoG | Rumen metagenome | p-NPC | 5.0, 50 °C | Xylanse, glucanase | [20] |
KG51 | Goat rumen metagenome | CMC | 5.0, 50 °C | endo-β-1,4-glucanase, endo-β-1,4-mannosidase, endo-β-1,4-Xylanase | [25] |
Beechwood xylan | 5.0, 40 °C | ||||
Avicel | N/A | ||||
N/A | Buffalo rumen metagenome | Locust bean gum | 5.0 and 6.0, 35 °C | Xylanase, pectin esterase, endoglucanase, mannanase | [26] |
Xylan | N/A | ||||
Pectin | N/A | ||||
CMC | N/A | ||||
XynS20E | Ruminal fungus Neocallimastix patriciarum | Birchwood (xylanase) | 5.8, 49 °C | Xylanase, acetylxylan esterase | [27] |
Birchwood xylan (acetylxylan esterase) | 8.2, 58 °C | ||||
CbGH5 | Cattle dung | CMC | 9.0, 90 °C | Xylanase, cellulase | [28] |
Birchwood xylan | 8.0, 90 °C | ||||
RfGH5_4 | Ruminococcus flavefaciens FD-1 v3 | CMC-Na | 5.5, 55 °C | Glucanase, xylanase | [29] |
β-D-glucan | N/A | ||||
Tamarind Xyloglucan | N/A | ||||
Avicel | N/A | ||||
Birchwood xylan | N/A | ||||
CelXyn2 | Buffalo rumen metagenome | CMC | 6.0, 45 °C | Endoglucanase, xylanase | [30] |
beechwood xylan | 6.0, 45 °C | ||||
XylR | Nelore cattle rumen | Beechwood xylan | 6.5, 37 °C | endo-1,4-β-xylanase, esterase | [31] |
p-nitrofenyl acetate | N/A | ||||
RuCelA | Yak rumen metagenome | CMC | 5.0, 50 °C | Xylanase, endoglucanase | [22] |
Birchwood xylan | 7.0, 65 °C | ||||
RuXyn394 | Beef cattle rumen metagenome | Wheat straw xylan | 5.5, 50 °C | Xylanase, acetyl esterase, exoglucanase, endoglucanase | This study |
p-NPA | 6.5, 60 °C | ||||
Avicel | 7.0, 50 °C | ||||
CMC-Na | 6.0, 50 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qiu, Q.; Zhao, X.; Ouyang, K.; Liu, C. Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw. Fermentation 2024, 10, 574. https://doi.org/10.3390/fermentation10110574
Zhang M, Qiu Q, Zhao X, Ouyang K, Liu C. Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw. Fermentation. 2024; 10(11):574. https://doi.org/10.3390/fermentation10110574
Chicago/Turabian StyleZhang, Moguang, Qinghua Qiu, Xianghui Zhao, Kehui Ouyang, and Chanjuan Liu. 2024. "Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw" Fermentation 10, no. 11: 574. https://doi.org/10.3390/fermentation10110574
APA StyleZhang, M., Qiu, Q., Zhao, X., Ouyang, K., & Liu, C. (2024). Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw. Fermentation, 10(11), 574. https://doi.org/10.3390/fermentation10110574