Study on the Effect of Conditioners on the Degradation of Tetracycline Antibiotics in Deer Manure Composting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Materials and Properties
2.2. Experimental Design
2.2.1. The Effect of Conditioning Agents on the Degradation of TCs During Composting Process
2.2.2. Effects of Conditioners on Plant Toxicity and Maturity of Deer Manure Compost with Residual TCs
2.2.3. Screening and Validation of TCs-Degrading Bacteria
2.3. Determination Method for TCs
2.4. Microbial Community Detection
2.5. Artificial Neural Network Analysis
2.6. Degradation Kinetics of TCs
2.7. Statistical Analysis
3. Results and Discussion
3.1. Degradation Effect of Conditioning Agents on TCs During Composting Process
3.2. The Effect of Physicochemical Properties on TCs During Composting Process
3.3. The Effect of Microbial Community Structure on the Degradation of TCs in Compost
3.4. ANN Analysis
3.5. The Effects of Conditioning Agents on the Phytotoxicity of TCs Residues in Deer Manure Compost
3.6. Screening of TC-Degrading Bacterial Strains
4. Conclusions
- (1)
- Conditioners can affect the removal of tetracycline antibiotics during composting by affecting the physicochemical properties and microbial community structure. TC, CTC, and OTC showed the highest degradation rates in group Z, which were 94.29%, 97.18%, and 95.68%, respectively. Among the three TCs, TC has a lower degradation rate in general than that of CTC and OTC.
- (2)
- The biochar–zeolite mixed conditioning agent compost has the highest degradation rate of TC and CTC. The sensitivity of TCs to regulators was calculated using an artificial neural network model, and the results showed that TCs had the highest sensitivity to a mixture of biochar and zeolite regulators.
- (3)
- Adding conditioners further promotes the reduction in the migration of TCs caused by the single application of deer manure into the soil and Chinese cabbage leaves after composting. The addition of conditioning agents has a promoting effect on this effect, and the best effect is achieved by using a biochar–zeolite mixed conditioning agent.
- (4)
- A mixed microbial agent that promotes the removal of TC, CTC, and OTC in compost was isolated and domesticated, including Acinetobacter pittii, Stenotrophomonas maltophilia, Lactobacillus reuteri, Pseudomonas putida, and Trichosporon dohaense. The practical application of microbial agents promotes the degradation rate of TCs during the heating period, and ultimately TC, CTC, and OTC are completely removed in the compost with added degradation microbial agents.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, K.; Xu, Y.; Zhang, W.; Mao, H.; Chen, B.; Zheng, Y.; Hu, X. Differences in Fecal Microbiome and Antimicrobial Resistance between Captive and Free-Range Sika Deer under the Same Exposure of Antibiotic Anthelmintics. Microbiol. Spectr. 2021, 9, e0191821. [Google Scholar] [CrossRef] [PubMed]
- Conde-Cid, M.; Ferreira-Coelho, G.; Núñez-Delgado, A.; Fernández-Calviño, D.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J. Competitive Adsorption of Tetracycline, Oxytetracycline and Chlortetracycline on Soils with Different pH Value and Organic Matter Content. Environ. Res. 2019, 178, 108669. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jia, Y.; Li, J.; Wang, Y.; Niu, H.; Qiu, H.; Li, X.; Fang, W.; Qiu, Z. Effect of Bioaugmentation on Tetracyclines Influenced Chicken Manure Composting and Antibiotics Resistance. Sci. Total Environ. 2023, 867, 161457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, L.; Sha, G.; Liu, C.; Wang, Z.; Wang, L. Aerobic Composting as an Effective Cow Manure Management Strategy for Reducing the Dissemination of Antibiotic Resistance Genes: An Integrated Meta-Omics Study. J. Hazard. Mater. 2020, 386, 121895. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Li, N.; Yang, Z.; Li, B.; Zhang, X.; Li, H. Prioritized Regional Management for Antibiotics and Heavy Metals in Animal Manure across China. J. Hazard. Mater. 2024, 461, 132706. [Google Scholar] [CrossRef]
- Yang, W.; Di, C.; Li, J.; Tian, Y.; Shi, K.; Zhao, D.; Wang, J.; Tan, Q. Detection Rate and Concentration of Tetracycline Antibiotics in Organic Fertilizers Raw Materials Andcommercial Products in China. J. Plant Nutr. Fertil. 2021, 27, 1487–1495. [Google Scholar]
- Xiao, C.; Yuan, J.; Li, L.; Zhong, N.; Zhong, D.; Xie, Q.; Chang, H.; Xu, Y.; He, X.; Li, M. Photocatalytic Synergistic Biofilms Enhance Tetracycline Degradation and Conversion. Environ. Sci. Ecotechnol. 2023, 14, 100234. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, Fate, and Ecotoxicity of Antibiotics in Agro-Ecosystems. A Review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Kim, K.R.; Owens, G.; Kwon, S.I.; So, K.H.; Lee, D.B.; Ok, Y.S. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and Effects of Veterinary Antibiotics in Soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef]
- Xie, W.-Y.; Shen, Q.; Zhao, F.J. Antibiotics and Antibiotic Resistance from Animal Manures to Soil: A Review. Eur. J. Soil Sci. 2018, 69, 181–195. [Google Scholar] [CrossRef]
- Chai, R.; Huang, L.; Li, L.; Gielen, G.; Wang, H.; Zhang, Y. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw. Int. J. Environ. Res. Public Health 2016, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, L.; Cai, Q.; Xu, Y.; Xie, Z.; Liu, J.; Ning, X. Simultaneous Reduction of Antibiotics and Antibiotic Resistance Genes in Pig Manure Using a Composting Process with a Novel Microbial Agent. Ecotoxicol. Environ. Saf. 2021, 208, 111724. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, D.; Peng, S.; Wang, Y.; Lin, X. Insights of the Fate of Antibiotic Resistance Genes during Organic Solid Wastes Composting Based on Bibliometric Analysis: Development, Hotspots, and Trend Directions. J. Clean. Prod. 2023, 425, 138781. [Google Scholar] [CrossRef]
- Selvam, A.; Xu, D.; Zhao, Z.; Wong, J.W.C. Fate of Tetracycline, Sulfonamide and Fluoroquinolone Resistance Genes and the Changes in Bacterial Diversity during Composting of Swine Manure. Bioresour. Technol. 2012, 126, 383–390. [Google Scholar] [CrossRef]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Degradation of Veterinary Antibiotics and Hormone during Broiler Manure Composting. Bioresour. Technol. 2013, 131, 476–484. [Google Scholar] [CrossRef]
- Arikan, O.; Sikora, L.; Mulbry, W.; Khan, S.; Foster, G. Composting Rapidly Reduces Levels of Extractable Oxytetracycline in Manure from Therapeutically Treated Beef Calves. Bioresour. Technol. 2007, 98, 169–176. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Chen, G.; Gui, X.; Chen, T.; Zhan, X. Characterization of Organic Matter Degradation during Composting of Manure–Straw Mixtures Spiked with Tetracyclines. Bioresour. Technol. 2011, 102, 7329–7334. [Google Scholar] [CrossRef]
- Dolliver, H.; Gupta, S.; Noll, S. Antibiotic Degradation during Manure Composting. J. Environ. Qual. 2008, 37, 1245–1253. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Liu, S.; Wen, X.; Huang, Y.; Li, K.; Li, Q. The Removal Performances and Evaluation of Heavy Metals, Antibiotics, and Resistomes Driven by Peroxydisulfate Amendment during Composting. J. Hazard. Mater. 2023, 457, 131819. [Google Scholar] [CrossRef]
- Selvam, A.; Zhao, Z.; Li, Y.; Chen, Y.; Leung, K.; Wong, J. Degradation of Tetracycline and Sulfadiazine during Continuous Thermophilic Composting of Pig Manure and Sawdust. Environ. Technol. 2013, 34, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Clark, I.; Sánchez-Monedero, M.A.; Shea, S.; Meier, S.; Bolan, N. Maturity Indices in Co-Composting of Chicken Manure and Sawdust with Biochar. Bioresour. Technol. 2014, 168, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ngo, P.T.; Rumpel, C.; Ngo, Q.A.; Alexis, M.; Vargas, G.V.; Mora Gil, M.D.L.L.; Dang, D.K.; Jouquet, P. Biological and Chemical Reactivity and Phosphorus Forms of Buffalo Manure Compost, Vermicompost and Their Mixture with Biochar. Bioresour. Technol. 2013, 148, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Zhan, Z.; Dai, J.; Wu, X.; Zhang, W.; Wang, K.; Yuan, S. Adsorption of Tetracycline and Chloramphenicol in Aqueous Solutions by Bamboo Charcoal: A Batch and Fixed-Bed Column Study. Chem. Eng. J. 2013, 228, 496–505. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Feng, J.; Sun, J.; Xu, J.; Wang, H. Degradation of Acetochlor in Soil by Adding Organic Fertilizers with Different Conditioners. Soil Tillage Res. 2023, 228, 105651. [Google Scholar] [CrossRef]
- Shan, G.; Liu, J.; Zhu, B.; Tan, W.; Li, W.; Tang, Z.; Hu, X.; Zhu, L.; Xi, B. Effect of Hydrochar on Antibiotic-Resistance Genes and Relevant Mechanisms during Chicken Manure Composting. J. Hazard. Mater. 2023, 454, 131459. [Google Scholar] [CrossRef]
- Steiner, C.; Harttung, T. Biochar as a Growing Media Additive and Peat Substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, F.; Tian, Y.; Zhang, J.; Liu, H.; Duan, J.; Bi, W.; Qin, J.; Xu, S. Effect of Biochar on Antibiotics and Antibiotic Resistance Genes Variations during Co-Composting of Pig Manure and Corn Straw. Front. Bioeng. Biotechnol. 2022, 10, 960476. [Google Scholar] [CrossRef]
- Karamova, K.; Danilova, N.; Selivanovskaya, S.; Galitskaya, P. The Impact of Chicken Manure Biochar on Antibiotic Resistance Genes in Chicken Manure Composting. Agriculture 2022, 12, 1158. [Google Scholar] [CrossRef]
- Chu, Y.; Fang, C.; Wang, H.; Wu, X.; Gu, Y.; Shu, J. Effects of Anaerobic Composting on Tetracycline Degradation in Swine Manure. Chin. J. Chem. Eng. 2017, 25, 1505–1511. [Google Scholar] [CrossRef]
- Kamei-Ishikawa, N.; Maeda, T.; Soma, M.; Yoshida, N.; Sameshima, Y.; Sasamoto, M.; Higashiyama, Y.; Touno, E.; Ito, A. Tylosin Degradation during Manure Composting and the Effect of the Degradation Byproducts on the Growth of Green Algae. Sci. Total Environ. 2020, 718, 137295. [Google Scholar] [CrossRef] [PubMed]
- Omar, L.; Ahmed, O.H.; Majid, N.M.A. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes. Sci. World J. 2015, 2015, 574201. [Google Scholar] [CrossRef]
- Qu, C.; Chen, W.; Hu, X.; Cai, P.; Chen, C.; Yu, X.-Y.; Huang, Q. Heavy Metal Behaviour at Mineral-Organo Interfaces: Mechanisms, Modelling and Influence Factors. Environ. Int. 2019, 131, 104995. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, Y.; Xu, J.; Liu, X.; Sheng, L. Effects of Additives on Nitrogen Transformation and Greenhouse Gases Emission of Co-Composting for Deer Manure and Corn Straw. Environ. Sci. Pollut. Res. 2021, 28, 13000–13020. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Teng, H. Study on Treatment of City Tail Water by Constructed Wetland with Corn Straw Biochar Substrate. Environ. Technol. Innov. 2022, 28, 102855. [Google Scholar] [CrossRef]
- GB/T 13803.2-1999; Wooden Activated Carbon for Water Purification. Standardization Administration of China: Beijing, China, 1999.
- GB/T 32951-2016; Determination of Oxytetracyline, Tetracyline, Chlortetracycline and Doxycycline Content for Organic Fertilizers—HPLC Method. Standardization Administration of China: Beijing, China, 2016.
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Lim, J.E.; Ahmed, M.B.M.; Zhang, M.; Lee, S.S.; Ok, Y.S. Invasive Plant-Derived Biochar Inhibits Sulfamethazine Uptake by Lettuce in Soil. Chemosphere 2014, 111, 500–504. [Google Scholar] [CrossRef]
- Xie, H.; Pan, W.; Zhou, Y.; Li, P.; Zou, G.; Du, L.; Guo, X. Micro- and Nano-Plastics Play Different Roles in Oxytetracycline Adsorption on Natural Zeolite: Additional Adsorbent and Competitive Adsorbate. J. Environ. Chem. Eng. 2023, 11, 109648. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.A.; Rafique, M.I.; Al-Wabel, M.I. Engineered Biochar Composites with Zeolite, Silica, and Nano-Zerovalent Iron for the Efficient Scavenging of Chlortetracycline from Aqueous Solutions. Environ. Sci. Pollut. Res. 2019, 26, 15136–15152. [Google Scholar] [CrossRef]
- Turan, N.G.; Ergun, O.N. Improving the Quality of Municipal Solid Waste Compost by Using Expanded Perlite and Natural Zeolite. CLEAN Soil Air Water 2008, 36, 330–334. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Zhang, Z.; Wang, Q.; Shen, F.; Li, R.; Li, D.; Ren, X.; Wang, M.; Chen, H.; Zhao, J. New Insight with the Effects of Biochar Amendment on Bacterial Diversity as Indicators of Biomarkers Support the Thermophilic Phase during Sewage Sludge Composting. Bioresour. Technol. 2017, 238, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Vandecasteele, B.; Sinicco, T.; D’Hose, T.; Vanden Nest, T.; Mondini, C. Biochar Amendment before or after Composting Affects Compost Quality and N Losses, but Not P Plant Uptake. J. Environ. Manag. 2016, 168, 200–209. [Google Scholar] [CrossRef]
- Liu, H.; Pu, C.; Yu, X.; Sun, Y.; Chen, J. Removal of Tetracyclines, Sulfonamides, and Quinolones by Industrial-Scale Composting and Anaerobic Digestion Processes. Environ. Sci. Pollut. Res. 2018, 25, 35835–35844. [Google Scholar] [CrossRef]
- Khadra, A.; Ezzariai, A.; Merlina, G.; Capdeville, M.-J.; Budzinski, H.; Hamdi, H.; Pinelli, E.; Hafidi, M. Fate of Antibiotics Present in a Primary Sludge of WWTP during Their Co-Composting with Palm Wastes. Waste Manag. 2019, 84, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Lu, X.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef]
- Zhu, J.; Fleming, A.M.; Orendt, A.M.; Burrows, C.J. pH-Dependent Equilibrium between 5-Guanidinohydantoin and Iminoallantoin Affects Nucleotide Insertion Opposite the DNA Lesion. J. Org. Chem. 2016, 81, 351–359. [Google Scholar] [CrossRef]
- Khataee, A.; Kalderis, D.; Gholami, P.; Fazli, A.; Moschogiannaki, M.; Binas, V.; Lykaki, M.; Konsolakis, M. Cu2O-CuO@biochar Composite: Synthesis, Characterization and Its Efficient Photocatalytic Performance. Appl. Surf. Sci. 2019, 498, 143846. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Bary, A.; Cogger, C.G.; Teel, A.L.; Watts, R.J. Antibiotic Degradation During Thermophilic Composting. Water Air Soil Pollut. 2015, 226, 13. [Google Scholar] [CrossRef]
- Anders, E.; Watzinger, A.; Rempt, F.; Kitzler, B.; Wimmer, B.; Zehetner, F.; Stahr, K.; Zechmeister-Boltenstern, S.; Soja, G. Biochar Affects the Structure Rather than the Total Biomass of Microbial Communities in Temperate Soils. Agric. Food Sci. 2013, 22, 404–423. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, X.; Li, M.; Zhu, Q.; Li, G.; Ma, C.; Li, Q.; Meng, J.; Liu, Y.; Li, Q. Impacts of Red Mud on Lignin Depolymerization and Humic Substance Formation Mediated by Laccase-Producing Bacterial Community during Composting. J. Hazard. Mater. 2021, 410, 124557. [Google Scholar] [CrossRef] [PubMed]
- López-González, J.A.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; Jurado, M.M.; Moreno, J. Dynamics of Bacterial Microbiota during Lignocellulosic Waste Composting: Studies upon Its Structure, Functionality and Biodiversity. Bioresour. Technol. 2015, 175, 406–416. [Google Scholar] [CrossRef]
- Wang, H.; Sangwan, N.; Li, H.Y.; Su, J.Q.; Oyang, W.-Y.; Zhang, Z.-J.; Gilbert, J.A.; Zhu, Y.-G.; Ping, F.; Zhang, H.-L. The Antibiotic Resistome of Swine Manure Is Significantly Altered by Association with the Musca Domestica Larvae Gut Microbiome. ISME J. 2017, 11, 100–111. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, W.; Men, M.; Bello, A.; Xu, X.; Xu, B.; Deng, L.; Jiang, X.; Sheng, S.; Wu, X.; et al. Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting. Front. Microbiol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Wang, K.; Yin, X.; Mao, H.; Chu, C.; Tian, Y. Changes in Structure and Function of Fungal Community in Cow Manure Composting. Bioresour. Technol. 2018, 255, 123–130. [Google Scholar] [CrossRef]
- Basotra, N.; Kaur, B.; Falco, M.; Tsang, A.; Chadha, B. Mycothermus Thermophilus (Syn. Scytalidium thermophilum): Repertoire of a Diverse Array of Efficient Cellulases and Hemicellulases in the Secretome Revealed. Bioresour. Technol. 2016, 222, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Mellado, E.; Buitrago, M.J.; Monzón, A.; Rodriguez-Tudela, J.L. Scopulariopsis brevicaulis, a Fungal Pathogen Resistant to Broad-Spectrum Antifungal Agents. Antimicrob. Agents Chemother. 2003, 47, 2339–2341. [Google Scholar] [CrossRef]
- Duan, Y.; Awasthi, S.K.; Chen, H.; Liu, T.; Zhang, Z.; Zhang, L.; Awasthi, M.K.; Taherzadeh, M.J. Evaluating the Impact of Bamboo Biochar on the Fungal Community Succession during Chicken Manure Composting. Bioresour. Technol. 2019, 272, 308–314. [Google Scholar] [CrossRef]
- Zhu, L.; Maruyama, J.; Kitamoto, K. Further Enhanced Production of Heterologous Proteins by Double-Gene Disruption (ΔAosedD ΔAovps10) in a Hyper-Producing Mutant of Aspergillus Oryzae. Appl. Microbiol. Biotechnol. 2013, 97, 6347–6357. [Google Scholar] [CrossRef]
- Kui, H.; Jingyang, C.; Mengxin, G.; Hui, X.; Li, L. Effects of Biochars on the Fate of Antibiotics and Their Resistance Genes during Vermicomposting of Dewatered Sludge. J. Hazard. Mater. 2020, 397, 122767. [Google Scholar] [CrossRef]
- Hu, E.; Cheng, H.; Hu, Y. Microwave-Induced Degradation of Atrazine Sorbed in Mineral Micropores. Environ. Sci. Technol. 2012, 46, 5067–5076. [Google Scholar] [CrossRef]
- Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The Influence of Light Exposure, Water Quality and Vegetation on the Removal of Sulfonamides and Tetracyclines: A Laboratory-Scale Study. Chemosphere 2013, 90, 2297–2302. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Degradation of Tetracycline and Oxytetracycline by Crude Lignin Peroxidase Prepared from Phanerochaete Chrysosporium—A White Rot Fungus. Chemosphere 2009, 75, 1003–1007. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, S. Draft Genome Sequence of the Environmentally Isolated Acinetobacter Pittii Strain IPK_TSA6.1. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Stenström, T.A.; Okoh, A.I. Stenotrophomonas Maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front. Microbiol. 2017, 8, 2276. [Google Scholar] [CrossRef]
- Lin, W.C.; Ptak, C.P.; Chang, C.Y.; Ian, M.K.; Chia, M.Y.; Chen, T.H.; Kuo, C.J. Autochthonous Lactic Acid Bacteria Isolated from Dairy Cow Feces Exhibiting Promising Probiotic Properties and in Vitro Antibacterial Activity Against Foodborne Pathogens in Cattle. Front. Vet. Sci. 2020, 7, 239. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Gradient Diffusion Antibiotic Susceptibility Testing of Potentially Probiotic Lactobacilli. J. Food Prot. 2001, 64, 2007–2014. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Xie, X.; Shi, Q. Pseudomonas Putida Actively Forms Biofilms to Protect the Population under Antibiotic Stress. Environ. Pollut. 2021, 270, 116261. [Google Scholar] [CrossRef]
- Taj-Aldeen, S.J.; Al-Ansari, N.; El Shafei, S.; Meis, J.F.; Curfs-Breuker, I.; Theelen, B.; Boekhout, T. Molecular Identification and Susceptibility of Trichosporon Species Isolated from Clinical Specimens in Qatar: Isolation of Trichosporon dohaense Taj-Aldeen, Meis & Boekhout Sp. Nov. J. Clin. Microbiol. 2009, 47, 1791–1799. [Google Scholar] [CrossRef]
- Danilova, N.; Galitskaya, P.; Selivanovskaya, S. Veterinary Antibiotic Oxytetracycline’s Effect on the Soil Microbial Community. J. Ecol. Environ. 2020, 44, 10. [Google Scholar] [CrossRef]
Deer Manure (kg) | Straw (kg) | Biochar (kg) | Zeolite (kg) | Water (kg) | |
---|---|---|---|---|---|
CK | 3.05 | 0.69 | 0 | 0 | 5.19 |
B | 2.98 | 0.54 | 0.48 | 0 | 5.26 |
Z | 2.69 | 0.83 | 0 | 0.48 | 5.29 |
BZ | 2.83 | 0.69 | 0.24 | 0.24 | 5.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Feng, J.; Haider, M.A.; Xu, J.; Sun, J.; Chen, Y. Study on the Effect of Conditioners on the Degradation of Tetracycline Antibiotics in Deer Manure Composting. Fermentation 2024, 10, 575. https://doi.org/10.3390/fermentation10110575
Wang X, Feng J, Haider MA, Xu J, Sun J, Chen Y. Study on the Effect of Conditioners on the Degradation of Tetracycline Antibiotics in Deer Manure Composting. Fermentation. 2024; 10(11):575. https://doi.org/10.3390/fermentation10110575
Chicago/Turabian StyleWang, Xinyu, Jiayin Feng, Muhammad Awais Haider, Jianling Xu, Jitian Sun, and Yue Chen. 2024. "Study on the Effect of Conditioners on the Degradation of Tetracycline Antibiotics in Deer Manure Composting" Fermentation 10, no. 11: 575. https://doi.org/10.3390/fermentation10110575
APA StyleWang, X., Feng, J., Haider, M. A., Xu, J., Sun, J., & Chen, Y. (2024). Study on the Effect of Conditioners on the Degradation of Tetracycline Antibiotics in Deer Manure Composting. Fermentation, 10(11), 575. https://doi.org/10.3390/fermentation10110575