Biomass Accumulation, Contaminant Removal, and Settling Performance of Chlorella sp. in Unsterilized and Diluted Anaerobic Digestion Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Characteristics and Microalgae Strain
2.2. Experimental Design
2.3. Analysis Methods
2.3.1. Analysis of Microalgal Growth and Photosynthetic Activity
2.3.2. Analysis of Pigment in the Microbes
2.3.3. Analysis of Wastewater Quality
2.3.4. Analysis of Oxidative Stress in the Microbes
2.3.5. Analysis of Microbes Settlement Performance
2.3.6. Analysis of Biomass Biochemical Composition
2.4. Statistical Analysis
3. Results and Discussion
3.1. Biomass Production and Microbial Activity
3.2. Oxidative Stress Analysis
3.3. Nutrient Removal in Wastewater
3.4. Settling Performance
3.5. Biochemical Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Zhang, W.; Zhang, H.; Sheng, J. Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production. Agriculture 2023, 13, 2143. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.B.; Zhao, X.C.; Yang, L.B.; Liao, J.Y.; Zhou, Y.Y. Enhanced biomass and lipid production for cultivating Chlorella pyrenoidosa in anaerobically digested starch wastewater using various carbon sources and up-scaling culture outdoors. Bioresour. Technol. 2018, 247, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Gu, Z.; Zhang, Q.; Wang, Y.; Cui, X.; Liu, Y.; Yu, Z.; Ruan, R. Detoxification of copper and zinc from anaerobic digestate effluent by indigenous bacteria: Mechanisms, pathways and metagenomic analysis. J. Hazard. Mater. 2024, 469, 133993. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, L.; Zhang, Q.; Liu, Y.; Xiang, S.; Liu, T.; Ruan, R. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway. J. Hazard. Mater. 2021, 413, 125310. [Google Scholar] [CrossRef]
- Gu, Z.; Yan, H.; Zhang, Q.; Wang, Y.; Liu, C.; Cui, X.; Liu, Y.; Yu, Z.; Wu, X.; Ruan, R. Elimination of copper obstacle factor in anaerobic digestion effluent for value-added utilization: Performance and resistance mechanisms of indigenous bacterial consortium. Water Res. 2024, 252, 121217. [Google Scholar] [CrossRef]
- Chai, W.S.; Chew, C.H.; Munawaroh, H.S.H.; Ashokkumar, V.; Cheng, C.K.; Park, Y.K.; Show, P.L. Microalgae and ammonia: A review on inter-relationship. Fuel 2021, 303, 121303. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Feng, W.; Yuan, M.; Li, J.; Xu, H.; Zheng, X.; Zhang, W. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Sci. Rep. 2020, 10, 8243. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, J.; Chu, R.; Yin, Z.; Hu, J.; Kristianto Nugroho, Y.; Li, Z.; Zhu, L. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Bioresour. Technol. 2021, 342, 126003. [Google Scholar] [CrossRef]
- Abdalhussien Kareem, S.; Jassim Muklive Al-Ogaidi, A. Reducing Pollutants in Wastewater by Coagulation and Flocculation as a Pre-Treatment Process for Environment Protection. Int. J. Environ. Sci. 2023, 9, 63–73. [Google Scholar]
- Moradi, N.; Vazquez, C.L.; Hernandez, H.G.; Brdjanovic, D.; van Loosdrecht, M.C.M.; Rincón, F.R. Removal of contaminants of emerging concern from the supernatant of anaerobically digested sludge by O3 and O3/H2O2: Ozone requirements, effects of the matrix, and toxicity. Environ. Res. 2023, 235, 116597. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xiao, Y.; Liu, T.; Yuan, M.; Liu, G.; Fang, J.; Yang, B. Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms 2021, 9, 2469. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiong, H.; Hui, Z.; Zeng, X. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour. Technol. 2012, 104, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Zhou, Y.; Pang, A.; Ning, L.; Rodgers, K.; Liu, Y.; Dong, R. Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour. Technol. 2015, 184, 116–122. [Google Scholar] [CrossRef]
- Tang, C.; Gao, X.; Hu, D.; Dai, D.; Qv, M.; Liu, D.; Zhu, L. Nutrient removal and lipid production by the co-cultivation of Chlorella vulgaris and Scenedesmus dimorphus in landfill leachate diluted with recycled harvesting water. Bioresour. Technol. 2023, 369, 128496. [Google Scholar] [CrossRef]
- Lu, R.; Yan, H.; Liu, Y.; Wang, Y.; Cui, X.; Wu, X.; Yu, Z.; Ruan, R.; Zhang, Q. Enhancement of nutrients recovery and cell metabolism in piggery anaerobic digestate by the co-cultivation of indigenous microalgae and bacteria. J. Clean. Prod. 2022, 375, 134193. [Google Scholar] [CrossRef]
- Huang, Q.; Yan, H.; Liu, Y.; Cui, X.; Wang, Y.; Yu, Z.; Ruan, R.; Zhang, Q. Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system. J. Clean. Prod. 2022, 362, 132271. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method. Enzymol. 1987, 148, 350–382. [Google Scholar]
- Gu, Z.; Liu, Y.; Zou, G.; Zhang, Q.; Lu, R.; Yan, H.; Cao, L.; Liu, T.; Ruan, R. Enhancement of nutrients removal and biomass accumulation of Chlorella vulgaris in pig manure anaerobic digestate effluent by the pretreatment of indigenous bacteria. Bioresour. Technol. 2021, 328, 124846. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Li, Y.; Yu, Z.; Chen, Z.; Ye, T.; Wang, X.; Hu, Z.; Liu, S.; Xiao, B.; et al. Cultivation of algal biofilm using different lignocellulosic materials as carriers. Biotechnol. Biofuels 2017, 10, 115. [Google Scholar] [CrossRef]
- He, Z.; Fan, X.; Qu, L.; Zhou, X.; Jin, W.; Hatshan, M.R.; Li, X.; Liu, H.; Jiang, G.; Wang, Q. Cultivation of Chlorella pyrenoidosa and Scenedesmus obliquus in swine wastewater: Nitrogen and phosphorus removal and microalgal growth. Process Saf. Environ. Prot. 2023, 179, 887–895. [Google Scholar] [CrossRef]
- Ramaraj, R.; D-W Tsai, D.; Honglay Chen, P. Chlorophyll is not Accurate Measurement for Algal Biomass. Chiang Mai J. Sci. 2013, 40, 547–555. [Google Scholar]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal. Water Res. 2015, 70, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.X.; Mao, B.D.; Lu, M.M.; Chen, D.Z.; Qiu, J.; Gao, F. Effect of external acetate added in aquaculture wastewater on mixotrophic cultivation of microalgae, nutrient removal, and membrane contamination in a membrane photobioreactor. J. Environ. Manag. 2024, 349, 119391. [Google Scholar] [CrossRef]
- Castillo, T.; Ramos, D.; García-Beltrán, T.; Brito-Bazan, M.; Galindo, E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem. Eng. J. 2021, 176, 108183. [Google Scholar] [CrossRef]
- Li, X.; Su, K.; Mou, Y.; Liu, N.; Lu, T.; Yu, Z.; Song, M. Enhancement of nutrients removal and biomass accumulation of algal-bacterial symbiosis system by optimizing the concentration and type of carbon source in the treatment of swine digestion effluent. Chemosphere 2022, 308, 136335. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Moreno-Garrido, I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. Mar. Environ. Res. 2023, 184, 105877. [Google Scholar] [CrossRef]
- Kong, W.; Yang, S.; Wang, H.; Huo, H.; Guo, B.; Liu, N.; Zhang, A.; Niu, S. Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J. Appl. Phycol. 2020, 32, 1569–1579. [Google Scholar] [CrossRef]
- Mao, B.D.; Vadiveloo, A.; Qiu, J.; Gao, F. Artificial photosynthesis: Promising approach for the efficient production of high-value bioproducts by microalgae. Bioresour. Technol. 2024, 401, 130718. [Google Scholar] [CrossRef]
- Duan, X.; Xie, C.; Hill, D.R.A.; Barrow, C.J.; Dunshea, F.R.; Martin, G.J.O.; Suleria, H.A.R. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. Food Rev. Int. 2024, 40, 230–259. [Google Scholar] [CrossRef]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Grossman, A.R.; Lohr, M.; Im, C.S. Chlamydomonas reinhardtii in the landscape of pigments. Annu. Rev. Genet. 2004, 38, 119–173. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Li, M.; Duan, S.; Fu, M.; Dong, X.; Liu, B.; Feng, D.; Wang, J.; Wang, H. Bin Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency. Plant Physiol. 2016, 172, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Perrine, Z.; Negi, S.; Sayre, R.T. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012, 1, 134–142. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, Y.; Wakisaka, M.; Yang, Z.; Yin, Y.; Fang, W.; Xu, Y.; Omura, T.; Yu, R.; Zheng, A.L.T. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. Sci. Total Environ. 2023, 165200. [Google Scholar] [CrossRef]
- Xiao, X.; Li, W.; Jin, M.; Zhang, L.; Qin, L.; Geng, W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Mar. Environ. Res. 2023, 183, 105805. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Liu, L.; Liu, X.; Qiu, F.; Ma, X. Development and environmental impacts of China’s livestock and poultry breeding. J. Clean. Prod. 2022, 371, 133586. [Google Scholar] [CrossRef]
- Abreu, A.P.; Morais, R.C.; Teixeira, J.A.; Nunes, J. A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renew. Sustain. Energy Rev. 2022, 159, 112247. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, M.; Zhang, J.; Jiang, X.; Zheng, Z. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresour. Technol. 2018, 247, 44–50. [Google Scholar] [CrossRef]
- Praveen, P.; Guo, Y.; Kang, H.; Lefebvre, C.; Loh, K.C. Enhancing microalgae cultivation in anaerobic digestate through nitrification. Chem. Eng. J. 2018, 354, 905–912. [Google Scholar] [CrossRef]
- Kumar, A.; Bera, S. Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresour. Technol. Rep. 2020, 12, 100584. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energ. Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- GB 18596-2001; Discharge Standard of Pollutants for Livestock and Poultry Breeding. Ministry of Agriculture, Environmental Protection Institute: Tianjin, China, 2001.
- Dalvi, V.; Malik, A. Nutrient conservation achieved through mixing regime improves microalgal wastewater treatment and diminishes the net environmental impact. Chem. Eng. J. 2023, 456, 141070. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, L.; Wang, Y.; Zhao, Y.; Jin, C.; Gao, M.; She, Z. Phosphorus uptake, distribution and transformation with Chlorella vulgaris under different trophic modes. Chemosphere 2021, 285, 131366. [Google Scholar] [CrossRef]
- Procházková, G.; Brányiková, I.; Zachleder, V.; Brányik, T. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 2014, 26, 1359–1377. [Google Scholar] [CrossRef]
- Ota, S.; Yoshihara, M.; Yamazaki, T.; Takeshita, T.; Hirata, A.; Konomi, M.; Oshima, K.; Hattori, M.; Bišová, K.; Zachleder, V.; et al. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci. Rep. 2016, 6, 25731. [Google Scholar] [CrossRef]
- Roy, M.; Mohanty, K. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. Algal Res. 2019, 44, 101683. [Google Scholar] [CrossRef]
- Kumar, N.; Banerjee, C.; Negi, S.; Shukla, P. Microalgae harvesting techniques: Updates and recent technological interventions. Crit. Rev. Biotechnol. 2023, 43, 342–368. [Google Scholar] [CrossRef]
- Niemi, C.; Gentili, F.G. The use of natural organic flocculants for harvesting microalgae grown in municipal wastewater at different culture densities. Physiol. Plant. 2021, 173, 536–542. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Passos, F.; Ferrer, I.; Uggetti, E.; García, J. Harvesting microalgae from wastewater treatment systems with natural flocculants: Effect on biomass settling and biogas production. Algal Res. 2015, 9, 204–211. [Google Scholar] [CrossRef]
- Zheng, M.; Li, H.; Guo, X.; Chen, B.; Wang, M. A semi-continuous efficient strategy for removing phosphorus and nitrogen from eel aquaculture wastewater using the self-flocculating microalga Desmodesmus sp. PW1. J. Environ. Manag. 2023, 346, 118970. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, W.; Gao, L. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ. Manag. 2014, 53, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Kosar, S.; Isik, O.; Cicekalan, B.; Gulhan, H.; Sagir Kurt, E.; Atli, E.; Basa, S.; Ozgun, H.; Koyuncu, I.; van Loosdrecht, M.C.M.; et al. Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. J. Environ. Manag. 2022, 315, 115191. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Kulikovskiy, M.; Maltseva, S. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb. Cell Fact. 2023, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Cui, Y.; Wan, M.; Wang, W.; Li, Y. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels 2014, 7, 17. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, J.; Zheng, H.; Wu, X.; Wang, Y.; Liu, M.; Xiang, S.; Cao, L.; Ruan, R.; Liu, Y. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour. Technol. 2018, 269, 285–291. [Google Scholar] [CrossRef]
Biochemical Composition | CK | DW6 | SW6 | DW8 | SW8 | DW10 | SW10 |
---|---|---|---|---|---|---|---|
Crude lipid (%) | 23.6 ± 1.24 a | 17.9 ± 0.96 b | 22.0 ± 1.76 a | 7.5 ± 0.63 d | 23.3 ± 0.21 a | 10.1 ± 0.62 cd | 13.3 ± 0.89 c |
Crude protein (%) | 54.60 ± 0.09 a | 50.08 ± 1.02 b | 52.21 ± 1.86 ab | 50.68 ± 1.07 b | 53.00 ± 0.47 ab | 52.07 ± 0.56 ab | 51.71 ± 0.88 ab |
Crude ash (%) | 7.37 ± 0.44 d | 13.69 ± 0.21 b | 16.32 ± 0.08 a | 11.09 ± 0.68 c | 16.78 ± 0.37 a | 10.75 ± 0.05 c | 10.26 ± 0.38 cd |
Carbohydrate (%) | 14.61 ± 1.10 e | 18.29 ± 0.26 d | 9.47 ± 0.18 f | 30.72 ± 0.25 a | 6.88 ± 0.11 g | 27.04 ± 0.11 b | 24.76 ± 0.38 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, Q.; Gu, Z.; Zhang, L.; Lu, R.; Liu, C.; Liu, Y. Biomass Accumulation, Contaminant Removal, and Settling Performance of Chlorella sp. in Unsterilized and Diluted Anaerobic Digestion Effluent. Fermentation 2024, 10, 577. https://doi.org/10.3390/fermentation10110577
Wang C, Zhang Q, Gu Z, Zhang L, Lu R, Liu C, Liu Y. Biomass Accumulation, Contaminant Removal, and Settling Performance of Chlorella sp. in Unsterilized and Diluted Anaerobic Digestion Effluent. Fermentation. 2024; 10(11):577. https://doi.org/10.3390/fermentation10110577
Chicago/Turabian StyleWang, Canbo, Qi Zhang, Zhiqiang Gu, Longfei Zhang, Rumeng Lu, Cuixia Liu, and Yuhuan Liu. 2024. "Biomass Accumulation, Contaminant Removal, and Settling Performance of Chlorella sp. in Unsterilized and Diluted Anaerobic Digestion Effluent" Fermentation 10, no. 11: 577. https://doi.org/10.3390/fermentation10110577
APA StyleWang, C., Zhang, Q., Gu, Z., Zhang, L., Lu, R., Liu, C., & Liu, Y. (2024). Biomass Accumulation, Contaminant Removal, and Settling Performance of Chlorella sp. in Unsterilized and Diluted Anaerobic Digestion Effluent. Fermentation, 10(11), 577. https://doi.org/10.3390/fermentation10110577