Preliminary Evaluation of Watermelon Liquid Waste as an Alternative Substrate for Microalgae Cultivation: A Circular Economy Approach to the Production of High-Value Secondary Products by Chlorella vulgaris, Scenedesmus sp., Arthrospira platensis, and Chlamydomonas pitschmanii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strains
2.2. Watermelon Liquid Fraction Waste (WW)
2.3. Experimental Set Up
2.4. Biomass Monitoring
3. Results
3.1. Biomass Growth
3.2. Pigment Quantification
3.3. Secondary High Value Products Storage
3.3.1. Lipid Quantification and Characterization
3.3.2. Medium Jellification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pardossi. Orticoltura: Principi e Pratica; Edagricole: Milano, Bologna, 2018. [Google Scholar]
- Awasthi, M.K.; Kumar, V.; Yadav, V.; Sarsaiya, S.; Awasthi, S.K.; Sindhu, R.; Binod, P.; Kumar, V.; Pandey, A.; Zhang, Z. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. Chemosphere 2021, 290, 133310. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, Y.; Zhang, H.; Deng, X.; Wang, Y.; Ma, Y.; Zhao, X.; Zhang, C. Characterization and Comparison of Unfermented and Fermented Seed-Watermelon Juice. J. Food Qual. 2018, 2018, 4083903. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Khaneghah, A.M.; Aadil, R.M. Characterization, bioactive compounds, and antioxidant profiling of edible and waste parts of different watermelon (Citrullus lanatus) cultivars. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–13. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Garcia, E.; Santos, J.R.; Silva, C.L.M.; Brandão, T.R.S. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. J. Food Meas. Charact. 2017, 12, 292–300. [Google Scholar] [CrossRef]
- Ekloh, E.; Yafetto, L. Fermentation and valorization of watermelon (Citrullus lanatus) rind wastes into livestock feed using Aspergillus niger and Mucor sp. Sci. Afr. 2023, 23, e02035. [Google Scholar] [CrossRef]
- Greses, S.; Tomás-Pejó, E.; González-Fernández, C. Short-chain fatty acids and hydrogen production in one single anaerobic fermentation stage using carbohydrate-Rich food waste. J. Clean. Prod. 2020, 284, 124727. [Google Scholar] [CrossRef]
- Kassim, M.A.; Hussin, A.H.; Meng, T.K.; Kamaludin, R.; Zaki, M.S.I.M.; Zakaria, W.Z.E.W. Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: An optimization and kinetic studies. Int. J. Environ. Sci. Technol. 2021, 19, 2545–2558. [Google Scholar] [CrossRef]
- Hashem, A.H.; Suleiman, W.B.; Abu-Elreesh, G.; Shehabeldine, A.M.; Khalil, A.M.A. Sustainable lipid production from oleaginous fungus Syncephalastrum racemosum using synthetic and watermelon peel waste media. Bioresour. Technol. Rep. 2020, 12, 100569. [Google Scholar] [CrossRef]
- Davani, L.; Terenzi, C.; Tumiatti, V.; De Simone, A.; Andrisano, V.; Montanari, S. Integrated analytical approaches for the characterization of Spirulina and Chlorella microalgae. J. Pharm. Biomed. Anal. 2022, 219, 114943. [Google Scholar] [CrossRef]
- Faruque, M.O.; Hossain, M.M.; Razzak, S.A. Photoautotrophic Cultivation, Lipid Enhancement, and Dry Biomass Characterization of Microalgae Scenedesmus dimorphus for Bioenergy Application. Arab. J. Sci. Eng. 2023, 48, 16263–16280. [Google Scholar] [CrossRef]
- Kumar, C.P.; Sylas, V.; Mechery, J.; Ambily, V.; Kabeer, R.; Sunila, C. Phycoremediation of cashew nut processing wastewater and production of biodiesel using Planktochlorella nurekis and Chlamydomonas reinhardtii. Algal Res. 2022, 69, 102924. [Google Scholar] [CrossRef]
- Maletti, L.; D’Eusanio, V.; Lancellotti, L.; Marchetti, A.; Pincelli, L.; Strani, L.; Tassi, L. Candying process for enhancing pre-waste watermelon rinds to increase food sustainability. Futur. Foods 2022, 6, 100182. [Google Scholar] [CrossRef]
- Manirakiza, P.; Covaci, A.; Schepens, P. Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Blight & Dyer extraction methods. J. Food Compos. Anal. 2001, 14, 93–100. [Google Scholar]
- Costache, M.; Campeanu, G.; Neata, G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom. Biotechnol. Lett. 2012, 17, 7702–7708. [Google Scholar]
- Jayakumar, S.; Bhuyar, P.; Pugazhendhi, A.; Rahim, M.; Maniam, G.; Govindan, N. Effects of light intensity and nutrient on the lipid content of marine microalga (diatom) Amphipropra sp. for promising biodiesel production. Sci. Total Environ. 2021, 768, 145471. [Google Scholar] [CrossRef]
- Chiranjeevi, P.; Mohan, S.V. Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renew. Energy 2016, 98, 64–71. [Google Scholar] [CrossRef]
- Chandra, R.; Rohit, M.; Swamy, Y.; Mohan, S.V. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour. Technol. 2014, 165, 279–287. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Torpee, S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 2012, 110, 510–516. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, L.; Xu, K.; Wang, X.C.; Huang, Y.; Luo, L.; Xu, K.; Wang, X.C.; Huang, Y.; Luo, L.; et al. Characteristics of external carbon uptake by microalgae growth and associated effects on algal biomass composition. Bioresour. Technol. 2019, 292, 121887. [Google Scholar] [CrossRef]
- Silaban, A.; Bai, R.; Gutierrez-Wing, M.T.; Negulescu, I.I.; Rusch, K.A. Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng. Life Sci. 2013, 14, 47–56. [Google Scholar] [CrossRef]
- Andreeva, A.; Budenkova, E.; Babich, O.; Sukhikh, S.; Dolganyuk, V.; Michaud, P.; Ivanova, S. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Mar. Drugs 2021, 19, 381. [Google Scholar] [CrossRef]
- Orús, M.; Marco, E.; Martínez, F. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresour. Technol. 1991, 38, 179–184. [Google Scholar] [CrossRef]
- Marquez, F.J.; Sasaki, K.; Kakizono, T.; Nishio, N.; Nagai, S. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 1993, 76, 408–410. [Google Scholar] [CrossRef]
- Mathimani, T.; Sekar, M.; Shanmugam, S.; Sabir, J.S.; Chi, N.T.L.; Pugazhendhi, A. Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci. Total. Environ. 2021, 771, 144700. [Google Scholar] [CrossRef]
- Liu, X.; Ji, B.; Li, A. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO2 addition: Microscopic mechanism of microalgae-bacteria symbiosis. Water Res. 2023, 236, 119960. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina platensis Protein as Sustainable Ingredient for Nutritional Food Products Development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Devadasu, E.; Subramanyam, R. Enhanced Lipid Production in Chlamydomonas reinhardtii Caused by Severe Iron Deficiency. Front. Plant Sci. 2021, 12, 615577. [Google Scholar] [CrossRef]
- Qari, H.A.; Oves, M. Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J. Bioenerg. Biomembr. 2020, 52, 27–38. [Google Scholar] [CrossRef]
- Pascoal, P.V.; Ribeiro, D.M.; Cereijo, C.R.; Santana, H.; Nascimento, R.C.; Steindorf, A.S.; Calsing, L.C.G.; Formighieri, E.F.; Brasil, B.S.A.F. Biochemical and phylogenetic characterization of the wastewater tolerant Chlamydomonas biconvexa Embrapa|LBA40 strain cultivated in palm oil mill effluent. PLoS ONE 2021, 16, e0249089. [Google Scholar] [CrossRef]
- EN 14214; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2019.
- Sharma, J.; Kumar, V.; Kumar, S.S.; Malyan, S.K.; Mathimani, T.; Bishnoi, N.R.; Pugazhendhi, A. Microalgal consortia for municipal wastewater treatment–Lipid augmentation and fatty acid profiling for biodiesel production. J. Photochem. Photobiol. B Biol. 2020, 202, 111638. [Google Scholar] [CrossRef]
- Mathimani, T.; Uma, L.; Prabaharan, D. Optimization of direct solvent lipid extraction kinetics on marine trebouxiophycean alga by central composite design—Bioenergy perspective. Energy Convers. Manag. 2017, 142, 334–346. [Google Scholar] [CrossRef]
- Babiak, W.; Krzemińska, I. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies 2021, 14, 4007. [Google Scholar] [CrossRef]
- Cicci, A.; Scarponi, P.; Cavinato, C.; Bravi, M. Microalgae production in olive mill wastewater fractions and cattle digestate slurry: Bioremediation effects and suitability for energy and feed uses. Sci. Total. Environ. 2024, 932, 172773. [Google Scholar] [CrossRef] [PubMed]
- European Commission. CosIng-Cosmetics Ingredients. 2024. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 29 October 2024).
- SpecialChem. INCI Database Directory. 2024. Available online: https://cosmetics.specialchem.com/inci-names (accessed on 29 October 2024).
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Lupi, F.; Fernandes, H.; Tomé, M.; Sá-Correia, I.; Novais, J. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzym. Microb. Technol. 1994, 16, 546–550. [Google Scholar] [CrossRef]
- Kroen, W.K.; Rayburn, W.R. Influence of growth status and nutrient on extracellular polysaccharide synthesis by the soil alga Chlamydomonas mexicana (Chlorophyceae). J. Phycol. 1984, 20, 253–257. [Google Scholar] [CrossRef]
- Brányiková, I.; Maršálková, B.; Doucha, J.; Brányik, T.; Bišová, K.; Zachleder, V.; Vítová, M. Microalgae—Novel highly efficient starch producers. Biotechnol. Bioeng. 2010, 108, 766–776. [Google Scholar] [CrossRef]
- Laroche, C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar. Drugs 2022, 20, 336. [Google Scholar] [CrossRef]
- Kumar, A.S.; Mody, K.; Jha, B. Bacterial exopolysaccharides—A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef]
- Otero, A.; Vincenzini, M. Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J. Phycol. 2004, 40, 74–81. [Google Scholar] [CrossRef]
- Han, P.-P.; Shen, S.-G.; Wang, H.-Y.; Sun, Y.; Dai, Y.-J.; Jia, S.-R. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Res. 2015, 9, 143–150. [Google Scholar] [CrossRef]
- Arad, S.; Friedman, O.; Rotem, A. Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl. Environ. Microbiol. 1988, 54, 2411–2414. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, L.; Chen, C.; Zhao, S.; Sun, M.; Gao, Z.; Wu, H.; Fan, J. Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour. Technol. 2020, 309, 123362. [Google Scholar] [CrossRef] [PubMed]
- Raungsomboon, S.; Chidthaisong, A.; Bunnag, B.; Inthorn, D.; Harvey, N.W. Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Res. 2006, 40, 3759–3766. [Google Scholar] [CrossRef] [PubMed]
- Soanen, N.; Da Silva, E.; Gardarin, C.; Michaud, P.; Laroche, C. Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour. Technol. 2016, 213, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Liang, H.; Xue, S. Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism. Bioresour. Technol. 2020, 303, 122877. [Google Scholar] [CrossRef]
- Tan, K.W.M.; Lee, Y.K. The dilemma for lipid productivity in green microalgae: Importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol. Biofuels 2016, 9, 255. [Google Scholar] [CrossRef]
- Johnson, X.; Alric, J. Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch. Eukaryot. Cell 2013, 12, 776–793. [Google Scholar] [CrossRef]
Citric Acid (g% mL−1) | 0.09 ± 0.00 |
---|---|
Soluble solid (°Brix) | 2.3 ± 0.1 |
pH | 4.83–5.40 |
Polyphenols (mg L−1) | 37.6 ± 0.58 |
DPPH (mgTrolox eq. 100 gdry weight−1) | 150–160 |
DPPH (%) | 41.5 ± 1.8 |
Moisture (%) | 92–93 |
Protein (%) | 3.53–4.85 |
Lipid (%) | 1.50–3.13 |
Carbohydrate (%) | 39.46–55.52 |
Ash (%) | 5.85–7.48 |
Vitamin A (mg gdb−1) | 0.33–0.39 |
Vitamin C (mg gdb−1) | 0.06–0.07 |
Tiammin (mg gdb−1) | 0.01 |
Riboflavin (mg gdb−1) | 0.0005–0.0009 |
Niacin (mg gdb−1) | 0.0008–0.0011 |
Total Polyphenolic Content (TPC) (mg a. clorogenic eq. Kgwb−1) | 341.15 ± 3.74 |
Citrullin (mgcitrulline% gdb−1) | 60–80 |
Total Flavonoid Content (TFC) (mgquercitin eq.% gdb−1) | 280–350 |
Dry Weight (g L−1) | Cell Count (Million Cell mL−1) | µ (d−1) | ||
---|---|---|---|---|
Scenedesmus | CTRL | 0.16 ± 0.09 | 6.07 ± 1.16 | 0.23 ± 0.02 |
WW | 0.95 ± 0.07 | 21.38 ± 3.36 | 0.40 ± 0.02 | |
Chlorella | CTRL | 0.14 ± 0.05 | 4.67 ± 0.49 | 0.21 ± 0.03 |
WW | 0.37 ± 0.02 | 14.62 ± 1.00 | 0.37 ± 0.04 | |
Spirulina | CTRL | 0.30 ± 0.00 | 69.75 ± 2.00 | 22 ± 0.00 |
WW | 0.65 ± 0.07 | 10.08 ± 0.12 | 0.00 ± 0.00 | |
Chlamydomonas | CTRL | 0.15 ± 0.07 | 13.17 ± 0.00 | 0.22 ± 0.00 |
WW | 3.70 ± 0.28 | 0.06 ± 0.04 | 0.00 ± 0.09 |
Spirulina | Chlamydomonas | Chlorella | Scenedesmus | |||||
---|---|---|---|---|---|---|---|---|
CTRL | WW | CTRL | WW | CTRL | WW | CTRL | WW | |
Polyunsaturated (%) | 27.68 ± 0.47 | 2.19 ± 2.44 | 58.78 ± 0.04 | 12.48 ± 4.21 | 75.15 ± 9.26 | 0.86 ± 0.99 | 69.80 ± 5.21 | 3.60 ± 0.47 |
Saturated (%) | 53.53 ± 0.06 | 71.14 ± 0.01 | 41.22 ± 0.04 | 52.30 ± 17.69 | 24.85 ± 9.26 | 82.55 ± 4.42 | 30.20 ± 5.22 | 50.84 ± 7.97 |
Monounsaturated (%) | 14.24 ± 0.17 | 15.05 ± 0.05 | 0.00 ± 0.00 | 34.32 ± 13.27 | 0.00 ± 0.00 | 11.26 ± 2.59 | 0.00 ± 0.00 | 36.80 ± 6.08 |
Other (%) | 4.55 ± 0.35 | 11.62 ± 2.39 | 0.00 ± 0.00 | 0.90 ± 0.21 | 0.00 ± 0.00 | 5.33 ± 1.92 | 0.00 ± 0.00 | 8.76 ± 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarponi, P.; Fontana, L.; Bertesi, F.; D’Eusanio, V.; Tassi, L.; Forti, L. Preliminary Evaluation of Watermelon Liquid Waste as an Alternative Substrate for Microalgae Cultivation: A Circular Economy Approach to the Production of High-Value Secondary Products by Chlorella vulgaris, Scenedesmus sp., Arthrospira platensis, and Chlamydomonas pitschmanii. Fermentation 2024, 10, 582. https://doi.org/10.3390/fermentation10110582
Scarponi P, Fontana L, Bertesi F, D’Eusanio V, Tassi L, Forti L. Preliminary Evaluation of Watermelon Liquid Waste as an Alternative Substrate for Microalgae Cultivation: A Circular Economy Approach to the Production of High-Value Secondary Products by Chlorella vulgaris, Scenedesmus sp., Arthrospira platensis, and Chlamydomonas pitschmanii. Fermentation. 2024; 10(11):582. https://doi.org/10.3390/fermentation10110582
Chicago/Turabian StyleScarponi, Paolina, Lorenzo Fontana, Francesco Bertesi, Veronica D’Eusanio, Lorenzo Tassi, and Luca Forti. 2024. "Preliminary Evaluation of Watermelon Liquid Waste as an Alternative Substrate for Microalgae Cultivation: A Circular Economy Approach to the Production of High-Value Secondary Products by Chlorella vulgaris, Scenedesmus sp., Arthrospira platensis, and Chlamydomonas pitschmanii" Fermentation 10, no. 11: 582. https://doi.org/10.3390/fermentation10110582
APA StyleScarponi, P., Fontana, L., Bertesi, F., D’Eusanio, V., Tassi, L., & Forti, L. (2024). Preliminary Evaluation of Watermelon Liquid Waste as an Alternative Substrate for Microalgae Cultivation: A Circular Economy Approach to the Production of High-Value Secondary Products by Chlorella vulgaris, Scenedesmus sp., Arthrospira platensis, and Chlamydomonas pitschmanii. Fermentation, 10(11), 582. https://doi.org/10.3390/fermentation10110582