The Role of Yeast in the Valorisation of Food Waste
Abstract
:1. Introduction
1.1. Circular Bioeconomy and Waste Valorisation
1.2. Yeast as a Chassis for the Valorisation of Waste
2. Yeast as a Chassis for Valorisation of Food Waste
2.1. Valorisation of Olive Mill Wastewater
2.2. Valorisation of Agricultural Waste Streams
2.3. Yeast Valorisation of Waste from the Food, Wine, and Dairy Industries
2.3.1. Dairy (Whey)
2.3.2. Fruit and Vegetable Waste
2.3.3. Oils
3. Valorisation of Food Related Waste Produced by Yeast
4. Current State of Yeast in the Food Waste Valorisation Sphere
4.1. Regulatory Considerations
4.2. Geographical Considerations
4.3. Environmental Impact of Large-Scale Fermentations
5. Conclusions
Funding
Conflicts of Interest
References
- Brandão, A.S.; Gonçalves, A.; Santos, J.M.R.C.A. Circular bioeconomy strategies: From scientific research to commercially viable products. J. Clean. Prod. 2021, 295, 126407. [Google Scholar] [CrossRef]
- Holden, N.M.; Neill, A.M.; Stout, J.C.; O’Brien, D.; Morris, M.A. Biocircularity: A Framework to Define Sustainable, Circular Bioeconomy. Circ. Econ. Sustain. 2023, 3, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Alpaslan, B. Pro-industry Policies, Sustainability, and Industrial Growth. In Industrial Policy and Sustainable Growth; Yülek, M.A., Ed.; Springer: Singapore, 2018; pp. 27–49. [Google Scholar] [CrossRef]
- Ma, N.; Shum, W.Y.; Han, T.; Cheong, T.S. Global Industrial Development: Insights From the Distribution Dynamics Approach for the Post COVID Era. Front. Public Health 2021, 9, 792947. [Google Scholar] [CrossRef]
- Hosono, A. Industrial Development and Transformation: Insights from Outstanding Cases. In SDGs, Transformation, and Quality Growth: Insights from International Cooperation; Hosono, A., Ed.; Springer: Singapore, 2022; pp. 39–73. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Lamers, P. Circular Bioeconomy Concepts—A Perspective. Front. Sustain. 2021, 2, 701509. [Google Scholar] [CrossRef]
- Ayres, R.U. Life cycle analysis: A critique. Resour. Conserv. Recycl. 1995, 14, 199–223. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental management: Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Sevigné-Itoiz, E.; Mwabonje, O.; Panoutsou, C.; Woods, J. Life cycle assessment (LCA): Informing the development of a sustainable circular bioeconomy? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200352. [Google Scholar] [CrossRef]
- Martinez-Sanchez, V.; Kromann, M.A.; Astrup, T.F. Life cycle costing of waste management systems: Overview, calculation principles and case studies. Waste Manag. 2015, 36, 343–355. [Google Scholar] [CrossRef]
- Krüger, A.; Schäfers, C.; Busch, P.; Antranikian, G. Digitalization in microbiology—Paving the path to sustainable circular bioeconomy. New Biotechnol. 2020, 59, 88–96. [Google Scholar] [CrossRef]
- Tsui, T.H.; van Loosdrecht, M.C.M.; Dai, Y.; Tong, Y.W. Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. Bioresour. Technol. 2023, 369, 128445. [Google Scholar] [CrossRef]
- Vaishnavi, J.; Jabez Osborne, W.; Samuel, J. Chapter 11—Microorganism in waste valorization and its impact on the environment and economy. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services; Samuel, J., Kumar, A., Singh, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 191–205. [Google Scholar] [CrossRef]
- Lad, B.C.; Coleman, S.M.; Alper, H.S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab056. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Huo, Y.; Yang, Y. Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Abdel Azim, A.; Bellini, R.; Vizzarro, A.; Bassani, I.; Pirri, C.F.; Menin, B. Highlighting the Role of Archaea in Urban Mine Waste Exploitation and Valorisation. Recycling 2023, 8, 20. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W. Yeast Systematics and Phylogeny—Implications of Molecular Identification Methods for Studies in Ecology. In Biodiversity and Ecophysiology of Yeasts; Péter, G., Rosa, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 11–30. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Molecular taxonomy of the yeasts. Yeast 1994, 10, 1727–1740. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.V.; Serra, L.A.; Pacheco, T.F.; Ferreira, L.M.; Brandão, L.T.; Freitas, M.N.; Trichez, D.; Almeida, J.R. Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. Fermentation 2022, 8, 575. [Google Scholar] [CrossRef]
- Murphy, L.; Lynch, C.D.; O’Connell, D.J. Valorisation of Spent Yeast Fermentation Media through Compositional-Analysis-Directed Supplementation. Appl. Microbiol. 2024, 4, 959–971. [Google Scholar] [CrossRef]
- Pichia.com. Pichia Produced Products on the Market. Available online: https://pichia.com/science-center/commercialized-products/ (accessed on 30 May 2024).
- Thuluva, S.; Paradkar, V.; Gunneri, S.; Yerroju, V.; Mogulla, R.; Suneetha, P.V.; Turaga, K.; Kyasani, M.; Manoharan, S.K.; Adabala, S.; et al. Immunogenicity and safety of Biological E’s CORBEVAX vaccine compared to COVISHIELD (ChAdOx1 nCoV-19) vaccine studied in a phase-3, single blind, multicentre, randomized clinical trial. Hum. Vaccin. Immunother. 2023, 19, 2203632. [Google Scholar] [CrossRef]
- Van Roy, M.; Ververken, C.; Beirnaert, E.; Hoefman, S.; Kolkman, J.; Vierboom, M.; Breedveld, E.; ‘t Hart, B.; Poelmans, S.; Bontinck, L.; et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 135. [Google Scholar] [CrossRef]
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.I.; Saini, K.S.; Redwan, E.M. Cell factories for insulin production. Microb. Cell Factories 2014, 13, 141. [Google Scholar] [CrossRef]
- Chance, R.E.; Frank, B.H. Research, development, production, and safety of biosynthetic human insulin. Diabetes Care 1993, 16 (Suppl. S3), 133–142. [Google Scholar] [CrossRef]
- Nielsen, J. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering. Bioengineered 2013, 4, 207–211. [Google Scholar] [CrossRef]
- Park, Y.-K.; Nicaud, J.-M.; Ledesma-Amaro, R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2018, 36, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.L.; Gancedo, C. mutants devoid of pyruvate carboxylase activity show an unusual growth phenotype. Eukaryot. Cell 2005, 4, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Bank, E.I. Wastewater as a Resource; European Investment Bank: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Arous, F.; Azabou, S.; Jaouani, A.; Zouari-Mechichi, H.; Nasri, M.; Mechichi, T. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environ. Sci. Pollut. Res. 2016, 23, 6783–6792. [Google Scholar] [CrossRef] [PubMed]
- Hachicha, S.; Chtourou, M.; Medhioub, K.; Ammar, E. Compost of poultry manure and olive mill wastes as an alternative fertilize. Agron. Sustain. Dev. 2006, 26, 135–142. [Google Scholar] [CrossRef]
- Hamimed, S.; Jebli, N.; Sellami, H.; Landoulsi, A.; Chatti, A. Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production. Chem. Biodivers. 2020, 17, e1900608. [Google Scholar] [CrossRef]
- Singh, S.; Bharadwaj, T.; Verma, D.; Dutta, K. Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564T. Chemosphere 2022, 308, 136269. [Google Scholar] [CrossRef]
- D’Annibale, A.; Sermanni, G.G.; Federici, F.; Petruccioli, M. Olive-mill wastewaters: A promising substrate for microbial lipase production. Bioresour. Technol. 2006, 97, 1828–1833. [Google Scholar] [CrossRef]
- Sarris, D.; Rapti, A.; Papafotis, N.; Koutinas, A.A.; Papanikolaou, S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019, 24, 222. [Google Scholar] [CrossRef]
- Otoupal, P.B.; Geiselman, G.M.; Oka, A.M.; Barcelos, C.A.; Choudhary, H.; Dinh, D.; Zhong, W.; Hwang, H.; Keasling, J.D.; Mukhopadhyay, A.; et al. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid lactone using Rhodosporidium toruloides. Microb. Cell Factories 2022, 21, 254. [Google Scholar] [CrossRef]
- Bertacchi, S.; Bettiga, M.; Porro, D.; Branduardi, P. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidium toruloides. Biotechnol. Biofuels 2020, 13, 47. [Google Scholar] [CrossRef]
- Nunta, R.; Techapun, C.; Sommanee, S.; Mahakuntha, C.; Porninta, K.; Punyodom, W.; Phimolsiripol, Y.; Rachtanapun, P.; Wang, W.; Zhuang, X.; et al. Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci. Rep. 2023, 13, 727. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Tian, S.; Lv, L.; Ding, Y.; Xu, J.; Zhang, J.; Li, L. Production and purification of 2-phenylethanol by Saccharomyces cerevisiae using tobacco waste extract as a substrate. Lett. Appl. Microbiol. 2021, 73, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Bzducha-Wróbel, A.; Koczoń, P.; Błażejak, S.; Kozera, J.; Kieliszek, M. Valorization of Deproteinated Potato Juice Water into β-Glucan Preparation of C. utilis Origin: Comparative Study of Preparations Obtained by Two Isolation Methods. Waste Biomass Valorization 2020, 11, 3257–3271. [Google Scholar] [CrossRef]
- Bzducha-Wróbel, A.; Bryła, M.; Gientka, I.; Błażejak, S.; Janowicz, M. Candida utilis ATCC 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins 2019, 11, 192. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Liu, B.; Wang, Z.; Yuan, Y.; Yue, T. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption. PLoS ONE 2015, 10, e0136045. [Google Scholar] [CrossRef]
- Koutinas, M.; Menelaou, M.; Nicolaou, E.N. Development of a hybrid fermentation–enzymatic bioprocess for the production of ethyl lactate from dairy waste. Bioresour. Technol. 2014, 165, 343–349. [Google Scholar] [CrossRef]
- Parashar, A.; Jin, Y.; Mason, B.; Chae, M.; Bressler, D.C. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J. Dairy Sci. 2016, 99, 1859–1867. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Papapostolou, H.; Dimitrellou, D.; Kopsahelis, N.; Katechaki, E.; Bekatorou, A.; Bosnea, L.A. Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresour. Technol. 2009, 100, 3734–3739. [Google Scholar] [CrossRef]
- Chua, J.-Y.; Lu, Y.; Liu, S.-Q. Evaluation of five commercial non-Saccharomyces yeasts in fermentation of soy (tofu) whey into an alcoholic beverage. Food Microbiol. 2018, 76, 533–542. [Google Scholar] [CrossRef]
- Al-saned, A.J.O.; Kitafa, B.A.; Badday, A.S. Microbial fuel cells (MFC) in the treatment of dairy wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1067, 012073. [Google Scholar] [CrossRef]
- Chaiyaso, T.; Manowattana, A.; Techapun, C.; Watanabe, M. Efficient bioconversion of enzymatic corncob hydrolysate into biomass and lipids by oleaginous yeast Rhodosporidium paludigenum KM281510. Prep. Biochem. Biotechnol. 2019, 49, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Hamden, Z.; El-Ghoul, Y.; Alminderej, F.M.; Saleh, S.M.; Majdoub, H. High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency. Antioxidants 2022, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Park, A.; Su, W.W. Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids. RSC Adv. 2018, 8, 27963–27972. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Chen, C.-W.; Patel, A.K.; Saini, J.K.; Dong, C.-D.; Singhania, R.R. Valorization of Pineapple Leaves Waste for the Production of Bioethanol. Bioengineering 2022, 9, 557. [Google Scholar] [CrossRef]
- González-Sáiz, J.-M.; Esteban-Díez, I.; Rodríguez-Tecedor, S.; Pizarro, C. Valorization of onion waste and by-products: MCR-ALS applied to reveal the compositional profiles of alcoholic fermentations of onion juice monitored by near-infrared spectroscopy. Biotechnol. Bioeng. 2008, 101, 776–787. [Google Scholar] [CrossRef]
- Ntaikou, I.; Menis, N.; Alexandropoulou, M.; Antonopoulou, G.; Lyberatos, G. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresour. Technol. 2018, 263, 75–83. [Google Scholar] [CrossRef]
- Donzella, S.; Serra, I.; Fumagalli, A.; Pellegrino, L.; Mosconi, G.; Lo Scalzo, R.; Compagno, C. Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum. Biotechnol. Biofuels Bioprod. 2022, 15, 51. [Google Scholar] [CrossRef]
- Chatterjee, S.; Venkata Mohan, S. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization andfermentation optimization. Bioresour. Technol. 2021, 340, 125650. [Google Scholar] [CrossRef]
- Bertacchi, S.; Pagliari, S.; Cantù, C.; Bruni, I.; Labra, M.; Branduardi, P. Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids. Int. J. Environ. Res. Public Health 2021, 18, 1146. [Google Scholar] [CrossRef]
- Darvishi, F.; Moradi, M.; Madzak, C.; Jolivalt, C. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures. Appl. Biochem. Biotechnol. 2017, 181, 1228–1239. [Google Scholar] [CrossRef]
- Fraga, J.L.; Souza, C.P.L.; Pereira, A.d.S.; Aguieiras, E.C.G.; de Silva, L.O.; Torres, A.G.; Freire, D.G.; Amaral, P.F.F. Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech. 2021, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.C.; Torrado, I.; Carvalheiro, F.; Dores, V.; Guerra, V.; Lourenço, P.M.L.; Duarte, L.C. Bioethanol production from extracted olive pomace: Dilute acid hydrolysis. Bioethanol 2016, 2, 103–111. [Google Scholar] [CrossRef]
- Pedras, B.M.; Gonçalves, C.; Figueira, D.R.; Simões, P.; Gonçalves, P.; Paiva, A.; Barreiros, S.; Salema-Oom, M. White wine grape pomace as a suitable carbon source for lipid and carotenoid production by fructophilic Rhodorotula babjevae. J. Appl. Microbiol. 2022, 133, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Putra, F.J.; Kahar, P.; Kondo, A.; Ogino, C. Valorization of Lignin and Its Derivatives Using Yeast. Processes 2022, 10, 2004. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Phan, D.-P.; Sarwar, A.; Tran, M.H.; Lee, O.K.; Lee, E.Y. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind. Crops Prod. 2021, 161, 113219. [Google Scholar] [CrossRef]
- Martínez-Cámara, S.; Ibañez, A.; Rubio, S.; Barreiro, C.; Barredo, J.-L. Main Carotenoids Produced by Microorganisms. Encyclopedia 2021, 1, 1223–1245. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Ascencio, J.J.; Philippini, R.R.; Antunes, F.A.F.; de Carvalho, A.S.; Abdeshahian, M.; dos Santos, J.C.; da Silva, S.S. Valorization of Lignocellulosic Biomass and Agri-food Processing Wastes for Production of Glucan Polymer. Waste Biomass Valorization 2021, 12, 2915–2931. [Google Scholar] [CrossRef]
- Driscoll, M.; Hansen, R.; Ding, C.; Cramer, D.; Yan, J. Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 2009, 8, 218–225. [Google Scholar] [CrossRef]
- Tsakona, S.; Skiadaresis, A.G.; Kopsahelis, N.; Chatzifragkou, A.; Papanikolaou, S.; Kookos, I.K.; Koutinas, A.A. Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chem. 2016, 198, 85–92. [Google Scholar] [CrossRef]
- Pereyra, C.M.; Gil, S.; Cristofolini, A.; Bonci, M.; Makita, M.; Monge, M.P.; Montenegro, M.A.; Cavaglieri, L.R. The production of yeast cell wall using an agroindustrial waste influences the wall thickness and is implicated on the aflatoxin B1 adsorption process. Food Res. Int. 2018, 111, 306–313. [Google Scholar] [CrossRef]
- Bhat, R.; Di Pasquale, J.; Bánkuti, F.I.; Siqueira, T.T.; Shine, P.; Murphy, M.D. Global Dairy Sector: Trends, Prospects, and Challenges. Sustainability 2022, 14, 4193. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Gaffey, J.; Sharma, M.; Dewhurst, R.J.; Moreau, B.; Newbold, J.; Clark, W.; Thakur, V.K.; Gupta, V.K. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 2022, 346, 126444. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, C.I.; Gomes, A.M.P.; Pintado, M.E.; Malcata, F.X. Bovine whey proteins—Overview on their main biological properties. Food Res. Int. 2007, 40, 1197–1211. [Google Scholar] [CrossRef]
- Pintado, M.E.; Macedo, A.C.; Malcata, F.X. Review: Technology, Chemistry and Microbiology of Whey Cheeses. Food Sci. Technol. Int. 2001, 7, 105–116. [Google Scholar] [CrossRef]
- Lawton, M.R.; deRiancho, D.L.; Alcaine, S.D. Lactose utilization by Brettanomyces claussenii expands potential for valorization of dairy by-products to functional beverages through fermentation. Curr. Opin. Food Sci. 2021, 42, 93–101. [Google Scholar] [CrossRef]
- Reynolds, C.; Goucher, L.; Quested, T.; Bromley, S.; Gillick, S.; Wells, V.K.; Evans, D.; Koh, L.; Carlsson Kanyama, A.; Katzeff, C.; et al. Review: Consumption-stage food waste reduction interventions—What works and how to design better interventions. Food Policy 2019, 83, 7–27. [Google Scholar] [CrossRef]
- Farhidi, F.; Madani, K.; Crichton, R. How the US Economy and Environment can Both Benefit From Composting Management. Environ. Health Insights 2022, 16, 11786302221128454. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S. Optimising Industrial Food Waste Management. Procedia Manuf. 2017, 8, 432–439. [Google Scholar] [CrossRef]
- OuYang, Q.; Duan, X.; Li, L.; Tao, N. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of Geotrichum citri-aurantii. Front. Microbiol. 2019, 10, 55. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Belo, I. Microbial valorization of waste cooking oils for valuable compounds production—A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2583–2616. [Google Scholar] [CrossRef]
- Félix, S.; Araújo, J.; Pires, A.M.; Sousa, A.C. Soap production: A green prospective. Waste Manag. 2017, 66, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.H.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. Eur. Polym. J. 2018, 99, 142–149. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Valorization of winery and oil mill wastes by microbial technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
- Iorizzo, M.; Coppola, F.; Letizia, F.; Testa, B.; Sorrentino, E. Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes 2021, 9, 839. [Google Scholar] [CrossRef]
- Jaeger, A.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Brewer’s Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation 2020, 6, 123. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Pereira, J.O.; Ferreira, C.; Faustino, M.; Durão, J.; Pintado, M.E.; Carvalho, A.P. Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. Innov. Food Sci. Emerg. Technol. 2022, 81, 103148. [Google Scholar] [CrossRef]
- Feldmann, H. Yeast Cell Architecture and Functions. In Yeast: Molecular and Cell Biology; Wiley-VCH: Weinheim, Germany, 2012; pp. 5–24. [Google Scholar] [CrossRef]
- Gautério, G.V.; Silvério, S.I.D.C.; Egea, M.B.; Lemes, A.C. β-glucan from brewer’s spent yeast as a techno-functional food ingredient. Front. Food Sci. Technol. 2022, 2, 1074505. [Google Scholar] [CrossRef]
- Yang, W.; Huang, G. Extraction methods and activities of natural glucans. Trends Food Sci. Technol. 2021, 112, 50–57. [Google Scholar] [CrossRef]
- Krpan, V.; Vlatka, P.-T.; Krbavčić, I.; Slobodan, G.; Katarina, B. Potential Application of Yeast β-Glucans in Food Industry. Agric. Conspec. Sci. 2009, 74, 277–282. [Google Scholar]
- Bacha, U.; Nasir, M.A.-O.; Iqbal, S.; Anjum, A.A. Nutraceutical, Anti-Inflammatory, and Immune Modulatory Effects of β-Glucan Isolated from Yeast. Biomed. Res. Int. 2017, 2017, 8972678. [Google Scholar] [CrossRef]
- Varelas, V.; Tataridis, P.; Liouni, M.; Nerantzis, E.T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. Waste Biomass Valorization 2016, 7, 807–817. [Google Scholar] [CrossRef]
- Pérez-Serradilla, J.A.; de Castro, M.D.L. Role of lees in wine production: A review. Food Chem. 2008, 111, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Sudagar, A.J.; Rangam, N.V.; Ruszczak, A.; Borowicz, P.; Tóth, J.; Kövér, L.; Michałowska, D.; Roszko, M.Ł.; Noworyta, K.R.; Lesiak, B. Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate. Nanomaterials 2021, 11, 2659. [Google Scholar] [CrossRef]
- Modesto, H.R.; Lemos, S.G.; dos Santos, M.S.; Komatsu, J.S.; Gonçalves, M.; Carvalho, W.A.; Carrilho, E.N.V.M.; Labuto, G. Activated carbon production from industrial yeast residue to boost up circular bioeconomy. Environ. Sci. Pollut. Res. 2021, 28, 24694–24705. [Google Scholar] [CrossRef]
- Costa, E.M.; Oliveira, A.S.; Silva, S.; Ribeiro, A.B.; Pereira, C.F.; Ferreira, C.; Casanova, F.; Pereira, J.O.; Freixo, R.; Pintado, M.E.; et al. Spent Yeast Waste Streams as a Sustainable Source of Bioactive Peptides for Skin Applications. Int. J. Mol. Sci. 2023, 24, 2253. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mikes, F.; Buhler, S.; Matsakas, L. Valorization of Brewers’ Spent Grain for the Production of Lipids by Oleaginous Yeast. Molecules 2018, 23, 3052. [Google Scholar] [CrossRef]
- Soh, E.Y.S.; Lim, S.S.; Chew, K.W.; Phuang, X.W.; Ho, V.M.V.; Chu, K.Y.H.; Wong, R.R.; Lee, L.Y.; Tiong, T.J. Valorization of spent brewery yeast biosorbent with sonication-assisted adsorption for dye removal in wastewater treatment. Environ. Res. 2022, 204, 112385. [Google Scholar] [CrossRef]
- Kavalopoulos, M.; Stoumpou, V.; Christofi, A.; Mai, S.; Barampouti, E.M.; Moustakas, K.; Malamis, D.; Loizidou, M. Sustainable valorisation pathways mitigating environmental pollution from brewers’ spent grains. Environ. Pollut. 2021, 270, 116069. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, T.; Coelho, E.; Romaní, A.; Domingues, L. Intensifying ethanol production from brewer’s spent grain waste: Use of whole slurry at high solid loadings. New Biotechnol. 2019, 53, 1–8. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Yin, Z.; Sun, J.; Wang, B.; Zhao, D.; Zeng, X.A.; Li, H.; Huang, M.; Sun, B. Optimization of Jiuzao protein hydrolysis conditions and antioxidant activity in vivo of Jiuzao tetrapeptide Asp-Arg-Glu-Leu by elevating the Nrf2/Keap1-p38/PI3K-MafK signaling pathway. Food Funct. 2021, 12, 4808–4824. [Google Scholar] [CrossRef]
- Xu, X.; Feng, W.; Guo, L.; Huang, X.; Shi, B. Controlled synthesis of distiller’s grains biochar for turbidity removal in Baijiu. Sci. Total Environ. 2023, 867, 161382. [Google Scholar] [CrossRef] [PubMed]
- Chequer, F.D.; de Oliveira, G.A.R.; Ferraz, E.A.; Cardoso, J.C.; Zanoni, M.B.; de Oliveira, D.P. Textile Dyes: Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing; Melih, G., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Stewart, K.; Willoughby, N.; Zhuang, S. Research Trends on Valorisation of Agricultural Waste Discharged from Production of Distilled Beverages and Their Implications for a “Three-Level Valorisation System”. Sustainability 2024, 16, 6847. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Q.; Wang, J.; Chang, X.; Yao, L.; Chen, X.; Li, X. Characteristics of four yeasts and the effects of yeast diversity on the fermentation of baijiu. Food Biosci. 2023, 56, 103094. [Google Scholar] [CrossRef]
- Khedulkar, A.P.; Dang, V.D.; Thamilselvan, A.; Doong, R.-a.; Pandit, B. Sustainable high-energy supercapacitors: Metal oxide-agricultural waste biochar composites paving the way for a greener future. J. Energy Storage 2024, 77, 109723. [Google Scholar] [CrossRef]
- Morone, P.; Imbert, E. Food waste and social acceptance of a circular bioeconomy: The role of stakeholders. Curr. Opin. Green. Sustain. Chem. 2020, 23, 55–60. [Google Scholar] [CrossRef]
- Pender, A.; Kelleher, L.; O’Neill, E. Regulation of the bioeconomy: Barriers, drivers and potential for innovation in the case of Ireland. Clean. Circ. Bioeconomy 2024, 7, 100070. [Google Scholar] [CrossRef]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Poon, C.S. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Fertahi, S.; Elalami, D.; Tayibi, S.; Taarji, N.; Lyamlouli, K.; Bargaz, A.; Oukarroum, A.; Zeroual, Y.; El Bouhssini, M.; Barakat, A. The current status and challenges of biomass biorefineries in Africa: A critical review and future perspectives for bioeconomy development. Sci. Total Environ. 2023, 870, 162001. [Google Scholar] [CrossRef]
- FAOSTAT Crop Residues Statistics. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 10 November 2024).
- Negi, S.; Hu, A.; Kumar, S. 24—Circular Bioeconomy: Countries’ Case Studies. In Biomass, Biofuels, Biochemicals; Pandey, A., Tyagi, R.D., Varjani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 721–748. [Google Scholar] [CrossRef]
- Deselnicu, D.; Militaru, G.; Deselnicu, V.; ZĂInescu, G.; Albu, L. Towards a Circular Economy—A Zero Waste Programme for Europe. In Proceedings of the ICAMS 2018—7th International Conference on Advanced Materials and Systems, Bucharest, Romania, 18–20 October 2018; pp. 563–568. [Google Scholar] [CrossRef]
- Kardung, M.; Drabik, D. Full speed ahead or floating around? Dynamics of selected circular bioeconomies in Europe. Ecol. Econ. 2021, 188, 107146. [Google Scholar] [CrossRef]
- Salvador, R.; Pereira, R.B.; Sales, G.F.; de Oliveira, V.C.V.; Halog, A.; De Francisco, A.C. Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean. Circ. Econ. Sustain. 2022, 2, 281–312. [Google Scholar] [CrossRef]
- Agrawal, D.; Awani, K.; Nabavi, S.A.; Balan, V.; Jin, M.; Aminabhavi, T.M.; Dubey, K.K.; Kumar, V. Carbon emissions and decarbonisation: The role and relevance of fermentation industry in chemical sector. Chem. Eng. J. 2023, 475, 146308. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An overview of fermentation in the food industry—Looking back from a new perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Sarkale, P.S.; Ghewari, P.G.; Sarkale, P.S. Emerging Trends in Fermentation Technology: Implications for Food Security and Environmental Sustainability. Nat. Camp. 2024, 28, 252–260. [Google Scholar]
Waste Valorised | Yeast Strain Used | Product | Citation |
---|---|---|---|
Olive mill wastewater | OMW yeasts | single-cell protein | [30] |
Yarrowia lipolytica | magnesium oxide nanoparticles | [32] | |
Rhodosporidium toruloides | biodiesel feedstock | [33] | |
Candida cylindracea | lipases | [34] | |
citric acid | [35] | ||
Agricultural industry waste (Lignin, Camelina meal, biomass) | Rhodosporidium toruloides | triacetic acid lactone | [36] |
Rhodosporidium toruloides | carotenoids | [37] | |
Candida tropicalis | ethanol | [38] | |
S. cerevisiae | 2-phenylethanol | [39] | |
Candida utilis | β-glucans | [40] | |
Rhodosporidium toruloides | lipase enzymes | [41] | |
Candida utilis | mycotoxin absorption | [42] | |
Dairy industry waste (Whey; wastewater) | Kluyveromyces marxianus | ethanol; ethyl lactate | [43] |
S. cerevisiae | ethanol | [44] | |
Kluyveromyces marxianus | cheese production | [45] | |
non-Saccharomyces | alcoholic beverages | [46] | |
S. cerevisiae | wastewater treatment; energy | [47] | |
Fruit and vegetable waste | Rhodosporidium paludigenum | biomass and lipids | [48] |
S. cerevisiae | bioethanol and vinegar | [49] | |
Yarrowia lipolytica | recombinant protein | [50] | |
S. cerevisiae | ethanol | [51] | |
S. cerevisiae | onion vinegar | [52] | |
S. cerevisiae, Pichia stipitis | ethanol | [53] | |
Rhodosporidiobolus azoricus, Cutaneotrichosporon oleaginosum | biodiesel | [54] | |
S. cerevisiae | sugars, ethanol | [55] | |
Rhodosporidium toruloides | carotenoids | [56] | |
Yarrowia lipolytica | laccase | [57] | |
Oils (sunflower, olive, palm) | Yarrowia lipolytica | lipase | [58] |
S. cerevisiae | ethanol | [59] | |
Rhodotorula babjevae | mannitol, carotenoids, glycolipid | [60] |
Type of Waste | Yeast Strain Producing Waste | Product/Output | References |
---|---|---|---|
Brewers spent yeast (BSY) | S. cerevisiae | β-glucans | [88] |
Winery spent yeast | S. cerevisiae | β-glucans | [89] |
BSY | S. cerevisiae | peptides | [83] |
BSY | S. cerevisiae | silver phosphate nanocomposites | [91] |
BSY | Unspecified | activated carbon | [92] |
Fermentation waste | S. cerevisiae | peptides | [93] |
Microbrewery waste | S. cerevisiae, R. toruloides | lipids/biodiesel | [94] |
BSY | S. cerevisiae | wastewater treatment | [95] |
BSY | S. cerevisiae | biogas, bioethanol, oils | [96] |
BSY | S. cerevisiae | ethanol | [97] |
Baijiu/Jiuzao | Variety of Saccharomyces and non-Saccharomyces strains | antioxidants biochar | [98,99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, L.; O’Connell, D.J. The Role of Yeast in the Valorisation of Food Waste. Fermentation 2024, 10, 583. https://doi.org/10.3390/fermentation10110583
Murphy L, O’Connell DJ. The Role of Yeast in the Valorisation of Food Waste. Fermentation. 2024; 10(11):583. https://doi.org/10.3390/fermentation10110583
Chicago/Turabian StyleMurphy, Laura, and David J. O’Connell. 2024. "The Role of Yeast in the Valorisation of Food Waste" Fermentation 10, no. 11: 583. https://doi.org/10.3390/fermentation10110583
APA StyleMurphy, L., & O’Connell, D. J. (2024). The Role of Yeast in the Valorisation of Food Waste. Fermentation, 10(11), 583. https://doi.org/10.3390/fermentation10110583