Food Wastes: Feedstock for Value-Added Products: 5th Edition

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Fermentation for Food and Beverages".

Deadline for manuscript submissions: 29 April 2025 | Viewed by 7410

Special Issue Editor


E-Mail Website
Guest Editor
Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
Interests: biochemical engineering; fermentation biotechnology; bioreactor design; valorization of agro-industrial wastes and food wastes for biofuels; kinetic modeling; halogenated hydrocarbons degradation; mass transfer phenomena; hydrolytic enzymes (purification, characterization); bio-scouring of cotton fabrics; growth of microalgae
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food waste (FW) is a global problem that has received increasing public and political attention in recent years. This problem will only become more significant in the coming years, especially considering the increase in food demand due to the growing global population. Food is a precious commodity, and its production can be resource-intensive. According to the Food and Agriculture Organization of the United Nations (FAO), food loss (FL) is defined as “the decrease in quantity or quality of food”. Food waste is part of food loss and refers to the discarding or alternative (non-food) use of food that is safe and nutritious for human consumption along the entire food supply chain, from primary production to end-household consumer level. The European Project FUSIONS defines FW as “any food, and inedible parts of food, removed from (lost to or diverted from) the food supply chain to be recovered or disposed of (including composted, crops plowed in/not harvested, anaerobic digestion, bio-energy production, co-generation, incineration, disposal to sewer, landfill or discarded to sea)”. According to the FAO, nearly 1.3 billion tons of food products per year are lost along the food supply chain, and in the next 25 years, the amount of food waste is projected to increase exponentially.

Currently, most food wastes are recycled, mainly as animal feed and compost. The remaining quantities are incinerated and disposed of in landfills, causing serious emissions of methane (CH4), which is 23-times more potent than carbon dioxide (CO2) as a greenhouse gas and significantly contributes to climate change. The social impacts of FL and FW may be ascribed with ethical and moral dimensions within the general concept of global food security. Economic impacts are due to the costs related to food wastage and their effects on farmers and consumer incomes.

The EU waste framework directive 2008/98/EC defines the EU waste management hierarchy as follows: (a) prevention, (b) preparing for reuse, (c) recycling, (d) other recovery (e.g., energy recovery), and (e) disposal. Similarly, the Environmental Protection Agency defines the following hierarchy in relation to FW management: (a) source reduction; (b) feeding hungry people; (c) feeding animals; (d) industrial uses; and (e) composting, incineration, or landfilling.

Preventing the overproduction and oversupply of food is the first step to be taken in reducing FW generation. FW is rich in a spectrum of organic components including carbohydrates, proteins, oils and fats, and organic acids. FW can be converted into a spectrum of bio-commodity chemicals and bioenergy by employing bioprocesses. The implementation of the biorefinery concept could be an essential part of the successful valorization of FW. Producing a spectrum of bio-based products, FW biorefinery can complement fossil-based refinery to a certain extent and address the major drivers for the bioeconomy, namely climate, resource security, and ecosystem services.

In continuation, this Special Issue compiles both recent innovative research results as well as review papers on food waste valorization for the production of value-added products.

Dr. Diomi Mamma
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food waste
  • circular economy
  • value-added products
  • bioeconomy
  • biorefinery
  • integrated bioprocesses
  • bioenergy
  • bio-hydrogen
  • biomethane
  • biohythane
  • biobased products
  • platform chemicals
  • biofuels
  • bioethanol
  • butanol
  • bio-diesel
  • microbial fuel cell (MFC)
  • enzymes
  • biopolymers
  • organic acids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1127 KiB  
Article
Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic
by Cláudia Moreira Santa Catharina Weis, Márcia Miss Gomes, Bárbara Geremia Vicenzi, Giovanna Alexandre Fabiano, Jean de Oliveira Lopes, Patrícia Daniele da Silva dos Santos, Luciano Tormen, Oscar Oliveira Santos, Rosangela Maria Neves Bezerra, Adriane Elisabete Costa Antunes, Larissa Canhadas Bertan, Giselle Nobre Costa and Ricardo Key Yamazaki
Fermentation 2024, 10(11), 570; https://doi.org/10.3390/fermentation10110570 - 8 Nov 2024
Viewed by 924
Abstract
By-products generated in the winemaking industry contain compounds with health-promoting properties, which can be reintroduced into the food production chain. This study evaluated the use of a by-product from the industrial processing of grapes as an ingredient in the manufacture of Petit Suisse [...] Read more.
By-products generated in the winemaking industry contain compounds with health-promoting properties, which can be reintroduced into the food production chain. This study evaluated the use of a by-product from the industrial processing of grapes as an ingredient in the manufacture of Petit Suisse cheese, made with A2A2 milk and the addition of the probiotic Bifidobacterium animalis subsp. lactis HN019. Two Petit Suisse formulations were made in three independent batches: a control formulation without the addition of the by-product (F0) and a formulation containing 10% of the by-product (F1). The proximate composition of the cheeses was characterized on the first day after manufacturing them. The addition of the by-product led to an increase in ash, lipids, and carbohydrates and a reduction in moisture and protein contents. The physicochemical characterization and the texture profile analysis showed no changes throughout the product’s shelf life. The probiotic counts remained abundant (~eight log CFU/g) in both formulations with no changes seen throughout the shelf life period. Scanning electron microscopy images showed the added bacteria had typical structures. No differences were observed in the fatty acid profiles of the formulations, and both exhibited a total of 18 fatty acids, including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Additionally, the by-product conferred antioxidant activity to the F1 formulation. The addition of the by-product in fresh cheese may be an interesting approach in regards to the processing technology used, its microbiological safety, and its nutritional value. The use of A2A2 milk and a probiotic culture thus enhanced the Petit Suisse cheese, resulting in a healthier product. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 5th Edition)
Show Figures

Figure 1

17 pages, 861 KiB  
Article
Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study
by Diana Melo Ferreira, Susana Machado, Liliana Espírito Santo, Anabela S. G. Costa, Floricuța Ranga, Maria Simona Chiș, Josman D. Palmeira, Maria Beatriz P. P. Oliveira, Rita C. Alves and Helena Ferreira
Fermentation 2024, 10(6), 287; https://doi.org/10.3390/fermentation10060287 - 29 May 2024
Cited by 2 | Viewed by 1144
Abstract
Because olive pomace (the main by-product of olive oil production) is phytotoxic, new applications must be investigated to minimize its negative environmental impact. In this work, olive pomace was fermented for 4 and 32 days at room temperature, having in view its valorization [...] Read more.
Because olive pomace (the main by-product of olive oil production) is phytotoxic, new applications must be investigated to minimize its negative environmental impact. In this work, olive pomace was fermented for 4 and 32 days at room temperature, having in view its valorization as a novel food, thereby creating opportunities for the food industry and addressing a challenge of the olive oil sector. The chemical and microbiological modifications that occurred along the fermentation were followed. The results showed no significant differences (p > 0.05) in total protein between the control and the fermented samples; however, the latter exhibited higher levels of essential amino acids. The major nonessential and essential amino acids were glutamic acid and leucine in all samples. There was a significant increase in the total fat of the 32-day sample and the main fatty acid was oleic acid in all samples. There were considerable reductions in total vitamin E, phenolics, and antioxidant activity values post-fermentation. Hydroxytyrosol replaced oleacein as the main phenolic in the 32-day sample. A sharp increase in total microorganisms occurred (2.20 × 102 to 3.00 × 104–2.01 × 107 colony forming units/mL) but no pathogenic microorganisms were detected. Overall, olive pomace fermentation creates novel products for the food industry with a balanced nutritional composition. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 5th Edition)
Show Figures

Figure 1

15 pages, 2558 KiB  
Article
Preparation, Purification, Characterization and Antioxidant Activity of Rice Bran Fermentation Broth with Hypsizigus marmoreus
by Yanping Chi, Lining Kang, Xiangying Liu, Hongrui Sun, Yue Meng, Jialin Zhang, You Kang and Yonggang Dai
Fermentation 2024, 10(4), 188; https://doi.org/10.3390/fermentation10040188 - 29 Mar 2024
Viewed by 1328
Abstract
The main purpose of this study was to investigate the composition, characterization and antioxidant activity of rice bran fermentation broth, and provide a new way for high-value utilization of rice bran. Firstly, we fermented rice bran with Hypsizigus marmoreus and purified fermentation broth [...] Read more.
The main purpose of this study was to investigate the composition, characterization and antioxidant activity of rice bran fermentation broth, and provide a new way for high-value utilization of rice bran. Firstly, we fermented rice bran with Hypsizigus marmoreus and purified fermentation broth with macroporous resins. We took feruloyl oligosaccharides (FOs) concentration as the measure index, and the results showed that the maximum concentration of FOs was 0.72 mmol/L on the 6th day of rice bran fermentation. We took D101 macroporous resin as adsorption resin for rice bran fermentation broth, and the result showed that FOs concentration reached 2.38 mmol/L with the optimal purification process at pH 4.5, temperature 29 °C, ethanol concentration 55%, sample flow rate 1.5 mL/min, sample concentration 1.7 mL/min and elution flow rate 2.0 mmol/L. Secondly, the characters of rice bran fermentation broth were identified by high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR). These methods showed the presence of ferulic acid (FA), arabinose, xylose and glucose in rice bran fermentation broth. Finally, the in vitro antioxidant activities of rice bran fermentation broth were tested and the result showed that fermentation broth had good antioxidant activities and significantly improved after purification. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 5th Edition)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 659 KiB  
Review
The Role of Yeast in the Valorisation of Food Waste
by Laura Murphy and David J. O’Connell
Fermentation 2024, 10(11), 583; https://doi.org/10.3390/fermentation10110583 - 13 Nov 2024
Viewed by 555
Abstract
The implementation of the circular bioeconomy is now widely accepted as a critical step towards reducing the environmental burden of industrial waste and reducing the impact of this waste on climate change. The valorisation of waste using microorganisms is an attractive and fast-developing [...] Read more.
The implementation of the circular bioeconomy is now widely accepted as a critical step towards reducing the environmental burden of industrial waste and reducing the impact of this waste on climate change. The valorisation of waste using microorganisms is an attractive and fast-developing strategy capable of achieving meaningful improvements in the sustainability of the biotechnology industry. Yeasts are a powerful chassis for developing valorisation strategies and key opportunities. Thus, this study examines how waste from the food sector can be effectively targeted for valorisation by yeast. Yeasts themselves are critically important elements in the production of food and brewing, and thus, the valorisation of waste from these processes is further reviewed. Policy and regulatory challenges that may impact the feasibility of industrial applications of yeast systems in the valorisation of food waste streams are also discussed. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 5th Edition)
Show Figures

Graphical abstract

31 pages, 2046 KiB  
Review
Obtaining Value from Wine Wastes: Paving the Way for Sustainable Development
by Dmitry Evtuguin, José P. S. Aniceto, Rita Marques, Inês Portugal, Carlos M. Silva, Luísa S. Serafim and Ana M. R. B. Xavier
Fermentation 2024, 10(1), 24; https://doi.org/10.3390/fermentation10010024 - 28 Dec 2023
Cited by 1 | Viewed by 2459
Abstract
Winemaking is one of the main Portuguese industries and has significantly grown in recent years, thus increasing the quantity of obtained residues. These wastes have a complex chemical composition and structure, and, for this reason, their treatment and valorisation are simultaneously a challenge [...] Read more.
Winemaking is one of the main Portuguese industries and has significantly grown in recent years, thus increasing the quantity of obtained residues. These wastes have a complex chemical composition and structure, and, for this reason, their treatment and valorisation are simultaneously a challenge and an opportunity. After an overview of the wine industry and its wastes, this article intends to review the different solid winemaking wastes, highlighting their chemical composition and structural characteristics, as well as their main potential applications. These wastes, such as grape stalks, can be directly applied as a source of bioenergy in the form of pellets or subjected to chemical/biological processing, resulting in valuable food additives, materials, or chemicals. Grape seeds provide food grade oil with potential biomedical applications. Grape skins are a promising source of biologically active substances. The sugar fraction of grape pomace can be biologically converted to a wide variety of bioproducts, like bioethanol, biogas, polyhydroxyalkanoates, and bacterial cellulose. The integration of the different processes into a biorefinery is also discussed, considering the characteristics of the Portuguese wine industry and pointing out solutions to valorise their wastes. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products: 5th Edition)
Show Figures

Figure 1

Back to TopTop