Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Fermentation Process
2.3. Standards and Reagents
2.4. Protein Fraction Analysis
2.4.1. Total Protein Content
2.4.2. Amino Acids (AAs) Profile by HPLC-DAD-FLD
2.5. Lipid Fraction Analysis
2.5.1. Total Fat Content
2.5.2. Lipid Fraction Extraction
Fatty Acids (FAs) Profile by GC-FID
Vitamin E Profile by HPLC-DAD-FLD
2.6. Antioxidant Fraction Analysis
2.6.1. Antioxidant Fraction Extraction
2.6.2. Total Phenolics Content (TPC) and Antioxidant Activity Assays by Spectrophotometric Methods
2.7. Phenolic Compounds Profile by HPLC-DAD-MS-ESI+
2.7.1. Sample Preparation
2.7.2. Chromatographic Conditions
2.7.3. Quantification
2.8. Microbiological Analysis
2.8.1. Total Count of Microorganisms
2.8.2. Pathogenic Bacteria Evaluation
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.J.; Burton-Pimentel, K.J.; Vergères, G.; Feskens, E.J.M.; Brouwer-Brolsma, E.M. Fermented foods and cardiometabolic health: Definitions, current evidence, and future perspectives. Front. Nutr. 2022, 9, 976020. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 1. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E.; Oliveira, M.B.P.P. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef] [PubMed]
- Nanis, I.; Hatzikamari, M.; Katharopoulos, E.; Boukouvala, E.; Ekateriniadou, L.; Litopoulou-Tzanetaki, E.; Gerasopoulos, D. Microbiological and physicochemical changes during fermentation of solid residue of olive mill wastewaters: Exploitation towards the production of an olive paste-type product. LWT 2020, 117, 108671. [Google Scholar] [CrossRef]
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical composition and antimicrobial activity of a new olive pomace functional ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.M.; Ferreira, D.M.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Palmeira, J.D.; Nunes, M.A.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules 2023, 28, 2876. [Google Scholar] [CrossRef]
- Leite, P.; Salgado, J.M.; Venâncio, A.; Domínguez, J.M.; Belo, I. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 2016, 214, 737–746. [Google Scholar] [CrossRef]
- Oliveira, F.; Salgado, J.M.; Abrunhosa, L.; Pérez-Rodríguez, N.; Domínguez, J.M.; Venâncio, A.; Belo, I. Optimization of lipase production by solid-state fermentation of olive pomace: From flask to laboratory-scale packed-bed bioreactor. Bioproc. Biosyst. Eng. 2017, 40, 1123–1132. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Fathy, S.A.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production. Int. J. Biol. Macromol. 2018, 107, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuels Bioprod. Biorefin. 2020, 14, 78–91. [Google Scholar] [CrossRef]
- Paz, A.; Chalima, A.; Topakas, E. Biorefinery of exhausted olive pomace through the production of polygalacturonases and omega-3 fatty acids by Crypthecodinium cohnii. Algal Res. 2021, 59, 102470. [Google Scholar] [CrossRef]
- Medouni-Haroune, L.; Medouni-Adrar, S.; Houfani, A.A.; Bouiche, C.; Azzouz, Z.; Roussos, S.; Desseaux, V.; Madani, K.; Kecha, M. Statistical Optimization and Partial Characterization of Xylanases Produced by Streptomyces sp. S1M3I Using Olive Pomace as a Fermentation Substrate. Appl. Biochem. Biotechnol. 2023, 196, 2012–2030. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Moustafa, A.; Shahin, S.E.; Sherief, W.R.; Abdallah, K.; Farag, M.F.; Nassan, M.A.; Ibrahim, S.M. Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef] [PubMed]
- López-Linares, J.C.; Gómez-Cruz, I.; Ruiz, E.; Romero, I.; Castro, E. Production of Ethanol from Hemicellulosic Sugars of Exhausted Olive Pomace by Escherichia coli. Processes 2020, 8, 533. [Google Scholar] [CrossRef]
- López-Linares, J.C.; Ruiz, E.; Romero, I.; Castro, E.; Manzanares, P. Xylitol Production from Exhausted Olive Pomace by Candida boidinii. Appl. Sci. 2020, 10, 6966. [Google Scholar] [CrossRef]
- Eryılmaz, E.B.; Dursun, D.; Dalgıç, A.C. Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatal. Agric. Biotechnol. 2016, 7, 224–227. [Google Scholar] [CrossRef]
- Paz, A.; Karnaouri, A.; Templis, C.C.; Papayannakos, N.; Topakas, E. Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Waste Manag. 2020, 118, 435–444. [Google Scholar] [CrossRef]
- Mohammed, A.T.; Mahmoud, A.E.; Ali, M.M.; Ibrahim, D.M.; Fathy, S.A. Enhancing antioxidant activity of olive pomace with reinforcing its phenolic compounds by fermentation. Egypt. Pharm. J. 2022, 21, 440–446. [Google Scholar] [CrossRef]
- Fathy, S.A.; Mahmoud, A.E.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Improving the nutritive value of olive pomace by solid state fermentation of Kluyveromyces marxianus with simultaneous production of gallic acid. Int. J. Recycl. Org. Waste Agric. 2018, 7, 135–141. [Google Scholar] [CrossRef]
- Goula, A.M.; Lazarides, H.N. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J. Food Eng. 2015, 167, 45–50. [Google Scholar] [CrossRef]
- Guermazi, Z.; Benincasa, C. Olive pomace as spreadable pulp: A new product for human consumption. AIMS Agric. Food 2018, 3, 441–454. [Google Scholar] [CrossRef]
- Durante, M.; Bleve, G.; Selvaggini, R.; Veneziani, G.; Servili, M.; Mita, G. Bioactive Compounds and Stability of a Typical Italian Bakery Products “Taralli” Enriched with Fermented Olive Paste. Molecules 2019, 24, 3258. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Durante, M.; Veneziani, G.; Taticchi, A.; Servili, M.; Bleve, G.; Mita, G. Patè olive cake: Possible exploitation of a by-product for food applications. Front. Nutr. 2019, 6, 3. [Google Scholar] [PubMed]
- Foti, P.; Russo, N.; Randazzo, C.L.; Choupina, A.B.; Pino, A.; Caggia, C.; Romeo, F.V. Profiling of phenol content and microbial community dynamics during pâté olive cake fermentation. Food Biosci. 2023, 52, 102358. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2019. [Google Scholar]
- Tontisirin, K. Chapter 2: Methods of Food Analysis. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Machado, S.; Costa, A.S.G.; Pimentel, F.B.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.; Casal, S.; Oliveira, M.B.P. Determination of vitamin E in coffee beans by HPLC using a micro-extraction method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- ISO 12966; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef]
- Anbazhagan, D.; Kathirvalu, G.G.; Mansor, M.; Yan, G.S.; Yusof, M.Y.; Sekaran, S.D. Multiplex polymerase chain reaction (PCR) assays for the detection of Enterobacteriaceae in clinical samples. Afr. J. Microbiol. Res. 2010, 4, 1186–1191. [Google Scholar]
- Paton, A.W.; Paton, J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Mourão, J.; Rebelo, A.; Ribeiro, S.; Peixe, L.; Novais, C.; Antunes, P. Atypical non-H2S-producing monophasic Salmonella typhimurium ST3478 strains from chicken meat at processing stage are adapted to diverse stresses. Pathogens 2020, 9, 701. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.d.M.; Gómez-Cruz, I.; Romero, I.; Castro, E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 6508, Quinic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Quinic-acid (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 5316821, 2-(3,4-Dihydroxyphenyl)-ethyl-O-beta-D-glucopyranoside. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5316821 (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 82755, Hydroxytyrosol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxytyrosol (accessed on 4 April 2024).
- Olmo-García, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.M.; Fernández-Gutiérrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef] [PubMed]
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 10393, Tyrosol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tyrosol (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 10692563, Oleoside 11-methyl Ester. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Oleoside-11-methyl-ester (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 71718370, Ligstroside Aglycone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ligstroside-Aglycone (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 6440747, 10-Hydroxyoleuropein. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10-Hydroxyoleuropein (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 56842347, Oleuropein aglycone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Oleuropein-aglycone (accessed on 4 April 2024).
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC–ESI–QTOF–MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef]
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 155240, Hydroxytyrosol Acetate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxytyrosol-Acetate (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 18684078, Oleacein. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Oleacein (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 5281800, Verbascoside. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Verbascoside (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 5280637, Luteolin 7-O-glucoside. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Luteolin-7-O-glucoside (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 5385553, Apigenin 7-O-glucoside. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Apigenin-7-O-glucoside (accessed on 4 April 2024).
- Information, National Center for Biotechnology. PubChem Compound Summary for CID 5280445, Luteolin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Luteolin (accessed on 4 April 2024).
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [PubMed]
- Shimomura, Y.; Kitaura, Y. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol. Res. 2018, 133, 215–217. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Kawada-Matsuo, M.; Oogai, Y.; Komatsuzawa, H. Sugar allocation to metabolic pathways is tightly regulated and affects the virulence of Streptococcus mutans. Genes 2016, 8, 11. [Google Scholar] [CrossRef]
- Feldmann, H. (Ed.) Yeast Metabolism. In Yeast: Molecular and Cell Biology, 2nd ed.; Wiley-VCH GmbH & Co. KGaA: Hoboken, NJ, USA, 2012; pp. 25–58. [Google Scholar]
- Tiburcio-Moreno, J.A.; Marcelín-Jiménez, G.; Leanos-Castaneda, O.L.; Yanez-Limon, J.M.; Alvarado-Gil, J.J. Study of the Photodegradation Process of Vitamin E Acetate by Optical Absorption, Fluorescence, and Thermal Lens Spectroscopy. Int. J. Thermophys. 2012, 33, 2062–2068. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Fathy, S.; Ali, M.; Ezz, M.; Mohammed, A. Antioxidant and anticancer efficacy of therapeutic bioactive compounds from fermented olive waste. Grasas Aceites 2018, 69, e266. [Google Scholar] [CrossRef]
- Ullivarri, M.F.d.; Mendoza, L.M.; Raya, R.R. Characterization of the killer toxin KTCf20 from Wickerhamomyces anomalus, a potential biocontrol agent against wine spoilage yeasts. Biol. Control 2018, 121, 223–228. [Google Scholar] [CrossRef]
- Hazas, M.-C.L.d.l.; Piñol, C.; Macià, A.; Romero, M.-P.; Pedret, A.; Solà, R.; Rubió, L.; Motilva, M.-J. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J. Funct. Foods 2016, 22, 52–63. [Google Scholar] [CrossRef]
- Marković, A.K.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- Nikou, T.; Sakavitsi, M.E.; Kalampokis, E.; Halabalaki, M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022, 14, 3773. [Google Scholar] [CrossRef]
- Rodríguez-Morató, J.; Boronat, A.; Kotronoulas, A.; Pujadas, M.; Pastor, A.; Olesti, E.; Pérez-Mañá, C.; Khymenets, O.; Fitó, M.; Farré, M.; et al. Metabolic disposition and biological significance of simple phenols of dietary origin: Hydroxytyrosol and tyrosol. Drug Metab. Rev. 2016, 48, 218–236. [Google Scholar] [CrossRef]
- Gallardo-Fernández, M.; Gonzalez-Ramirez, M.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022, 11, 2355. [Google Scholar] [CrossRef]
- Krishnamurthi, V.R.; Niyonshuti, I.I.; Chen, J.; Wang, Y. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE 2021, 16, e0245205. [Google Scholar] [CrossRef]
Broth | Species | Primer | Sequence | Size (bp) | Ref. |
---|---|---|---|---|---|
TSB | Enterococcus faecalis | E1 (1551) | 5′-ATCAAGTACAGTTAGTCTT-3′ | 941 | [33] |
E2 (1552) | 5′-ACGATTCAAAGCTAACTG-3′ | ||||
Enterococcus faecium | F1 (1553) | 5′-GCAAGGCTTCTTAGAGA-3′ | 550 | ||
F2 (1554) | 5′-CATCGTGTAAGCTAACTTC-3′ | ||||
Klebsiella pneumoniae | ntrA F | 5′-CATCTCGATCTGCTGGCCAA-3′ | 90 | [34] | |
ntrA R | 5′-GCGCGGATCCAGCGATTGGA-3′ | ||||
Enterobacter cloacae | Atpd F | 5′-CGAGAGCCTGUTGCTG-3′ | 180 | ||
Atpd R | 5′-GATTGGCTGACCCAAT-3′ | ||||
Citrobacter spp. | 16s rRNA F | 5′-GCTCAACCTGGGAACTGCATCCGA-3′ | 529 | ||
16s rRNA R | 5′-AGTTCCGGCCTAACCGCTGGCAA-3′ | ||||
Escherichia coli | UidA F | 5’-CTGGTATCAGCGCGAAGTCT-3′ | 556 | ||
UidA R | 5’-AGCGGGTAGATATCACACTC-3′ | ||||
Shiga toxin-producing E. coli | Stx1F | ATAAATCGCCATTCGTTGACTAC | 180 | [35] | |
Stx1R | AGAACGCCCACTGAGATCATC | ||||
Stx2F | GGCACTGTCTGAAACTGCTCC | 255 | |||
Stx2R | TCGCCAGTTATCTGACATTCTG | ||||
eaeAF | GACCCGGCACAAGCATAAGC | 384 | |||
eaeAR | CCACCTGCAGCAACAAGAGG | ||||
hlyAF | GCATCATCAAGCGTACGTTCC | 534 | |||
hlyAR | AATGAGCCAAGCTGGTTAAGCT | ||||
RVS | Salmonella spp. | invA 1 | 5′-ACAGTGCTCGTTTACGACCTGAAT-3′ | 243 | [36] |
invA 2 | 5′-AGACGACTGGTACTGATCGATAAT-3′ |
Parameter | Control | 4 Days | 32 Days |
---|---|---|---|
Total protein content | 5.75 ± 0.05 a | 5.48 ± 0.31 a | 5.84 ± 0.59 a |
Aspartic acid | 0.46 ± 0.02 b | 0.49 ± 0.02 a,b | 0.52 ± 0.03 a |
Glutamic acid | 0.58 ± 0.02 b | 0.62 ± 0.02 a,b | 0.65 ± 0.04 a |
Serine | 0.24 ± 0.01 b | 0.25 ± 0.01 a,b | 0.27 ± 0.02 a |
Histidine * | 0.08 ± 0.01 a | 0.09 ± 0.00 a | 0.09 ± 0.01 a |
Glycine | 0.25 ± 0.01 a | 0.27 ± 0.01 a | 0.27 ± 0.02 a |
Threonine * | 0.21 ± 0.01 b | 0.23 ± 0.01 a,b | 0.24 ± 0.01 a |
Arginine | 0.33 ± 0.01 a | 0.34 ± 0.01 a | 0.34 ± 0.02 a |
Alanine | 0.25 ± 0.01 b | 0.26 ± 0.01 a,b | 0.28 ± 0.02 a |
Tyrosine | 0.11 ± 0.01 a | 0.117 ± 0.004 a | 0.12 ± 0.01 a |
Valine * | 0.25 ± 0.01 b | 0.27 ± 0.01 a,b | 0.29 ± 0.02 a |
Methionine * | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Tryptophan * | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Phenylalanine * | 0.28 ± 0.01 b | 0.30 ± 0.01 a,b | 0.32 ± 0.02 a |
Isoleucine * | 0.22 ± 0.01 b | 0.24 ± 0.01 a | 0.25 ± 0.01 a |
Leucine * | 0.54 ± 0.02 b | 0.58 ± 0.02 a,b | 0.61 ± 0.03 a |
Lysine * | 0.12 ± 0.00 b | 0.13 ± 0.00 a | 0.12 ± 0.00 b |
Hydroxyproline | 0.12 ± 0.00 b | 0.12 ± 0.00 b | 0.13 ± 0.01 a |
Proline | 0.26 ± 0.01 b | 0.28 ± 0.01 a,b | 0.29 ± 0.01 a |
∑Essential amino acids | 1.75 ± 0.06 b | 1.89 ± 0.05 a | 1.97 ± 0.09 a |
∑Non-essential amino acids | 2.59 ± 0.09 b | 2.76 ± 0.09 a,b | 2.87 ± 0.16 a |
∑Total amino acids | 4.40 ± 0.07 b | 4.65 ± 0.14 a,b | 4.84 ± 0.25 a |
Parameter | Control | 4 Days | 32 Days |
---|---|---|---|
Total fat content | 8.43 ± 0.13 b | 9.19 ± 0.49 b | 11.54 ± 0.83 a |
C16:0 Palmitic acid | 10.49 ± 0.14 a | 10.18 ± 0.13 b | 10.22 ± 0.06 a,b |
C16:1 Palmitoleic acid | 0.45 ± 0.01 a | 0.45 ± 0.03 a | 0.46 ± 0.03 a |
C17:0 Margaric acid | 0.06 ± 0.01 b | 0.08 ± 0.00 a | 0.08 ± 0.01 a |
C18:0 Stearic acid | 2.88 ± 0.06 a | 2.79 ± 0.03 a | 2.85 ± 0.06 a |
C18:1n9c Oleic acid | 74.78 ± 0.16 a | 75.40 ± 0.36 a | 75.18 ± 0.23 a |
C18:2n6c Linoleic acid | 10.07 ± 0.25 a | 9.44 ± 0.17 b | 9.57 ± 0.15 b |
C20:0 Arachidic acid | 0.25 ± 0.01 b | 0.38 ± 0.01 a | 0.35 ± 0.01 a |
C18:3n3c α-Linolenic acid | 0.63 ± 0.01 b | 0.66 ± 0.01 b | 0.74 ± 0.01 a |
C20:1n9c cis-11-Eicosanoic acid | 0.17 ± 0.00 b | 0.25 ± 0.00 a | 0.26 ± 0.01 a |
C22:0 Behenic acid | 0.14 ± 0.01 b | 0.20 ± 0.01 a | 0.18 ± 0.00 a |
C24:0 Lignoceric acid | 0.08 ± 0.01 c | 0.17 ± 0.01 a | 0.11 ± 0.00 b |
∑Saturated fatty acids | 13.90 ± 0.08 a | 13.80 ± 0.14 a | 13.80 ± 0.08 a |
∑Monounsaturated fatty acids | 75.40 ± 0.14 b | 76.11 ± 0.28 a | 75.90 ± 0.20 a,b |
∑Polyunsaturated fatty acids | 10.69 ± 0.22 a | 10.10 ± 0.13 b | 10.31 ± 0.13 a,b |
Parameter | Unit | Control | 4-Days | 32-Days |
---|---|---|---|---|
α-tocopherol | mg/100 g | 4.23 ± 0.39 a | 1.46 ± 0.35 b | 1.93 ± 0.14 b |
β-tocopherol | 0.24 ± 0.01 a | 0.25 ± 0.01 a | 0.22 ± 0.00 b | |
γ-tocopherol | 0.39 ± 0.02 a | 0.36 ± 0.02 a | 0.37 ± 0.01 a | |
∑Total vitamin E | 4.86 ± 0.41 a | 2.06 ± 0.37 b | 2.52 ± 0.14 b | |
Total phenolics content | g GAE/100 g | 4.08 ± 0.31 a | 3.43 ± 0.40 b | 4.11 ± 0.21 a |
FRAP | mmol FSE/100 g | 41.75 ± 2.64 a | 29.27 ± 3.06 c | 33.37 ± 1.66 b |
DPPH•-SA | g TE/100 g | 4.28 ± 0.25 a | 3.28 ± 0.35 b | 3.53 ± 0.27 b |
Peak No. | Retention Time (min) | UV λmax (nm) | [M + H]+ (m/z) | Compound | Subclass | Control | 4 Days | 32 Days |
---|---|---|---|---|---|---|---|---|
1 | 2.91 | 225 | 193 | Quinic acid | Cyclitol | 2.34 ± 0.03 b | 2.59 ± 0.04 a | 2.54 ± 0.02 a |
2 | 9.17 | 280 | 317 | Hydroxytyrosol glucoside | Tyrosol | 5.59 ± 0.07 a | 5.23 ± 0.09 b | 0.00 ± 0.00 c |
3 | 9.74 | 280 | 155 | Hydroxytyrosol | Tyrosol | 13.48 ± 0.04 c | 17.42 ± 0.03 b | 32.83 ± 0.07 a |
4 | 12.07 | 280 | 139 | Tyrosol | Tyrosol | 3.59 ± 0.05 c | 3.83 ± 0.03 b | 5.71 ± 0.04 a |
5 | 13.55 | 290 | 405 | Oleoside 11-methyl ester | Tyrosol | 3.82 ± 0.02 a | 3.37 ± 0.06 b | 3.01 ± 0.02 c |
6 | 15.35 | 330 | 363 | Ligstroside-aglycone | Tyrosol | 11.94 ± 0.05 b | 13.06 ± 0.03 a | 10.27 ± 0.06 c |
7 | 15.76 | 332 | 625 | Verbascoside | Hydroxycinnamic acid | 6.41 ± 0.05 a | 4.84 ± 0.02 b | 3.81 ± 0.05 c |
8 | 16.02 | 340 | 449 | Luteolin-7-O-glucoside | Flavone | 0.73 ± 0.02 a | 0.73 ± 0.03 a | 0.26 ± 0.06 b |
9 | 17.42 | 341 | 433 | Apigenin-7-O-glucoside | Flavone | 0.30 ± 0.05 a | 0.35 ± 0.02 a | 0.11 ± 0.05 b |
10 | 18.27 | 280 | 557 | Hydroxyoleuropein | Tyrosol | 4.72 ± 0.02 a | 2.28 ± 0.07 b | 0.69 ± 0.09 c |
11 | 18.68 | 280 | 379 | Oleuropein-aglycone | Tyrosol | 4.55 ± 0.04 a | 2.18 ± 0.05 b | 1.40 ± 0.07 c |
12 | 20.12 | 295 | 197 | Hydroxytyrosol-acetate (3,4-DHPEA-AC) | Tyrosol | 8.43 ± 0.06 a | 6.08 ± 0.08 b | 5.84 ± 0.03 c |
13 | 21.09 | 340 | 287 | Luteolin | Flavone | 1.01 ± 0.03 c | 1.33 ± 0.03 b | 1.66 ± 0.09 a |
14 | 22.95 | 290 | 321 | Oleacein (3,4-DHPEA-EDA) | Tyrosol | 26.26 ± 0.05 a | 22.76 ± 0.09 b | 16.71 ± 0.06 c |
Total Phenolics (mg/g) | 93.18 a | 86.05 b | 84.86 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, D.M.; Machado, S.; Espírito Santo, L.; Costa, A.S.G.; Ranga, F.; Chiș, M.S.; Palmeira, J.D.; Oliveira, M.B.P.P.; Alves, R.C.; Ferreira, H. Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study. Fermentation 2024, 10, 287. https://doi.org/10.3390/fermentation10060287
Ferreira DM, Machado S, Espírito Santo L, Costa ASG, Ranga F, Chiș MS, Palmeira JD, Oliveira MBPP, Alves RC, Ferreira H. Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study. Fermentation. 2024; 10(6):287. https://doi.org/10.3390/fermentation10060287
Chicago/Turabian StyleFerreira, Diana Melo, Susana Machado, Liliana Espírito Santo, Anabela S. G. Costa, Floricuța Ranga, Maria Simona Chiș, Josman D. Palmeira, Maria Beatriz P. P. Oliveira, Rita C. Alves, and Helena Ferreira. 2024. "Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study" Fermentation 10, no. 6: 287. https://doi.org/10.3390/fermentation10060287
APA StyleFerreira, D. M., Machado, S., Espírito Santo, L., Costa, A. S. G., Ranga, F., Chiș, M. S., Palmeira, J. D., Oliveira, M. B. P. P., Alves, R. C., & Ferreira, H. (2024). Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study. Fermentation, 10(6), 287. https://doi.org/10.3390/fermentation10060287