Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking By-Product
The Extraction of the By-Product for the Determination of Antioxidant Activity
2.2. Manufacture of Petit Suisse
2.3. Characterization and Shelf Life of Petit Suisse
2.4. Digestibility In Vitro
2.5. Fatty Acid Profile
2.6. Scanning Electron Microscopy (SEM)
2.7. Sensory Evaluation and Purchase Intention Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. Winemaking By-Product Chemical Composition
3.2. Characterization of Petit Suisse Formulations
3.3. Shelf Life of Petit Suisse Formulations
3.3.1. Physicochemical Characterization of Products
3.3.2. Antioxidant Activity of Products
3.3.3. Texture Profile Analysis (TPA) of Products
3.3.4. Lactic Acid Bacteria and Probiotic Counts
3.4. Simulated Digestibility In Vitro
3.5. Scanning Electron Microscopy (SEM) of the Products
3.6. Sensory Acceptance and Purchase Intention Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.d.S.S.; Genovese, M.I.; Fett, R. Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis vinifera and Vitis labrusca) Pomace from Brazilian Winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts Supplemented with Juices from Grapes and Berries. Foods 2020, 9, 1158. [Google Scholar] [CrossRef]
- Gaglio, R.; Barbaccia, P.; Barbera, M.; Restivo, I.; Attanzio, A.; Maniaci, G.; Di Grigoli, A.; Francesca, N.; Tesoriere, L.; Bonanno, A.; et al. The Use of Winery By-Products to Enhance the Functional Aspects of the Fresh Ovine “Primosale” Cheese. Foods 2021, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Barbaccia, P.; Busetta, G.; Matraxia, M.; Sutera, A.M.; Craparo, V.; Moschetti, G.; Francesca, N.; Settanni, L.; Gaglio, R. Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. Fermentation 2021, 7, 35. [Google Scholar] [CrossRef]
- Li, X.; Spencer, G.W.K.; Ong, L.; Gras, S.L. Beta Casein Proteins—A Comparison between Caprine and Bovine Milk. Trends Food Sci. Technol. 2022, 121, 30–43. [Google Scholar] [CrossRef]
- Summer, A.; Di Frangia, F.; Ajmone Marsan, P.; De Noni, I.; Malacarne, M. Occurrence, Biological Properties and Potential Effects on Human Health of β-Casomorphin 7: Current Knowledge and Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3705–3723. [Google Scholar] [CrossRef] [PubMed]
- Asledottir, T.; Le, T.T.; Poulsen, N.A.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Release of β-Casomorphin-7 from Bovine Milk of Different β-Casein Variants after Ex Vivo Gastrointestinal Digestion. Int. Dairy J. 2018, 81, 8–11. [Google Scholar] [CrossRef]
- Olenski, K.; Kamiński, S.; Szyda, J.; Cieslinska, A. Polymorphism of the Beta-Casein Gene and Its Associations with Breeding Value for Production Traits of Holstein-Friesian Bulls. Livest. Sci. 2010, 131, 137–140. [Google Scholar] [CrossRef]
- Kay, S.I.S.; Delgado, S.; Mittal, J.; Eshraghi, R.S.; Mittal, R.; Eshraghi, A.A. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J. Nutr. 2021, 151, 1061–1072. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; Zhao, X.; Han, R.; Huang, D.; Yang, Y.; Cheng, G. Comparative Proteomic Characterization of Bovine Milk Containing β-Casein Variants A1A1 and A2A2, and Their Heterozygote A1A2. J. Sci. Food Agric. 2021, 101, 718–725. [Google Scholar] [CrossRef]
- Dhopte, B.S.; Lad, V.N. Favourable Interfacial Characteristics of A2 Milk Protein Monolayer. J. Membr. Biol. 2023, 256, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cortés, V.I.; Domínguez-Soberanes, J.; Hernández-Lozano, L.C.; Licon, C.C.; Estevez-Rioja, A.; Peralta-Contreras, M. Sensory Characterization of Functional Guava Symbiotic Petit Cheese Product. Heliyon 2023, 9, e21747. [Google Scholar] [CrossRef]
- Hurtado-Romero, A.; Zepeda-Hernández, A.; Uribe-Velázquez, T.; Rosales-De la Cruz, M.F.; Raygoza-Murguía, L.V.; Garcia-Amezquita, L.E.; García-Cayuela, T. Utilization of Blueberry-Based Ingredients for Formulating a Synbiotic Petit Suisse Cheese: Physicochemical, Microbiological, Sensory, and Functional Characterization during Cold Storage. LWT 2023, 183, 114955. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Bernini, L.J.; Simão, A.N.C.; De Souza, C.H.B.; Alfieri, D.F.; Segura, L.G.; Costa, G.N.; Dichi, I. Effect of Bifidobacterium lactis HN019 on Inflammatory Markers and Oxidative Stress in Subjects with and without the Metabolic Syndrome. Br. J. Nutr. 2018, 120, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.P. Functional Cultures and Health Benefits. Int. Dairy. J. 2007, 17, 1262–1277. [Google Scholar] [CrossRef]
- Hsieh, M.L.; Chou, C.C. Mutagenicity and Antimutagenic Effect of Soymilk Fermented with Lactic Acid Bacteria and Bifidobacteria. Int. J. Food Microbiol. 2006, 111, 43–47. [Google Scholar] [CrossRef]
- Gopal, P.K.; Prasad, J.; Gill, H.S. Effects of the Consumption of Bifidobacterium lactis HN019 (DR10TM) and Galacto-Oligosaccharides on the Microflora of the Gastrointestinal Tract in Human Subjects. Nutr. Res. 2003, 23, 1313–1328. [Google Scholar] [CrossRef]
- He, F.; Morita, H.; Ouwehand, A.C.; Hosoda, M.; Hiramatsu, M.; Kurisaki, J.i.; Isolauri, E.; Benno, Y.; Salminen, S. Stimulation of the Secretion of Pro-Inflammatory Cytokines by Bifidobacterium Strains. Microbiol. Immunol. 2002, 46, 781–785. [Google Scholar] [CrossRef]
- Prasad, J.; Gill, H.; Smart, J.; Gopal, P.K. Selection and Characterisation of Lactobacillus and Bifidobacterium Strains for Use as Probiotics. Int. Dairy. J. 1998, 8, 993–1002. [Google Scholar] [CrossRef]
- Meile, L.; Ludwig, W.; Rueger, U.; Gut, C.; Kaufmann, P.; Dasen, G.; Wenger, S.; Teuber, M. Bifidobacterium lactis Sp. Nov., a Moderately Oxygen Tolerant Species Isolated from Fermented Milk. Syst. Appl. Microbiol. 1997, 20, 57–64. [Google Scholar] [CrossRef]
- Lai, H.; Li, Y.; He, Y.; Chen, F.; Mi, B.; Li, J.; Xie, J.; Ma, G.; Yang, J.; Xu, K.; et al. Effects of Dietary Fibers or Probiotics on Functional Constipation Symptoms and Roles of Gut Microbiota: A Double-Blinded Randomized Placebo Trial. Gut Microbes 2023, 15, 2197837. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Laitila, A.; Ouwehand, A.C. Bifidobacterium animalis subsp. Lactis HN019 Effects on Gut Health: A Review. Front. Nutr. 2021, 8, 790561. [Google Scholar]
- Bernini, L.J.; Simão, A.N.C.; Alfieri, D.F.; Lozovoy, M.A.B.; Mari, N.L.; de Souza, C.H.B.; Dichi, I.; Costa, G.N. Beneficial Effects of Bifidobacterium lactis on Lipid Profile and Cytokines in Patients with Metabolic Syndrome: A Randomized Trial. Effects of Probiotics on Metabolic Syndrome. Nutrition 2016, 32, 716–719. [Google Scholar] [CrossRef]
- Ibarra, A.; Latreille-Barbier, M.; Donazzolo, Y.; Pelletier, X.; Ouwehand, A.C. Effects of 28-Day Bifidobacterium animalis subsp. Lactis HN019 Supplementation on Colonic Transit Time and Gastrointestinal Symptoms in Adults with Functional Constipation: A Double-Blind, Randomized, Placebo-Controlled, and Dose-Ranging Trial. Gut Microbes 2018, 9, 1412908. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Gomes de Oliveira, L.I.; de Lourdes Chaves Macedo, E.; Costa, G.N.; Dias, D.R.; Schwan, R.F.; Magnani, M. Understanding the Potential of Fruits, Flowers, and Ethnic Beverages as Valuable Sources of Techno-Functional and Probiotics Strains: Current Scenario and Main Challenges. Trends Food Sci. Technol. 2021, 114, 25–59. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 2019, 11, 1771. [Google Scholar] [CrossRef]
- AOAC (The Association of Official Analytical Chemists International). Official Methods of Analysis; AOAC: Rockville, MD, USA, 2016; Volume 38. [Google Scholar]
- Rufino, M.D.; Alves, R.E.; De Brito, E.S.; De Morais, S.M.; Sampaio, C.D.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidantes Total em Frutas Pelo Método de Redução do Ferro (FRAP); Comunicado Técnico 125; Embrapa: Fortaleza, CE, Brazil, 2006. [Google Scholar]
- Rufino, M.S.M.; Fernandes, F.A.N.; Alves, R.E.; de Brito, E.S. Free Radical-Scavenging Behaviour of Some North-East Brazilian Fruits in a DPPH{radical Dot} System. Food Chem. 2009, 114, 693–695. [Google Scholar] [CrossRef]
- Rufino, M.d.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; de Goes Sampaio, C.; Pérez-Jiménez, J.; Calixto, F.D.S. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas Pela Captura do Radical Livre ABTS+ [Determination of Total Antioxidant Activity in Fruits by Capturing the Free Radical ABTS+]. Embrapa Agroindústria Trop.-Comun. Técnico (INFOTECA-E) 2007, 128. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/426953 (accessed on 3 November 2024).
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin-Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Ramos Messias, C.; Battestin Quast, L.; Alves, V.; Bergler Bitencourt, T.; Quast, E. Development of Petit suisse Cheese with Native Fruits: Blackberry (Morus nigra L Cv. Tupy) and Guabiroba (Campomanesia xanthocarpa O. Berg). J. Food Nutr. Sci. 2021, 9, 89. [Google Scholar] [CrossRef]
- Nollet, L.M.L. Handbook of Food Analysis, Second Edition: Physical Characterization and Nutrient Analysis; CRC Press: Boca Raton, FL, USA, 2004; Volume 1. [Google Scholar]
- Moretti, C.L.; Sargent, S.A.; Huber, D.J.; Calbo, A.G.; Puschmann, R. Chemical Composition and Physical Properties of Pericarp, Locule, and Placental Tissues of Tomatoes with Internal Bruising. J. Am. Soc. Hortic. Sci. 1998, 123, 656–660. [Google Scholar] [CrossRef]
- HunterLab. Hunter Lab Color Scale. In Insight on Color; HunerLab: Reston, VA, USA, 2008; Volume 8. [Google Scholar]
- Pereira, C.T.M.; Pereira, D.M.; de Medeiros, A.C.; Hiramatsu, E.Y.; Ventura, M.B.; Bolini, H.M.A. Skyr Yogurt with Mango Pulp, Fructooligosaccharide and Natural Sweeteners: Physical Aspects and Drivers of Liking. LWT 2021, 150, 112054. [Google Scholar] [CrossRef]
- Silva, S.H.; Neves, I.C.O.; Meira, A.C.F.d.O.; Alexandre, A.C.S.; Oliveira, N.L.; Resende, J.V. de Freeze-Dried Petit Suisse Cheese Produced with Ora-pro-Nóbis (Pereskia aculeata Miller) Biopolymer and Carrageenan Mix. LWT 2021, 149, 111764. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.P.R.; Cavalcanti, R.N.; Esmerino, E.A.; Silva, R.; Guerreiro, L.R.M.; Cunha, R.L.; Bolini, H.M.A.; Meireles, M.A.; Faria, J.A.F.; Cruz, A.G. Effect of Incorporation of Antioxidants on the Chemical, Rheological, and Sensory Properties of Probiotic Petit Suisse Cheese. J. Dairy. Sci. 2016, 99, 1762–1772. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Gonzalez, S.L.; Sychoski, M.M.; Navarro-Díaz, H.J.; Callejas, N.; Saibene, M.; Vieitez, I.; Jachmanián, I.; Da Silva, C.; Hense, H.; Oliveira, J.V. Continuous Catalyst-Free Production of Biodiesel through Transesterification of Soybean Fried Oil in Supercritical Methanol and Ethanol. Energy Fuels 2013, 27, 5253–5259. [Google Scholar] [CrossRef]
- ANVISA. Regulamento Técnico Sobre Padrões Microbiológicos Para Alimentos. Diário da União 2001, 11. Available online: https://antigo.anvisa.gov.br/documents/33916/0/Resolução+RDC+nº+12%2C+de+02+de+janeiro+de+2001/0fa7518b-92ff-4616-85e9-bf48a6a82b48?version=1.0 (accessed on 3 November 2024).
- AOAC. Official Methods of Analysis, 22nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Jones, L.V.; Peryam, D.R.; Thurstone, L.L. Development of a scale for measuring soldiers’ food preferences. J. Food Sci. 1955, 20, 512–520. [Google Scholar] [CrossRef]
- Stone, H. Sensory Evaluation Practices; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Morten, M.; Vance, C.G.; Thomas, C. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Souza, E.L.; Nascimento, T.S.; Magalhães, C.M.; Barreto, G.D.A.; Leal, I.L.; Anjos, J.P.D.; Machado, B.A.S. Development and Characterization of Powdered Antioxidant Compounds Made from Shiraz (Vitis vinifera L.) Grape Peels and Arrowroot (Maranta arundinacea L.). Sci. World J. 2022, 2022, 7664321. [Google Scholar] [CrossRef] [PubMed]
- Guendez, R.; Kallithraka, S.; Makris, D.P.; Kefalas, P. Determination of Low Molecular Weight Polyphenolic Constituents in Grape (Vitis vinifera sp.) Seed Extracts: Correlation with Antiradical Activity. Food Chem. 2005, 89, 1–9. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of Grape Skins: Significance of Plant Cell-Wall Structural Components and Extraction Techniques for Phenol Release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Brazil Regulamento Técnico de Identidade e Qualidade do Queijo Petit Suisse. 2000. Available online: https://www.agais.com/normas/leite/queijo_petit_suisse.htm (accessed on 3 November 2024).
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent Applications of Grapes and Their Derivatives in Dairy Products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- De Barcelos, S.C.; do Egito, A.S.; dos Santos, K.M.O.; de Moraes, G.M.D.; Teixeira Sá, D.M.A. Effect of Acerola (Malpighia Emarginata DC) Pulp Incorporation on Potentially Probiotic Petit-Suisse Goat Cheese. J. Food Process Preserv. 2020, 44, e14511. [Google Scholar] [CrossRef]
- Kealy, T. Application of Liquid and Solid Rheological Technologies to the Textural Characterisation of Semi-Solid Foods. Food Res. Int. 2006, 39, 265–276. [Google Scholar] [CrossRef]
- Dekker, J.W.; Wickens, K.; Black, P.N.; Stanley, T.V.; Mitchell, E.A.; Fitzharris, P.; Tannock, G.W.; Purdie, G.; Crane, J. Safety Aspects of Probiotic Bacterial Strains Lactobacillus rhamnosus HN001 and Bifidobacterium animalis subsp. Lactis HN019 in Human Infants Aged 0–2 Years. Int. Dairy J. 2009, 19, 149–154. [Google Scholar] [CrossRef]
- Sazawal, S.; Hiremath, G.; Dhingra, U.; Malik, P.; Deb, S.; Black, R.E. Efficacy of Probiotics in Prevention of Acute Diarrhoea: A Meta-Analysis of Masked, Randomised, Placebo-Controlled Trials. Lancet Infect. Dis. 2006, 6, 374–382. [Google Scholar] [CrossRef]
- Arunachalam, K.; Gill, H.S.; Chandra, R.K. Enhancement of Natural Immune Function by Dietary Consumption of Bifidobacterium lactis (HN019). Eur. J. Clin. Nutr. 2000, 54, 263–267. [Google Scholar] [CrossRef]
- Brasil Regulamento Técnico de Identidade e Qualidade de Leites Fermentados. 2007. Available online: https://www.normasbrasil.com.br/norma/instrucao-normativa-46-2007_76475.html (accessed on 3 November 2024).
- FIL-IDF 1988: Standard 117A; Yoghurt—Enumeration of Characteristic Microorganisms—Colony Count Technique at 37 °C. Milk and Milk Products: Geneva, Switzerland, 2003.
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Klindt-Toldam, S.; Larsen, S.K.; Saaby, L.; Olsen, L.R.; Svenstrup, G.; Müllertz, A.; Knøchel, S.; Heimdal, H.; Nielsen, D.S.; Zielińska, D. Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 Encapsulated in Chocolate during In Vitro Simulated Passage of the Upper Gastrointestinal Tract. LWT 2016, 74, 404–410. [Google Scholar] [CrossRef]
- Ahmed, M.; Prasad, J.; Gill, H.; Stevenson, L.; Gopal, P. Impact of Consumption of Different Levels of Bifidobacterium lactis HN019 on the Intestinal Microflora of Elderly Human Subjects. J. Nutr. Health Aging 2007, 11, 26–31. [Google Scholar] [PubMed]
- Chiang, B.L.; Sheih, Y.H.; Wang, L.H.; Liao, C.K.; Gill, H.S. Enhancing Immunity by Dietary Consumption of a Probiotic Lactic Acid Bacterium (Bifidobacterium lactis HN019): Optimization and Definition of Cellular Immune Responses. Eur. J. Clin. Nutr. 2000, 54, 849–855. [Google Scholar] [CrossRef]
- Shu, Q.; Qu, F.; Gill, H.S. Probiotic Treatment Using Bifidobacterium lactis HN019 Reduces Weanling Diarrhea Associated with Rotavirus and Escherichia Coli Infection in a Piglet Model. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 171–177. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Da Rocha, J.S.; Saad, S.M.I. Incorporation of Lactobacillus acidophilus in Minas Fresh Cheese and Its Implications for Textural and Sensorial Properties during Storage. Int. Dairy J. 2005, 15, 1279–1288. [Google Scholar] [CrossRef]
- Barros, L.S.S.e.; De Carvalho Delfino, N. Petit-Suisse Cheese Production with Addition of Probiotic Lactobacillus casei. Food Nutr. Sci. 2014, 05, 1756–1764. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Y.; Ferguson, L.R.; Shu, Q.; Garg, S. Flow Cytometric Assessment of the Protectants for Enhanced In Vitro Survival of Probiotic Lactic Acid Bacteria through Simulated Human Gastro-Intestinal Stresses. Appl. Microbiol. Biotechnol. 2012, 95, 345–356. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Adams, M.C.; Baines, S.K. In Vitro Analysis of Gastrointestinal Tolerance and Intestinal Cell Adhesion of Probiotics in Goat’s Milk Ice Cream and Yogurt. Food Res. Int. 2012, 49, 619–625. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, J.; Wang, S.; Ding, Z.; Chen, G.; Sun, J. Probiotics and the Potential of Genetic Modification as a Possible Treatment for Food Allergy. Nutrients 2023, 15, 4159. [Google Scholar] [CrossRef]
- Xavier-Santos, D.; Bedani, R.; Lima, E.D.; Saad, S.M.I. Impact of Probiotics and Prebiotics Targeting Metabolic Syndrome. J. Funct. Foods 2020, 64, 103666. [Google Scholar] [CrossRef]
- Edwin, E.M.L.; Armando, M.M.O.; Abigail Meza, P.; Maira, R.S.C. Probiotics Beverages: An Alternative Treatment for Metabolic Syndrome. In Functional and Medicinal Beverages: Volume 11: The Science of Beverages; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Coutinho, N.M.; Silveira, M.R.; Fernandes, L.M.; Moraes, J.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.L.; Ranadheera, C.S.; Borges, F.O.; et al. Processing Chocolate Milk Drink by Low-Pressure Cold Plasma Technology. Food Chem. 2019, 278, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Ramanathan, R. Differences and Correlation among Various Fatty Acids of Cow Milk and Goat Milk Probiotic Yoghurt: Gas Chromatography, PCA and Network Based Analysis. Food Chem. Adv. 2023, 3, 100430. [Google Scholar] [CrossRef]
- Sperry, M.F.; Silva, H.L.A.; Balthazar, C.F.; Esmerino, E.A.; Verruck, S.; Prudencio, E.S.; Neto, R.P.C.; Tavares, M.I.B.; Peixoto, J.C.; Nazzaro, F.; et al. Probiotic Minas Frescal Cheese Added with L. Casei 01: Physicochemical and Bioactivity Characterization and Effects on Hematological/Biochemical Parameters of Hypertensive Overweighted Women—A Randomized Double-Blind Pilot Trial. J. Funct. Foods 2018, 45, 435–443. [Google Scholar] [CrossRef]
- Briczinski, E.P.; Loquasto, J.R.; Barrangou, R.; Dudley, E.G.; Roberts, A.M.; Roberts, R.F. Strain-Specific Genotyping of Bifidobacterium animalis Subsp. Lactis by Using Single-Nucleotide Polymorphisms, Insertions, and Deletions. Appl. Environ. Microbiol. 2009, 75, 7501–7508. [Google Scholar] [CrossRef] [PubMed]
- Leahy, S.C.; Higgins, D.G.; Fitzgerald, G.F.; Van Sinderen, D. Getting Better with Bifidobacteria. J. Appl. Microbiol. 2005, 98, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-Chemical, Sensory and Volatile Profiles of Biscuits Enriched with Grape Marc Extract. Food Res. Int. 2014, 65, 385–393. [Google Scholar] [CrossRef]
Parameter | Results (Mean ± SD) |
---|---|
Ash (%, w/w) | 4.05 ± 0.10 |
Moisture (%, w/w) | 11.92 ± 0.65 |
Protein (%, w/w) | 1.86 ± 0.04 |
Fat (%, w/w) | 0.96 ± 0.02 |
Total carbohydrates (%, w/w) | 81.22 ± 0.60 |
Acidity (mol tartaric acid·kg−1) | 0.043 ± 0.08 |
Aw | 0.40 ± 0.01 |
TSS (°Brix) | 2.37 ± 0.12 |
pH | 3.41 ± 0.02 |
L* | 20.65 ± 0.11 |
a* | 10.12 ± 0.37 |
b* | 4.53 ± 0.14 |
C* | 110.89 ± 0.33 |
h* (°) | 1.15 ± 0.02 |
Fe RC (mol trolox/kg) | 0.19 ± 0.01 |
DPPH SC (mol trolox/kg) | 0.18 ± 0.01 |
ABTS SC (mol trolox/kg) | 0.14 ± 0.01 |
Phenolic compounds (mEq. kg−1) | 55.7 ± 1.30 |
Sample | % Ash | % Moisture | % Protein | % Fat | % Carbohydrates |
---|---|---|---|---|---|
F0 (control) | 1.14 ± 0.02 b | 41.49 ± 0.26 a | 22.69 ± 0.16 a | 14.03 ± 0.06 b | 20.640 ± 0.120 b |
F1 (by-product) | 1.33 ± 0.01 a | 40.51 ± 0.25 b | 20.36 ± 0.21 b | 15.06 ± 0.06 a | 22.717 ± 0.111 a |
F0 | F1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 | |
Aw | 0.97 ± 0.02 a | 0.98 ± 0.01 a | 0.98 ± 0.03 a | 0.98 ± 0.01 a | 0.95 ± 0.04 a | 0.96 ± 0.01 a | 0.95 ± 0.01 a | 0.95 ± 0.01 a | 0.95 ± 0.01 a | 0.95 ± 0.01 a |
TSS (°Brix) | 14.7 ± 0.2 a | 14.7 ± 0.01 a | 14.7 ± 0.01 a | 14.8 ± 0.1 a | 15.0 ± 0.1 a | 33.1 ± 0.9 b | 33.1 ± 0.2 b | 33.2 ± 0.03 b | 33.3 ± 0.03 b | 33.0 ± 0.6 b |
pH | 5.84 ± 0.01 a | 5.89 ± 0.01 a | 5.84 ± 0.01 a | 5.81 ± 0.01 a | 5.79 ± 0.01 a | 5.70 ± 0.01 a | 5.72 ± 0.02 a | 5.70 ± 0.01 a | 5.74 ± 0.01 a | 5.69 ± 0.01 a |
Titratable acidity (mEq. lactic acid·kg−1) | 66.67 ± 0.03 a | 56.66 ± 0.05 a | 64.44 ± 0.01 a | 76.67 ± 0.02 a | 73.33 ± 0.04 a | 82.22 ± 0.06 a | 73.33 ± 0.03 a | 69.99 ± 0.04 a | 77.77 ± 0.02 a | 82.22 ± 0.03 a |
L* | 85.73 ± 0.94 a | 88.09 ± 0.46 a | 89.60 ± 0.15 a | 88.83 ± 0.39 a | 88.60 ± 0.39 a | 42.76 ± 0.47 b | 45.98 ± 0.39 b | 47.85 ± 0.12 b | 49.16 ± 1.16 b | 47.58 ± 0.76 b |
a* | −2.02 ± 0.09 a | −1.96 ± 0.05 a | −1.87 ± 0.32 a | −2.55 ± 0.14 a | −1.74 ± 0.89 a | 8.93 ± 0.33 b | 9.26 ± 0.39 b | 10.56 ± 0.05 b | 10.47 ± 0.29 b | 10.07 ± 0.76 b |
b* | 8.66 ± 0.52 a | 9.74 ± 0.42 a | 10.34 ± 0.13 a | 10.66 ± 0.15 a | 10.91 ± 0.18 a | −2.59 ± 0.09 b | −2.47 ± 0.15 b | −2.21 ± 0.07 b | −1.97 ± 0.33 b | −2.16 ± 0.02 b |
C* | 8.91 ± 0.50 a | 9.94 ± 0.42 a | 9.81 ± 0.38 a | 10.90 ± 0.31 a | 11.13 ± 0.18 a | 9.32 ± 0.31 a | 9.61 ± 0.39 a | 10.84 ± 0.05 a | 10.68 ± 0.25 a | 10.32 ± 0.75 a |
h* | −0.23 ± 0.02 a | −0.19 ± 0.01 a | −0.30 ± 0.02 a | −0.20 ± 0.01 a | −0.15 ± 0.08 a | −1.29 ± 0.01 a | −1.30 ± 0.01 a | −1.37 ± 0.01 a | −1.38 ± 0.03 a | −1.36 ± 0.01 a |
Fe RC (mol trolox/kg ± SD) | ND | ND | ND | ND | ND | 0.04 ± 0.02 a | 0.05 ± 0.02 a | 0.05 ± 0.03 a | 0.09 ± 0.03 a | 0.06 ± 0.02 a |
DPPH SC (mol trolox/kg ± SD) | ND | ND | ND | ND | ND | 0.55 ± 0.03 a | 0.48 ± 0.01 a | 0.39 ± 0.06 a | 0.28 ± 0.05 a | 0.26 ± 0.02 a |
ABTS SC (mol trolox/kg ± SD) | ND | ND | ND | ND | ND | 0.24 ± 0.01 a | 0.28 ± 0.08 a | 0.31 ± 0.13 a | 0.51 ± 0.12 a | 0.30 ± 0.09 a |
Phenolic compounds (mEq. gallic acid·kg−1 ± SD) | ND | ND | ND | ND | ND | 20.9 ± 0.1 a | 26.7 ± 0.01 a | 30.5 ± 0.5 a | 47.4 ± 0.5 a | 34.9 ± 0.1 a |
Hardness (N) | 726 ± 145.37 a | 520 ± 62.46 a | 436 ± 68.60 a | 588 ± 141.32 a | 508 ± 61.54 a | 902 ± 85.84 a | 841 ± 75.50 a | 614 ± 91.70 a | 910 ± 272.33 a | 711 ± 102.37 a |
Adhesiveness (J) | −821 ± 344.08 a | −641 ± 182.75 a | −557 ± 93.07 a | −591 ± 150.06 a | −608 ± 213.45 a | −1245 ± 312.55 a | −927 ± 203.35 a | −776 ± 253.70 a | −773 ± 184.71 a | −872 ± 308.35 a |
Cohesiveness | 0.58 ± 0.09 a | 0.66 ± 0.06 a | 0.65 ± 0.05 a | 0.60 ± 0.06 a | 0,64 ± 0.07 a | 0.60 ± 0.03 a | 0.63 ± 0.07 a | 0.61 ± 0.11 a | 0.56 ± 0.06 a | 0.65 ± 0.04 a |
Gumminess | 423 ± 89.76 a | 345 ± 20.28 a | 281 ± 28.93 a | 345 ± 76.25 a | 305 ± 46.09 a | 514 ± 51.77 a | 525 ± 85.04 a | 374 ± 89.72 a | 465 ± 164.67 a | 452 ± 75.77 a |
Streptococcus thermophilus (CFU·g−1) | 6.71 ± 0.03 a | 6.69 ± 0.02 a | 6.69 ± 0.05 a | 6.43 ± 0.04 b | 6.31 ± 0.03 b | 6.17 ± 0.03 a | 6.11 ± 0.04 a | 6.11 ± 0.03 a | 5.89 ± 0.02 b | 5.45 ± 0.02 b |
Bifidobacterium lactis HN019®(CFU·g−1) | 8.60 ± 0.06 a | 8.58 ± 0.06 a | 8.59 ± 0.04 a | 8.60 ± 0.04 a | 7.98 ± 0.05 b | 8.96 ± 0.03 a | 8.95 ± 0.04 a | 8.91 ± 0.02 a | 8.74 ± 0.02 a | 8.58 ± 0.03 a |
Antioxidant Capacity | LAB Counts | ||||||
---|---|---|---|---|---|---|---|
Sample | Phase | Fe RC (mol Trolox/kg) ± DP | DPPH SC (mol Trolox/kg) ± DP | ABTS SC (mol Trolox/kg) ± DP | Streptococcus (log CFU/g) ± SD | Bifidobacterium (log CFU/g) ± SD | |
Digestion after 15 days of storage | F0 | Before digestion | 11,375 ± 1077 b | ND | ND | 6.74 ± 0.03 a | 8.39 ± 0.06 a |
Gastric | 656 ± 170 a | ND | ND | 3.96 ± 0.02 a | 6.94 ± 0.02 a | ||
Enteric | ND | ND | ND | 5.05 ± 0.04 a | 6.99 ± 0.10 a | ||
F1 | Before digestion | 29,913 ± 1538 b | 1075 ± 90 b | 1613 ± 20 a | 6.03 ± 0.03 a | 8.67 ± 0.07 a | |
Gastric | 5490 ± 188 b | 78 ± 16 b | 4 ± 3 a | 3.69 ± 0.16 a | 6.54 ± 0.01 a | ||
Enteric | 682 ± 95 a | 246 ± 5 a | ND | 5.02 ± 0.20 a | 6.99 ± 0.10 a | ||
Digestion after 30 days of storage | F0 | Before digestion | 15,978 ± 727 a | ND | ND | 6.11 ± 0.11 a | 8.60 ± 0.02 a |
Gastric | 2422 ± 71 a | ND | ND | 3.66 ± 0.08 b | 7.29 ± 0.07 a | ||
Enteric | ND | 27 ± 8 | ND | 3.66 ± 0.08 b | 7.05 ± 0.05 a | ||
F1 | Before digestion | 43,033 ± 966 a | 1813 ± 114 b | 1649 ± 104 a | 5.22 ± 0.02 a | 7.88 ± 0.01 a | |
Gastric | 5489 ± 280 b | 117 ± 22 b | 60 ± 35 a | 3.48 ± 0.04 b | 6.62 ± 0.10 a | ||
Enteric | 4836 ± 63 b | 363 ± 11 a | ND | 3.48 ± 0.04 b | 6.01 ± 0.10 a |
Fatty Acid | Samples | ||
---|---|---|---|
Nomenclature | Cn:m | F0 | F1 |
Butyric acid | 04:0 | 0.63 ± 0.03 a | 2.48 ± 0.31 b |
Caproic acid | 06:0 | 0.26 ± 0.02 a | 0.76 ± 0.03 b |
Caprylic acid | 08:0 | 0.43 ± 0.03 b | 0.54 ± 0.01 a |
Capric acid | 10:0 | 0.12 ± 0.03 a | 0.12 ± 0.01 a |
Lauric acid | 12:0 | 3.47 ± 0.12 a | 2.31 ± 0.23 b |
Myristic acid | 14:0 | 12.11 ± 0.33 a | 15.15 ± 0.53 b |
Myristoleic acid | 14:1 | 0.36 ± 0.03 b | 0.50 ± 0.02 a |
Pentadecanoic acid | 15:0 | 1.06 ± 0.01 b | 1.26 ± 0.02 a |
Palmitic acid | 16:0 | 34.66 ± 0.09 b | 35.92 ± 0.28 a |
Palmotoleic acid | 16:1 | 1.27 ± 0.01 b | 1.32 ± 0.01 a |
Stearic acid | 18:0 | 13.59 ± 0.22 a | 11.74 ± 0.15 b |
Oleic acid | 18:1 | 26.21 ± 0.38 a | 23.12 ± 0.24 b |
Linoleic acid | 18:2 | 4.54 ± 0.01 a | 4.07 ± 0.05 b |
Alpha linolenic acid | 18:3 | 0.40 ± 0.02 a | 0.07 ± 0.01 b |
Arachidic acid | 20:0 | 0.42 ± 0.03 a | 0.36 ± 0.03 b |
Heneicosanoic acid | 21:0 | 0.14 ± 0.01 a | 0.12 ± 0.01 b |
Behenic acid | 22:0 | 0.21 ± 0.01 a | 0.10 ± 0.01 b |
Lignoceric acid | 24:0 | 0.04 ± 0.01 a | 0.05 ± 0.01 a |
Overall Impression | Color | Flavor | Texture | Purchase Intention | |
---|---|---|---|---|---|
F0 | 7.4 ± 3.1 a | 7.8 ± 1.1 a | 6.9 ± 2.0 a | 7.6 ± 1.5 a | 2.5 ± 1.2 a |
F1 | 6.7 ± 1.8 a | 6.2 ± 2.0 a | 6.7 ± 2.1 a | 7.4± 1.6 a | 2.7 ± 1.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weis, C.M.S.C.; Gomes, M.M.; Vicenzi, B.G.; Fabiano, G.A.; Lopes, J.d.O.; Santos, P.D.d.S.d.; Tormen, L.; Santos, O.O.; Bezerra, R.M.N.; Antunes, A.E.C.; et al. Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic. Fermentation 2024, 10, 570. https://doi.org/10.3390/fermentation10110570
Weis CMSC, Gomes MM, Vicenzi BG, Fabiano GA, Lopes JdO, Santos PDdSd, Tormen L, Santos OO, Bezerra RMN, Antunes AEC, et al. Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic. Fermentation. 2024; 10(11):570. https://doi.org/10.3390/fermentation10110570
Chicago/Turabian StyleWeis, Cláudia Moreira Santa Catharina, Márcia Miss Gomes, Bárbara Geremia Vicenzi, Giovanna Alexandre Fabiano, Jean de Oliveira Lopes, Patrícia Daniele da Silva dos Santos, Luciano Tormen, Oscar Oliveira Santos, Rosangela Maria Neves Bezerra, Adriane Elisabete Costa Antunes, and et al. 2024. "Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic" Fermentation 10, no. 11: 570. https://doi.org/10.3390/fermentation10110570
APA StyleWeis, C. M. S. C., Gomes, M. M., Vicenzi, B. G., Fabiano, G. A., Lopes, J. d. O., Santos, P. D. d. S. d., Tormen, L., Santos, O. O., Bezerra, R. M. N., Antunes, A. E. C., Bertan, L. C., Costa, G. N., & Yamazaki, R. K. (2024). Effect of Adding Winemaking By-Product on the Characteristics of Petit Suisse Cheese Made with A2A2 Milk and Probiotic. Fermentation, 10(11), 570. https://doi.org/10.3390/fermentation10110570