HOM2 Deletion by CRISPR-Cas9 in Saccharomyces cerevisiae for Decreasing Higher Alcohols in Whiskey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Strains and Plasmids
2.1.2. Design and Synthesis of Primers
2.1.3. Wort Preparation
2.1.4. Preparation of Hydrolyzed Broken Rice Syrup [32,33]
2.2. Construction of CRISPR-Cas9 System
2.3. Yeast Transformation
2.4. Screening and Verification of Gene Knockout Strains
2.5. Discard Plasmids
2.6. Yeast Inoculation and Fermentation
2.7. Optimization of Fermentation Conditions
2.7.1. Fermentation with Different Concentrations of Wort
2.7.2. Fermentation with Different Inoculum Sizes of Yeast
2.7.3. Response Surface Optimization Experiment
2.8. Analytical Methods
2.9. Statistical Analysis
3. Results
3.1. Construction of Recombinant Yeast Strains
3.1.1. Construction of gRNA Targeting Plasmid of HOM2 Gene
3.1.2. Results of HOM2 Gene Knockout
3.1.3. Relative Expression Levels of HOM2
3.1.4. Verification of Plasmid Loss
3.2. Effect of HOM2 Gene Knockout on Higher Alcohols
3.3. Effect of HOM2 Gene Knockout on Fermentation Rate
3.4. Experimental Results of Process Optimization
3.4.1. Effect of Wort Concentration on Higher Alcohols in Whiskey
3.4.2. Effect of Yeast Inoculum Size on Higher Alcohols in Whiskey
3.5. Optimization of Fermentation Conditions Using Response Surface Methodology
3.5.1. Response Surface Methodology Model and Statistical Significance Analysis
3.5.2. Variance and Confidence Analysis of Higher Alcohols Content in Whiskey
3.5.3. Response Surface Analysis and Verification Test of Higher Alcohols Content in Whiskey
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daute, M.; Jack, F.; Walker, G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res. 2024, 24, foae017. [Google Scholar] [CrossRef] [PubMed]
- Waymark, C.; Hill, A.E. The Influence of Yeast Strain on Whisky New Make Spirit Aroma. Fermentation 2021, 7, 311. [Google Scholar] [CrossRef]
- Shen, X.; Wang, H.; Zhuang, H.; Yao, L.; Sun, M.; Yu, C.; Li, D.; Feng, T. Comparative analysis of the aromatic profile of single malt whiskies from different regions of Scotland using GC-MS, GC-O-MS and sensory evaluation. J. Food Compos. Anal. 2024, 133, 106465. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Q.; Zhou, Z. Baijiu hangover Correlation analysis between neurobiochemical and behavioral parameters in a mouse model and clinical symptoms. Food Biosci. 2024, 59, 103799. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Haupt, S.; Schulz, K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul. Toxicol. Pharmacol. 2008, 50, 313–321. [Google Scholar] [CrossRef]
- Song, X.; Ma, Z.; Lu, J.; Yang, Y.; Shen, G.; Chi, J.; Wang, D. Sources and Influencing Factors of Aroma Components in Whisky. Liquor-Mak. Sci. Technol. 2024, 37, 102–110. [Google Scholar] [CrossRef]
- Peneda, J.; Baptista, A.; Lopes, J.M. Interaction of the constituents of alcoholic beverages in the promotion of liver damage. Acta Med. Port. 1994, 7 (Suppl. S1), S51–S55. [Google Scholar]
- Xie, J.; Tian, X.; He, S.; Wei, Y.; Peng, B.; Wu, Z. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules 2018, 23, 1239. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, N.; Lin, Y.; Gao, Y.; Li, H.; Zhou, C.; Meng, W.; Qin, W. Transcriptomic and metabolomic correlation analysis: Effect of initial SO2 addition on higher alcohol synthesis in Saccharomyces cerevisiae and identification of key regulatory genes. Front. Microbiol. 2024, 15, 1394880. [Google Scholar] [CrossRef]
- Gao, M.; Li, W.; Fan, L.; Wei, C.; Yu, S.; Chen, R.; Ma, L.; Du, L.; Zhang, H.; Yang, W. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae. J. Biotechnol. 2024, 385, 65–74. [Google Scholar] [CrossRef]
- Liang, Z.; He, B.; Lin, X.; Su, H.; He, Z.; Chen, J.; Li, W.; Zheng, Y. Effect of ADH7 gene loss on fusel oil metabolism of Saccharomyces cerevisiae for Huangjiu fermentation. Leb. Wiss. Technol. 2023, 175, 114444. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, L.; Chen, Z.; Wang, K.; Sun, J.; Zhu, T. The same genetic regulation strategy produces inconsistent effects in different Saccharomyces cerevisiae strains for 2-phenylethanol production. Appl. Microbiol. Biotechnol. 2022, 106, 4041–4052. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Wang, J.; Zhang, C.; Shi, Y.; Guo, X.; Chen, Y.; Xiao, D. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Appl. Microbiol. Biotechnol. 2018, 102, 1783–1795. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Lang, S.; Zhou, S. Construction of LEU1 gene deleted Saccharomyces cerevisiae based on CRISPR-Cas9 system for brewing low degree of drunkenness rice wine. China Brew. 2024, 43, 62–67. [Google Scholar]
- Pandey, A.K.; Pain, J.; Brindha, J.; Dancis, A.; Pain, D. Essential mitochondrial role in iron-sulfur cluster assembly of the cytoplasmic isopropylmalate isomerase Leu1 in Saccharomyces cerevisiae. Mitochondrion 2023, 69, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qin, W.; Sun, Y.; Sun, X. Synthesis pathway and key genes of the higher alcohols in Saccharomyces cerevisiae. China Brew. 2018, 37, 9–13. [Google Scholar] [CrossRef]
- Thomas, D.; Surdin-Kerjan, Y. Structure of the HOM2 gene of Saccharomyces cerevisiae and regulation of its expression. Mol. Gen. Genet. 1989, 217, 149–154. [Google Scholar] [CrossRef]
- Robichon-Szulmajster, H.; Surdin, Y.; Mortimer, R.K. Genetic and biochemical studies of genes controlling the synthesis of threonine and methionine in Saccharomyces. Genetics 1966, 53, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Styger, G.; Jacobson, D.; Bauer, F.F. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl. Microbiol. Biotechnol. 2011, 91, 713–730. [Google Scholar] [CrossRef]
- Qi, Y. Effect of the Deletion of BAT, HOM2 in Yellow Rice Wine Yeast on Production of Higher Alcohols. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2014. [Google Scholar]
- Zhao, J.; Wang, L.; Wei, X.; Li, K.; Liu, J. Food-Grade Expression and Characterization of a Dextranase from Chaetomium gracile Suitable for Sugarcane Juice Clarification. Chem. Biodivers. 2021, 18, e2000797. [Google Scholar] [CrossRef]
- Fraczek, M.G.; Naseeb, S.; Delneri, D. History of genome editing in yeast. Yeast 2018, 35, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, X.; Zhou, J. Progress in gene editing technologies for Saccharomyces cerevisiae. Chin. J. Biotechnol. 2021, 37, 950–965. [Google Scholar] [CrossRef]
- Chen, X.; Liao, D.; Huang, S.; Chen, Y.; Zhilong, L.; Chen, D. Advances in CRISPR/Cas9 System Modifying Saccharomyces cerevisiae. Biotechnol. Bull. 2023, 39, 148–158. [Google Scholar] [CrossRef]
- Mans, R.; van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.A.; van den Broek, M.; Daran-Lapujade, P.; Pronk, J.T.; van Maris, A.J.A.; Daran, J.G. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov004. [Google Scholar] [CrossRef]
- Singh, R.; Chandel, S.; Ghosh, A.; Gautam, A.; Huson, D.H.; Ravichandiran, V.; Ghosh, D. Easy efficient HDR-based targeted knock-in in Saccharomyces cerevisiae genome using CRISPR-Cas9 system. Bioengineered 2022, 13, 14857–14871. [Google Scholar] [CrossRef]
- Lim, S.R.; Lee, S.J. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. J. Agric. Food Chem. 2024, 72, 11871–11884. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, S.; Qi, X.; Valentovich, L.N.; An, Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth. Biol. 2024, 13, 428–448. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Zhao, H.; Yu, Z.; Zhao, M. Effects of wort gravity and nitrogen level on fermentation performance of brewer’s yeast and the formation of flavor volatiles. Appl. Biochem. Biotechnol. 2012, 166, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, R.; Miao, L.; Liao, W.; Deng, C.; Chen, J.; Fan, P. Preparation and process optimization of rice wine by multi-yeast fermentation. China Brew. 2022, 41, 155–161. [Google Scholar] [CrossRef]
- Yan, T.; Wang, Z.; Zhou, H.; He, J.; Zhou, S. Effects of Four Critical Gene Deletions in Saccharomyces cerevisiae on Fusel Alcohols during Red Wine Fermentation. Fermentation 2023, 9, 379. [Google Scholar] [CrossRef]
- Mu, Y.; Xie, C.; Yang, F.; Li, Z.; Su, W. Optimization of starch syrup production process by enzymatic extrusion broken rice. Cienc. Technol. Aliment. 2014, 39, 163–168. [Google Scholar] [CrossRef]
- Guo, H.; Qian, P.; Xu, T.; Liu, X.; Li, G. Liquefaction and Saccharification Technology of High Fructose Syrup from Broken Rice. Food Res. Dev. 2022, 43, 99–105. [Google Scholar]
- Yin, Y.; Han, X.; Lu, Y.; Li, J.; Zhang, Z.; Xia, X.; Zhao, S.; Liang, Y.; Sun, B.; Hu, Y. Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology. Fermentation 2021, 7, 85. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, W.; Liu, Y. Optimization for extraction process of ferulic acid from fermented grains of sesame-flavor Baijiu by response surface methodology. China Brew. 2022, 41, 174–179. [Google Scholar]
- Wang, Y.; Yun, J.; Zhou, M.; Wang, Z.; Li, D.; Jia, X.; Gao, Q.; Chen, X.; Xie, G.; Wu, H.; et al. Exploration and application of Saccharomyces cerevisiae NJ002 to improve the fermentative capacity of medium-high temperature Daqu. Bioresour. Technol. Rep. 2023, 23, 101571. [Google Scholar] [CrossRef]
- Styger, G.; Jacobson, D.; Prior, B.A.; Bauer, F.F. Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97, 4429–4442. [Google Scholar] [CrossRef]
- Gao, Z. Analysis of the Physiological Functions of Methionine in the H2S Overflow Metabolism of Saccharomyces cerevisivae. Master’s Thesis, Northwest A&F University, Yangling, China, 2017. [Google Scholar]
- Park, S.; Kim, S.; Hahn, J. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl. Microbiol. Biotechnol. 2014, 98, 9139–9147. [Google Scholar] [CrossRef]
- Dong, S.; Qin, W.; Liu, C.; Yang, X.; Xinjie, Z. Effect of low nitrogen stress on esters formation during fermentation by Saccharomyces cerevisiae. China Brew. 2018, 37, 149–154. [Google Scholar] [CrossRef]
- Wu, J.; Teng, F.; Yang, L. Optimization of brewing process of cudrania tricuspidata brandy original wine by response surface method. China Brew. 2024, 43, 216–220. [Google Scholar]
- Yang, H.; Zong, X.; Cui, C.; Mu, L.; Zhao, H. Effects of Different Wort Gravity on Amino Acids Assimilation and Fermentation Performance of Brewer’s Yeast. Liquor-Mak. Sci. Technol. 2018, 65, 630–638. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A: Wort concentration (°P) | 6 | 8 | 10 |
B: Hydrolyzed broken rice syrup addition (g/L) | 40 | 60 | 80 |
C: Inoculum size of XF0-LH (cells/mL) | 1 × 106 | 2 × 106 | 3 × 106 |
RUN | Factors | Higher Alcohols Content (g/L) | ||
---|---|---|---|---|
X1 | X2 | X3 | ||
1 | −1 | −1 | 0 | 569 |
2 | 1 | −1 | 0 | 934 |
3 | −1 | 1 | 0 | 643 |
4 | 1 | 1 | 0 | 660 |
5 | −1 | 0 | −1 | 605 |
6 | 1 | 0 | −1 | 1048 |
7 | −1 | 0 | 1 | 612 |
8 | 1 | 0 | 1 | 715 |
9 | 0 | −1 | −1 | 854 |
10 | 0 | 1 | −1 | 913 |
11 | 0 | −1 | 1 | 931 |
12 | 0 | 1 | 1 | 595 |
13 | 0 | 0 | 0 | 628 |
14 | 0 | 0 | 0 | 616 |
15 | 0 | 0 | 0 | 649 |
16 | 0 | 0 | 0 | 667 |
17 | 0 | 0 | 0 | 661 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 3.50 × 105 | 9 | 3.89 × 104 | 39.90 | <0.0001 | ** |
A | 1.08 × 105 | 1 | 1.08 × 105 | 110.70 | <0.0001 | ** |
B | 2.86 × 104 | 1 | 2.86 × 104 | 29.35 | 0.001 | ** |
C | 4.00 × 104 | 1 | 4.00 × 104 | 41.08 | 0.0004 | ** |
AB | 3.04 × 104 | 1 | 3.04 × 104 | 31.19 | 0.0008 | ** |
AC | 2.90 × 104 | 1 | 2.90 × 104 | 29.78 | 0.0009 | ** |
BC | 3.89 × 104 | 1 | 3.89 × 104 | 39.92 | 0.0004 | ** |
A2 | 461.30 | 1 | 461.30 | 0.48 | 0.5134 | |
B2 | 1.93 × 104 | 1 | 1.93 × 104 | 19.78 | 0.003 | ** |
C2 | 5.23 × 104 | 1 | 5.23 × 104 | 53.69 | 0.0002 | ** |
Lack of fit | 4.98 × 103 | 3 | 1.66 × 103 | 3.61 | 0.1235 | |
Residual | 6.82 × 103 | 7 | 973.76 | |||
Pure error | 1.84 × 103 | 4 | 459.67 | |||
Cor total | 3.57 × 105 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhou, H.; Liang, J.; Tuerxun, K.; Ding, Z.; Zhou, S. HOM2 Deletion by CRISPR-Cas9 in Saccharomyces cerevisiae for Decreasing Higher Alcohols in Whiskey. Fermentation 2024, 10, 589. https://doi.org/10.3390/fermentation10110589
He J, Zhou H, Liang J, Tuerxun K, Ding Z, Zhou S. HOM2 Deletion by CRISPR-Cas9 in Saccharomyces cerevisiae for Decreasing Higher Alcohols in Whiskey. Fermentation. 2024; 10(11):589. https://doi.org/10.3390/fermentation10110589
Chicago/Turabian StyleHe, Jiaojiao, Haoyang Zhou, Jine Liang, Kadireya Tuerxun, Zhuoling Ding, and Shishui Zhou. 2024. "HOM2 Deletion by CRISPR-Cas9 in Saccharomyces cerevisiae for Decreasing Higher Alcohols in Whiskey" Fermentation 10, no. 11: 589. https://doi.org/10.3390/fermentation10110589
APA StyleHe, J., Zhou, H., Liang, J., Tuerxun, K., Ding, Z., & Zhou, S. (2024). HOM2 Deletion by CRISPR-Cas9 in Saccharomyces cerevisiae for Decreasing Higher Alcohols in Whiskey. Fermentation, 10(11), 589. https://doi.org/10.3390/fermentation10110589