Exploring Ultrasonic Energy Followed by Natural Fermentation Processing to Enhance Functional Properties and Bioactive Compounds in Millet (Pennisetum glaucum L.) Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Ultrasonic Treatment
2.2. Phytochemical Content and Antioxidant Activity
2.3. γ-Aminobutyric Acid Content
2.4. Determination of Carotenoids
2.5. In Vitro Protein Digestibility and Protein Solubility
2.6. Holding Capacities
2.7. Emulsification Properties
2.8. Foaming Properties
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Ultrasonic Treatment Followed by Fermentation on the Total Phenolic Content and Total Flavonoid Content of Millet Grains
3.2. Effect of Ultrasonic Treatment Followed by Fermentation on the Antioxidant Activity of Millet Grains
3.3. Effect of Ultrasonic Treatment Followed by Fermentation on the In Vitro Protein Digestibility and Protein Solubility of Millet Grains
3.4. Effect of Ultrasonic Treatment Followed by Fermentation on the Gamma-Aminobutyric Acid and Total Carotenoids of Millet Grains
3.5. Effect of Ultrasonic Treatment Followed by Fermentation on the Functional Properties of Millet Grains
3.6. Principal Component and Partial Validation Squares Regression Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amadou, I.; Le, G.W.; Shi, Y.H. Evaluation of antimicrobial, antioxidant activities, and nutritional values of fermented foxtail millet extracts by Lactobacillus paracasei Fn032. Int. J. Food Prop. 2013, 8, 1179–1190. [Google Scholar] [CrossRef]
- Yousaf, L.; Hou, D.; Liaqat, H.; Shen, Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.S.; Zhang, Q.; Chen, J.; Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. [Google Scholar] [CrossRef]
- Abedin, M.J.; Abdullah, A.T.M.; Satter, M.A.; Farzana, T. Physical, functional, nutritional and antioxidant properties of foxtail millet in Bangladesh. Heliyon 2022, 20, 11186. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, X.; Chen, Z.; Wang, X. Purification and identification of antioxidant peptides from millet gliadin treated with high hydrostatic pressure. LWT-Food Sci. Technol. 2022, 164, 113654. [Google Scholar] [CrossRef]
- Singh, K.P.; Mishra, A.; Mishra, H.N. Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT-Food Sci. Technol. 2012, 48, 276–282. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Jaiswal, V.; Prasad, M. Nutrition potential of foxtail millet in comparison to other millets and major cereals. In The Foxtail Millet Genome; Springer: Cham, Switzerland, 2017; pp. 123–135. [Google Scholar] [CrossRef]
- Samtiya, M.; Soni, K.; Chawla, S.; Poonia, A.; Sehgal, S.; Dhewa, T. Key anti-nutrients of millet and their reduction strategies: An overview. Act. Sci. Nutr. Health 2021, 5, 68–80. [Google Scholar] [CrossRef]
- Yadav, P.; Shukla, A.K.; Kumari, A.; Dhewa, T.; Kumar, A. Nutritional evaluation of probiotics enriched rabadi beverage (PERB) and molecular mapping of digestive enzyme with dietary fibre for exploring the therapeutic potential. Food Humanit. 2024, 2, 100221. [Google Scholar] [CrossRef]
- Neeru Choudhary, P.; Dhewa, T.; Kumar, A. Process optimization of pearl millet-based fermented beverage components using response surface methodology and evaluation of its physicochemical parameters. J. Food Sci. Technol. 2024, 61, 1557–1568. [Google Scholar] [CrossRef]
- Gowda, N.A.N.; Siliveru, K.; Prasad, P.V.V.; Bhatt, Y.; Netravati, B.P.; Gurikar, C. Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods 2022, 11, 499. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Wang, S.; Wang, J.; Peng, W. Effects of Microwave Treatment on Structure, Functional Properties and Antioxidant Activities of Germinated Tartary Buckwheat Protein. Foods 2022, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res. Int. 2014, 62, 595–601. [Google Scholar] [CrossRef]
- Higuera-Barraza, O.A.; Del Toro-Sanchez, C.L.; Ruiz-Cruz, S.; Márquez-Ríos, E. Effects of high-energy ultrasound on the functional properties of proteins. Ultrason. Sonochem. 2016, 31, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Flores-Jiménez, N.T.; Ulloa, J.A.; Silvas, J.E.U.; Ramírez, J.C.R.; Ulloa, P.R.; Rosales, P.U.B.; Carrillo, Y.S.; Leyva, R.G. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Res. Int. 2019, 121, 947–956. [Google Scholar] [CrossRef]
- Jin, J.; Okagu, O.D.; Yagoub, A.E.A.; Udenigwe, C.C. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrason. Sonochem. 2021, 70, 105348. [Google Scholar] [CrossRef]
- Téllez-Morales, J.A.; Hernández-Santo, B.; Rodríguez-Miranda, J. Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrason. Sonochem. 2020, 61, 104787. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Gabriele, M.; Pucci, L. Fermentation and germination as a way to improve cereals antioxidant and antiinflammatory properties. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Academic Press: Cambridge, MA, USA, 2022; Volume 1, pp. 477–497. [Google Scholar]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Shiferaw Terefe, N.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2887–2913. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Peñas, E.; Frias, J. Bioactive peptides in fermented foods: Production and evidence for health effects. In Fermented Foods in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 23–47. [Google Scholar]
- Abah, C.R.; Ishiwu, C.N.; Obiegbuna, J.E.; Oladejo, A.A. Nutritional composition, functional properties and food applications of millet grains. Asian Food Sci. J. 2020, 14, 9–19. [Google Scholar] [CrossRef]
- Yang, T.; Ma, S.; Liu, J.; Sun, B.; Wang, X. Influences of four processing methods on main nutritional components of foxtail millet: A review. Grain Oil Sci. Technol. 2022, 5, 156–165. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C.G. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Balli, D.; Bellumori, M.; Pucci, L.; Gabriele, M.; Longo, V.; Paoli, P.; Melani, F.; Mulinacci, N.; Innocenti, M. Does Fermentation Really Increase the Phenolic Content in Cereals? A Study on Millet. Foods 2020, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Optimizing the effect of ultrasonication and germination on antinutrients and antioxidants of kodo (Paspalum scrobiculatum) and little (Panicum sumatrense) millets. J. Food Sci. Technol. 2023, 60, 2990–3001. [Google Scholar] [CrossRef]
- Ray, R.C.; Ward, O.P. Microbial Biotechnology in Horticulture; Science Publishers: New York, NY, USA, 2004; Volume 1. [Google Scholar]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’and ‘Picual’olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: New York, NY, USA, 2002; Volume 6, pp. I1.1.1–I1.1.8. [Google Scholar]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Chang, S.T.; Wu, J.H.; Wang, S.Y.; Kang, P.L.; Yang, N.S.; Shyur, L.F. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 2001, 49, 3420–3424. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sansenya, S.; Hua, Y.; Chumanee, S.; Phasai, K.; Sricheewin, C. Effect of Gamma Irradiation on 2-Acetyl-1-pyrroline Content, GABA Content and Volatile Compounds of Germinated Rice (Thai Upland Rice). Plants 2017, 10, 18. [Google Scholar] [CrossRef]
- Jacques, A.C.; Pertuzatti, P.B.; Barcia, M.T.; Zambiazi, R.C. Scientific note: Bioactive compounds in small fruits cultivated in the southern region of Brazil. Braz. J. Food Technol. 2009, 12, 123–127. [Google Scholar] [CrossRef]
- Maliwal, B.P. In vitro methods to assess the nutritive value of leaf protein concentrate. J. Agric. Food Chem. 1983, 31, 315–319. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2005. [Google Scholar]
- Abd Elmoneim, O.E.; Bernhardt, R. Influence of grain germination on functional properties of sorghum flour. Food Chem. 2010, 121, 387–392. [Google Scholar]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Wang, X.S.; Tang, C.H.; Li, B.S.; Yang, X.Q.; Li, L.; Ma, C.Y. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocoll. 2008, 22, 560–567. [Google Scholar] [CrossRef]
- Vidal, N.P.; Manful, C.F.; Pham, T.H.; Stewart, P.; Keough, D.; Thomas, R. The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 2020, 22, 100835. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Pagès, J.; Ambroisine, L.; Guinot, C. PLS methodology to study relationships between hedonic judgements and product characteristics. Food Qual. Prefer. 2005, 16, 315–325. [Google Scholar] [CrossRef]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 2012, 140, 87–95. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, L.; Wu, Z.; Li, Y.; Kang, Z.; Xie, F.; Yu, D. Effects of ultrasonic treatment on the structural, functional properties and beany flavor of soy protein isolate: Comparison with traditional thermal treatment. Ultrason. Sonochem. 2023, 101, 106675. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Huma, Z.E.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation, and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tao, Y.; Li, Y.; Wu, S.; Li, D.; Liu, X.; Han, Y.; Manickam, S.; Show, P.L. Application of ultrasonication at different microbial growth stages during apple juice fermentation by Lactobacillus plantarum: Investigation on the metabolic response. Ultrason. Sonochem. 2021, 73, 105486. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Muthukumarappan, K.; O’donnell, C.P.; Cullen, P.J. Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innov. Food Sci. Emerg. Technol. 2009, 10, 166–171. [Google Scholar] [CrossRef]
- Yeo, S.K.; Liong, M.T. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J. Sci. Food Agric. 2010, 90, 267–275. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Herceg, Z.; Herceg, I.L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 2008, 86, 281–287. [Google Scholar] [CrossRef]
- Suo, G.; Zhou, C.; Su, W.; Hu, X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 2022, 84, 105974. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Stange, C. Biosynthesis of carotenoids in carrot: An underground story comes to light. Arch. Biochem. Biophys. 2013, 539, 110–116. [Google Scholar] [CrossRef]
- Tsou, S.F.; Hsu, H.Y.; Chen, S.D. Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice. Appl. Sci. 2024, 14, 5771. [Google Scholar] [CrossRef]
- Cataldo, P.G.; Villegas, J.M.; Savoy de Giori, G.; Saavedra, L.; Hebert, E.M. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation. Int. J. Food Microbiol. 2020, 333, 108792. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Guo, Y.; Liu, C.; Liu, J.; Tan, B.; Guo, Z.; Wang, Z.; Jiang, L. Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Ultrason. Sonochem. 2022, 87, 106046. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Frégeau-Reid, J. Breeding line selection based on multiple traits. Crop Sci. 2008, 482, 417–423. [Google Scholar] [CrossRef]
Ultrasonic Treatment | TPC (mg GAE/g) | TFC (mg CE/g) | ||
---|---|---|---|---|
Raw | Fermented | Raw | Fermented | |
Control | 3.7 ± 0.35 d | 6.0 ± 0.20 c | 0.6 ± 0.08 g | 4.4 ± 0.13 c |
20 °C | 5.6 ± 0.14 c | 5.8 ± 0.03 c | 1.4 ± 0.13 f | 4.0 ± 0.08 cd |
40 °C | 7.5 ± 0.11 b | 7.6 ± 0.05 ab | 2.3 ± 0.08 e | 5.1 ± 0.08 b |
60 °C | 8.3 ± 0.28 a | 7.7 ± 0.46 ab | 4.4 ± 0.23 c | 5.8 ± 0.27 a |
Two-way ANOVA | ||||
Ultrasonic (U) | *** | *** | ||
Fermentation (F) | *** | *** | ||
U * F | *** | *** | ||
SE± (U) | 0.101 | 0.062 | ||
SE± (F) | 0.071 | 0.044 | ||
LSD | 0.426 | 0.185 |
Ultrasonic Treatment | DPPH (mg Trolox/g) | FRAP (mg Trolox/g) | ABTS (mg Trolox/g) | |||
---|---|---|---|---|---|---|
Raw | Fermented | Raw | Fermented | Raw | Fermented | |
Control | 3.2 ± 0.14 f | 7.9 ± 0.47 c | 3.7 ± 0.00 g | 5.9 ± 0.00 c | 4.9 ± 0.12 c | 5.4 ± 0.11 b |
20 °C | 3.4 ± 0.33 f | 8.5 ± 0.14 bc | 4.2 ± 0.00 f | 6.2 ± 0.04 b | 4.1 ± 0.00 d | 4.8 ± 0.04 c |
40 °C | 5.1 ± 0.26 e | 8.8 ± 0.07 b | 4.7 ± 0.01 e | 6.0 ± 0.01 c | 4.2 ± 0.02 d | 5.5 ± 0.02 b |
60 °C | 6.9 ± 0.26 d | 10.4 ± 0.14 a | 4.7 ± 0.00 d | 6.9 ± 0.05 a | 4.3 ± 0.04 d | 6.0 ± 0.05 a |
Two-way ANOVA | ||||||
Ultrasonic (U) | *** | *** | *** | |||
Fermentation (F) | *** | *** | *** | |||
U * F | *** | *** | *** | |||
SE± (U) | 0.106 | 0.018 | 0.037 | |||
SE± (F) | 0.075 | 0.013 | 0.018 | |||
LSD | 0.317 | 0.073 | 0.055 |
Ultrasonic Treatment | IVPD (%) | Protein Solubility (%) | ||
---|---|---|---|---|
Raw | Fermented | Raw | Fermented | |
Control | 31.8 ± 0.31 d | 33.6 ± 0.29 b | 19.7 ± 0.49 f | 33.6 ± 0.29 e |
20 °C | 32.8 ± 0.00 c | 30.4 ± 0.15 f | 39.0 ± 0.09 d | 50.3 ± 0.15 a |
40 °C | 38.5 ± 0.51 a | 31.0 ± 0.40 e | 37.7 ± 0.06 d | 47.0 ± 0.40 b |
60 °C | 31.4 ± 0.15 de | 28.7 ± 0.15 g | 41.9 ± 0.17 c | 40.1 ± 0.15 cd |
Two-way ANOVA | ||||
Ultrasonic (U) | *** | *** | ||
Fermentation (F) | *** | *** | ||
U * F | *** | *** | ||
SE± (U) | 0.118 | 0.367 | ||
SE± (F) | 0.084 | 0.259 | ||
LSD | 0.820 | 1.484 |
Ultrasonic Treatment | Total Carotenoid (μg/g) | GABA (mg/g) | ||
---|---|---|---|---|
Raw | Fermented | Raw | Fermented | |
Control | 41.2 ± 2.23 e | 54.0 ± 6.68 cd | 4.7 ± 0.17 e | 3.8 ± 0.04 f |
20 °C | 45.0 ± 2.27 de | 59.2 ± 8.03 bc | 4.6 ± 0.04 d | 4.9 ± 0.04 d |
40 °C | 55.3 ± 2.23 cd | 69.4 ± 0.00 ab | 6.0 ± 0.42 c | 6.2 ± 0.00 b |
60 °C | 69.4 ± 0.00 ab | 78.5 ± 4.46 a | 6.8 ± 0.07 a | 4.9 ± 0.00 d |
Two-way ANOVA | ||||
Ultrasonic (U) | *** | *** | ||
Fermentation (F) | *** | *** | ||
U * F | ns | *** | ||
SE± (U) | 2.448 | 0.029 | ||
SE± (F) | 1.224 | 0.021 | ||
LSD | 7.005 | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkaltham, M.S.; Qasem, A.A.; Ibraheem, M.A.; Hassan, A.B. Exploring Ultrasonic Energy Followed by Natural Fermentation Processing to Enhance Functional Properties and Bioactive Compounds in Millet (Pennisetum glaucum L.) Grains. Fermentation 2024, 10, 590. https://doi.org/10.3390/fermentation10110590
Alkaltham MS, Qasem AA, Ibraheem MA, Hassan AB. Exploring Ultrasonic Energy Followed by Natural Fermentation Processing to Enhance Functional Properties and Bioactive Compounds in Millet (Pennisetum glaucum L.) Grains. Fermentation. 2024; 10(11):590. https://doi.org/10.3390/fermentation10110590
Chicago/Turabian StyleAlkaltham, Mohammed Saeed, Akram A. Qasem, Mohamed A. Ibraheem, and Amro B. Hassan. 2024. "Exploring Ultrasonic Energy Followed by Natural Fermentation Processing to Enhance Functional Properties and Bioactive Compounds in Millet (Pennisetum glaucum L.) Grains" Fermentation 10, no. 11: 590. https://doi.org/10.3390/fermentation10110590
APA StyleAlkaltham, M. S., Qasem, A. A., Ibraheem, M. A., & Hassan, A. B. (2024). Exploring Ultrasonic Energy Followed by Natural Fermentation Processing to Enhance Functional Properties and Bioactive Compounds in Millet (Pennisetum glaucum L.) Grains. Fermentation, 10(11), 590. https://doi.org/10.3390/fermentation10110590