Evaluating the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis—What Role Does the Activated Sludge Process Play?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Full-Scale Wastewater Treatment Plant
2.2. Anaerobic Digestion Experiments on a Laboratory Scale
2.2.1. Phase I
2.2.2. Phase II
2.2.3. Analytical Methods of the Laboratory Experiments
2.3. Calculation Methods
2.3.1. Full-Scale SRTASP,T and Sludge Production
2.3.2. SMY and COD Balance of the Laboratory Anaerobic Digestion Experiments
2.3.3. Specific Release of CODs, NH4-N, and PO4-P of the Laboratory Anaerobic Digestion Experiments
2.3.4. Calculation of SMY and SR for MS
2.4. Data Analysis of the Laboratory Experiments
2.5. Evaluation of the Influence of the ASP on the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis and Energy Generation
2.5.1. Determining the Performance of Anaerobic Digestion
2.5.2. Energy Assessment for Full-Scale Implementation of Thermal Hydrolysis
3. Results and Discussion
3.1. Evaluation of the Full-Scale WWTP
3.2. Anaerobic Digestion of PS and Evaluation of Single vs. Mixed Sludges
3.3. Influence of the ASP on the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis and Energy Generation
3.3.1. Influence of SRTASP,T on SMY and Digested Sludge COD and TS
3.3.2. Impact on the Sludge Liquor Quality
3.3.3. Energy Assessment of the Electricity Generation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Description of the Experimental Setup of the Thermal Hydrolysis Process
Appendix B. Results of the Anaerobic Digestion Experiments
Sample | SRTASP,T | Feeding/Evaluation Period | WAS | WASTH | PS | MS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OLR | SMY | ΔCOD | OLR | SMY | ΔCOD | OLR | SMY | ΔCOD | OLR | SMY | ΔCOD | WAS/MS | ||||
d | d | kg COD/(m³∙d) | NL CH4/ kg CODin | % | kg COD/(m³∙d) | NL CH4/ kg CODin | % | kg COD/(m³∙d) | NL CH4/ kg CODin | % | kg COD/(m³∙d) | NL CH4/kg CODin | % | kg COD/kg COD | ||
PI_1 | 29 | 32/19 | 3.1 ± 0.05 | 120.2 | −5.5 | 3.1 ± 0.06 | 156.7 | −11.9 | ||||||||
PI_2 | 26 | 30/19 | 3.2 ± 0.02 | 127.3 | 4.4 | 3.2 ± 0.01 | 162.6 | −1.7 | ||||||||
PI_3 | 26 | 29/6 | 2.3 ± 0.02 | 121.3 | 4.6 | 2.2 ± 0.01 | 159.5 | −6.0 | ||||||||
PI_4 | 37 | 27/21 | 2.8 ± 0.02 | 113.2 | 1.4 | 3.0 ± 0.02 | 148.8 | −5.9 | ||||||||
PI_5 | 38 | 11/11 | 2.7 ± 0.01 | 117.4 | 9.3 | 2.7 ± 0.01 | 166.3 | 2.0 | ||||||||
PI_6 | 39 | 24/24 | 2.8 ± 0.02 | 110.3 | −10.3 | 2.8 ± 0.01 | 159.9 | −6.9 | ||||||||
PI_7 | 53 | 18/18 | 3.1 ± 0.11 | 102.9 | 4.4 | 3.1 ± 0.09 | 149.1 | −7.7 | ||||||||
PI_8 | 46 | 17/17 | 3.0 ± 0.02 | 111.6 | −16.9 | 3.0 ± 0.13 | 158.0 | −6.5 | ||||||||
PI_9 | 48 | 14/14 | 3.0 ± 0.02 | 108.9 | −3.0 | 2.9 ± 0.02 | 157.6 | −1.0 | ||||||||
PI_10 | 48 | 14/14 | 4.1 ± 0.07 (2.9) a | 106.5 | 3.5 | 4.1 ± 0.02 (2.9) a | 159.3 | 9.6 | ||||||||
PI_11 | 50 | 14/14 | 4.5 ± 0.03 (3.2) a | 99.3 | −4.1 | 4.5 ± 0.02 (3.2) a | 149.4 | −11.4 | ||||||||
PI_12 | 49 | 14/14 | 4.1 ± 0.02 (3.0) a | 101.4 | −11.8 | 4.2 ± 0.02 (3.0) a | 144.7 | −15.6 | ||||||||
PI_13 | PII_1 | 51 | 14/14 | 3.7 ± 0.03 (2.7) a | 103.2 | −0.5 | 38 ± 0.02 (2.7) a | 153.7 | −10.7 | 4.2 ± 0.07 (3.0) a | 225.8 | −1.7 | 4.1 ± 0.02 (2.9) a | 173.5 | −6.2 | 0.47 |
PI_14 | PII_2 | 60 | 14/14 | 1.9 ± 0.02 | 107.1 | −3.5 | 1.9 ± 0.01 | 154.6 | −11.6 | 3.4 ± 0.02 | 217.4 | −3.7 | 2.5 ± 0.02 | 181.4 | −7.5 | 0.44 |
PI_15 | PII_3 | 46 | 14/14 | 2.9 ± 0.02 | 92.6 | 2.2 | 2.9 ± 0.01 | 145.1 | −1.2 | 2.9 ± 0.02 | 240.2 | +7.0 | 3.0 ± 0.02 | 194.4 | +3.1 | 0.41 |
PI_16 | PII_4 | 31 | 14/14 | 2.7 ± 0.02 | 116.4 | −10.7 | 2.7 ± 0.01 | 152.6 | −7.8 | 2.2 ± 0.01 | 267.4 | +4.6 | 2.5 ± 0.01 | 201.4 | +6.2 | 0.43 |
Appendix C. Supplementary Results
References
- European Parliament Legislative Resolution of 10 April 2024 on the Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast) (COM(2022)0541—C9-0363/2022—2022/0345(COD)), P9_TA(2024)0222. 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=EP%3AP9_TA%282024%290222 (accessed on 30 September 2024).
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Wat. Res. 2016, 104, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Andrade, N.; Shekarchi, J.; Fischer, S.J.; Torrents, A.; Ramirez, M. Full scale study of Class A biosolids produced by thermal hydrolysis pretreatment and anaerobic digestion. Waste Manag. 2018, 78, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Polanco, D.; Tatsumi, H. Optimum energy integration of thermal hydrolysis through pinch analysis. Renew. Energy 2016, 96, 1093–1102. [Google Scholar] [CrossRef]
- Goldhardt, J.; Knoerle, U.; CaDavid, G. Continuous Thermal Hydrolysis without Steam or Chemicals. In Proceedings of the WEF/IWA Residuals and Biosolids Conference 2019, Fort Lauderdale, FL, USA, 7–10 May 2019. [Google Scholar]
- Haug, R.T.; Stuckey, D.C.; Gosset, J.M.; McCarty, P.L. Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pollut. Control Fed. 1978, 50, 73–85. [Google Scholar]
- Pinnekamp, J. Effects of thermal pretreatment of sewage sludge on anaerobic digestion. Water Sci. Technol. 1989, 21, 97–108. [Google Scholar] [CrossRef]
- Gossett, J.M.; Belser, R.L. Anaerobic digestion of waste activated sludge. J. Environ. Eng. Div. ASCE 1982, 108, 1101–1120. [Google Scholar] [CrossRef]
- Hai, N.M.; Sakamoto, S.; Le, V.C.; Kim, H.S.; Goel, R.; Terashima, M.; Yasui, H. A modified anaerobic digestion process with chemical sludge pre-treatment and its modelling. Water Sci. Technol. 2014, 69, 2350–2356. [Google Scholar] [CrossRef]
- Ekama, G.A.; Sotemann, S.W.; Wentzel, M.C. Biodegradability of activated sludge organics under anaerobic conditions. Water Res. 2007, 41, 244–252. [Google Scholar] [CrossRef]
- Ikumi, D.S.; Harding, T.H.; Ekama, G.A. Biodegradability of wastewater and activated sludge organics in anaerobic digestion. Water Res. 2014, 56, 267–279. [Google Scholar] [CrossRef]
- Jones, R.; Parker, W.; Zhu, H.; Houweling, D.; Murthy, S. Predicting the degradability of waste activated sludge. Water Environ. Res. 2009, 81, 765–771. [Google Scholar] [CrossRef]
- Ramdani, A.; Dold, P.; Déléris, S.; Lamarre, D.; Gadbois, A.; Comeau, Y. Biodegradation of the endogenous residue of activated sludge. Water Res. 2010, 44, 2179–2188. [Google Scholar] [CrossRef]
- Habermacher, J.; Benetti, A.D.; Derlon, N.; Morgenroth, E. Degradation of the unbiodegradable particulate fraction (XU) from different activated sludges during batch digestion tests at ambient temperature. Water Res. 2016, 98, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochem. 2005, 40, 1453–1460. [Google Scholar] [CrossRef]
- de Souza Araújo, L.; Catunda, P.F.C.; van Haandel, A. Biological sludge stabilisation Part 2: Influence of the composition of waste activated sludge on anaerobic stabilisation. Water SA 1998, 24, 231–236. [Google Scholar]
- Jo, H.B.; Parker, W.; Kianmehr, P. Comparison of the impacts of thermal pretreatment on waste activated sludge using aerobic and anaerobic digestion. Water Sci. Technol. 2018, 78, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Phothilangka, P.; Schoen, M.A.; Huber, M.; Luchetta, P.; Winkler, T.; Wett, B. Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge. Water Sci. Technol. 2008, 58, 1467–1473. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. Energy balance performance of municipal wastewater treatment systems considering sludge anaerobic biodegradability and biogas utilisation routes. J. Environ. Chem. Eng. 2016, 4, 4680–4689. [Google Scholar] [CrossRef]
- Carrère, H.; Bougrier, C.; Castets, D.; Delgenes, J.P. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment. J. Environ. Sci. Health-Toxic/Hazard. Subst. Environ. Eng. 2008, 43, 1551–1555. [Google Scholar] [CrossRef]
- Stuckey, D.C.; McCarty, P.L. The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 1984, 18, 1343–1353. [Google Scholar] [CrossRef]
- Mottet, A.; François, E.; Latrille, E.; Steyer, J.P.; Déléris, S.; Vedrenne, F.; Carrère, H. Estimating anaerobic biodegradability indicators for waste activated sludge. Chem. Eng. J. 2010, 160, 488–496. [Google Scholar] [CrossRef]
- Lensch, S.D. Möglichkeiten der Intensivierung der Klärschlammfaulung Durch Prozessoptimierung und Vorbehandlung. Ph.D. Thesis, Verein zur Förderung des Instituts IWAR der TU Darmstadt e.V., Darmstadt, Germany, 2018. (In German). [Google Scholar]
- Bougrier, C.; Delgenès, J.-P.; Carrère, H. Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield. Process Saf. Environ. Prot. 2006, 84, 280–284. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.-P.; Carrère, H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 2007, 34, 20–27. [Google Scholar] [CrossRef]
- Görlich, C. Desintegration Kommunaler Klärschlämme Mittels Thermodruckhydrolyse. Ph.D. Thesis, Gesellschaft zur Förderung des Institutes für Siedlungswasserwirtschaft an der Technischen Universität Braunschweig e.V., Braunschweig, Germany, 2021. (In German). [Google Scholar]
- Wilson, C.A.; Tanneru, C.T.; Banjade, S.; Murthy, S.N.; Novak, J.T. Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions. Water Environ. Res. 2011, 83, 815–825. [Google Scholar] [CrossRef]
- Oosterhuis, M.; Ringoot, D.; Hendriks, A.; Roeleveld, P. Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, the Netherlands. Water Sci. Technol. 2014, 70, 1–7. [Google Scholar] [CrossRef]
- Rühl, J.; Agrawal, S.; Engelhart, M. Efficacy of thermal hydrolysis for boosting specific methane yield depending on temperature-normalized solids retention time in an activated sludge process. Environ. Sci. Water Res. Technol. 2022, 8, 2971–2980. [Google Scholar] [CrossRef]
- DIN EN 12880:2001-02; Characterization of Sludges—Determination of Dry Residue and Water Content. ISO: Geneva, Switzerland, 2001.
- DIN EN 15935:2012-11; Sludge, Treated Biowaste, Soil and Waste—Determination of Loss on Ignition. ISO: Geneva, Switzerland, 2012.
- DIN 38414-9:1986-09; German Standard Methods for the Examination of Water, Waste Water and Sludge; Sludge and Sediments (Group S); Determination of the Chemical Oxygen Demand (COD) (S 9). ISO: Geneva, Switzerland, 1986.
- VDI 4630; Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. Verein Deutscher Ingenieure. Beuth Verlag GmbH: Berlin, Germany, 2016.
- Takács, I. Experiments in Activated Sludge Modelling. Ph.D. Thesis, Ghent University, Gent, Belgium, 2008. [Google Scholar]
- Clara, M.; Kreuzinger, N.; Strenn, B.; Gans, O.; Kroiss, H. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res. 2005, 39, 97–106. [Google Scholar] [CrossRef] [PubMed]
- DWA-A 131E; Dimensioning of Single-Stage Activated Sludge Plants. German Association for Water, Wastewater and Waste: Hennef, Germany, 2016.
- Hüer, L.; Siemen, S.; Kopp, J.; Lehnert, F.; Buchmüller, M.; Knörle, U. Plus-Energy Wastewater Treatment Plant with Phosphorus Recovery (In German), Funded by the Environmental Innovation Programme of the German Federal Ministry for the Environment, Nature Conversation, Building and Nuclear Safety. 2018. Available online: https://www.umweltinnovationsprogramm.de/projekte/plus-energie-klaeranlage-mit-phosphorrueckgewinnung (accessed on 30 September 2022).
- DWA-M 302; Merkblatt DWA-M 302 Klärschlammdesintegration (Advisory Leaflet DWA-M 302 Disintegration of Sewage Sludge). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2016. (In German)
- Silvestre, G.; Fernández, B.; Bonmatí, A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conv. Manag. 2015, 101, 255–262. [Google Scholar] [CrossRef]
- DWA-M 368; Merkblatt DWA-M 368 Biologische Stabilisierung von Klärschlamm (Advisory Leaflet DWA-M 368 Biological Stabilization of Sewage Sludge). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2014. (In German)
- Jimenez, J.; Vedrenne, F.; Denis, C.; Mottet, A.; Déléris, S.; Steyer, J.-P.; Cacho Rivero, J.A. A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples. Water Res. 2013, 47, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Barber, W.P.F. Influence of wastewater treatment on sludge production and processing. Water Environ. J. 2014, 28, 1–10. [Google Scholar] [CrossRef]
- Pinto, N.; Carvalho, A.; Pacheco, J.; Duarte, E. Study of different ratios of primary and waste activated sludges to enhance the methane yield. Water Environ. J. 2016, 30, 203–210. [Google Scholar] [CrossRef]
- Jahn, L.; Baumgartner, T.; Svardal, K.; Krampe, J. The influence of temperature and SRT on high-solid digestion of municipal sewage sludge. Water Sci. Technol. 2016, 74, 836–843. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Praksam, T.B.S.; Srinath, E.G. Inhibition of Nitrification by Ammonia and Nitrous Acid. Water Pollut. Cont. Fed. 1976, 48, 835–852. [Google Scholar]
- Angelidaki, I.; Ahring, B.K. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Wat. Res. 1994, 28, 727–731. [Google Scholar] [CrossRef]
- Li, B.; Ladipo-Obasa, M.; Romero, A.; Wadhawan, T.; Tobin, M.; Manning, E.; Higgins, M.; Al-Omari, A.; Murthy, S.; Novak, J.T.; et al. The inhibitory impact of ammonia on thermally hydrolyzed sludge fed anaerobic digestion. Water Environ. Res. 2021, 93, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Novak, J.; Takacs, I.; Wett, B.; Murthy, S. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid. Water Res. 2012, 46, 6247–6256. [Google Scholar] [CrossRef] [PubMed]
- Wett, B.; Takács, I.; Batstone, D.; Wilson, C.; Murthy, S. Anaerobic model for high-solids or high-temperature digestion—Additional pathway of acetate oxidation. Water Sci. Technol. 2014, 69, 1634–1640. [Google Scholar] [CrossRef]
- Svennevik, O.K.; Nilsen, P.J.; Solheim, O.E.; Westereng, B.; Horn, S.J. Quantification of soluble recalcitrant compounds in commercial thermal hydrolysis digestates. Water Environ. Res. 2020, 92, 1948–1955. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenburg, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Nursten, H.E. The Maillard Reaction: Chemistry, Biochemistry and Implications; Royal Society of Chemistry: Cambridge, UK, 2005; ISBN 0854049649. [Google Scholar]
- Zhang, D.; An, Z.; Strawn, M.; Broderick, T.; Khunjar, W.; Wang, Z.-W. Understanding the formation of recalcitrant dissolved organic nitrogen as a result of thermal hydrolysis and anaerobic digestion of municipal sludge. Environ. Sci. Water Res. Technol. 2021, 7, 335–345. [Google Scholar] [CrossRef]
- Gupta, A.; Novak, J.T.; Zhao, R. Characterization of organic matter in the thermal hydrolysis pretreated anaerobic digestion return liquor. J. Environ. Chem. Eng. 2015, 3, 2631–2636. [Google Scholar] [CrossRef]
- Zhang, Q.; de Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. Deammonification for digester supernatant pretreated with thermal hydrolysis: Overcoming inhibition through process optimization. Appl. Microbiol. Biotechnol. 2016, 100, 5595–5606. [Google Scholar] [CrossRef]
- Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Pümpel, T.; Shaw, A.; Chandran, K.; Murthy, S.; et al. Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Res. 2018, 143, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Toutian, V.; Barjenbruch, M.; Unger, T.; Loderer, C.; Remy, C. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge. Water Res. 2020, 171, 115383. [Google Scholar] [CrossRef] [PubMed]
- García-Cascallana, J.; Barrios, X.G.; Martinez, E.J. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. [Google Scholar] [CrossRef]
- Phothilangka, P.; Schoen, M.A.; Wett, B. Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants. Water Sci. Technol. 2008, 58, 1547–1553. [Google Scholar] [CrossRef]
- Taboada-Santos, A.; Lema, J.M.; Carballa, M. Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations. Waste Manag. 2019, 92, 30–38. [Google Scholar] [CrossRef]
Parameter | WAS (n = 16) | WASTH (n = 16) |
---|---|---|
TS [% solids] | 4.7 ± 0.6 | 4.6 ± 0.5 |
VS [% TS] | 76.1 ± 2.0 | 75.7 ± 2.1 |
COD/VS [g/g] | 1.50 ± 0.03 | 1.55 ± 0.03 |
CODs/COD [%] | 6.5 ± 1.8 (n = 15) | 39.4 ± 1.6 (n = 11) |
pH range a [-] | 6.1–6.7 (n = 10) | 5.8–6.2 (n = 10) |
Parameters | WAS (n = 4) | PS (n = 4) | MS (n = 4) |
---|---|---|---|
TS [% solids] | 4.3 ± 0.7 | 4.5 ± 1.1 | 4.4 ± 0.6 |
VS [% TS] | 74.9 ± 0.9 | 84.8 ± 3.6 | 80.1 ± 1.8 |
COD/VS [g/g] | 1.51 ± 0.02 | 1.52 ± 0.10 | 1.56 ± 0.04 |
CODs/COD [%] | 5.9 ± 2.0 | 6.5 ± 2.6 | 7.2 ± 2.1 |
pH range a [-] | 6.3–6.7 | 5.2–6.1 | 5.8–6.2 |
Parameters | WAS | PS | ||||
---|---|---|---|---|---|---|
± SD | RSD | n | ± SD | RSD | n | |
TSS [g/L] | 7.4 ± 0.7 | 9% | 365 | - | - | - |
VSS [%] | 71.8 ± 2.3 | 3% | 43 | - | - | - |
TS [%] | - | - | - | 4.2 ± 1.1 | 27% | 38 |
VS [%] | - | - | - | 83.8 ± 3.1 | 4% | 37 |
COD/VS [g/g] a | 1.50 ± 0.03 | 2% | 16 | 1.58 ± 0.09 | 5% | 12 |
Parameter | Unit | PS | WAS | WASTH |
---|---|---|---|---|
SMY | NL/kg CODin | 237.7 a | −0.7∙SRTASP,T + 139.5 b | (−0.7∙SRTASP,T + 139.5) b (1 + (0.6∙SRTASP,T + 14.1)/100) c) |
Degree of degradation | [-] | SMY/SMYmax | SMY/SMYmax | SMY/SMYmax |
SRCODs | [mg/g CODdeg] | 16.5 a | 40.8 d | 129.6 d |
SRNH4-N | [mg/g CODdeg] | 12.4 a | 68.1 d | 68.3 d |
SRPO4-P | [mg/g CODdeg] | 0.6 a | 13.2 d | 11.4 d |
COD/VS of the digestate | [-] | 1.65 | 1.51 | 1.66 |
Assumption | Reference/Comment | |
---|---|---|
TS content of PS | 4.2% | Average TS content for the investigated WWTP |
TS content of WAS after mechanical thickening | 4.8% | Average TS content for the investigated WWTP |
Production of WAS (kg TSS/d) and MS (kg TS/d) | See Section 3.1 | Sludge production of the investigated WWTP |
Production of MS (kg COD/d) | See Figure A1 | Sludge production of the investigated WWTP |
TS content of the digested sludge after dewatering (without upstream thermal hydrolysis) | 25% | Average TS content for the investigated WWTP |
TS content of the digested sludge after dewatering (with upstream thermal hydrolysis) | 25% | No improvement in dewaterability (worst case) |
Electricity demand for the thermal hydrolysis process via heat exchanger (EDTH, related to WAS with 4.8% TS) | 7 kWh/m3 WAS | Assumption based on the data from Hüer et al. [37] |
Release of NH4-N for MScalc and MSTH,calc (mg/g CODin) | See Section 3.3.2 | |
Electricity demand for treating the NH4-N load of the return liquor in the ASP (related to eliminated nitrogen) | 1.95 kWh/kg Nelim | [38] |
Electrical efficiency of the CHP unit | 38% | [2,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rühl, J.; Engelhart, M. Evaluating the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis—What Role Does the Activated Sludge Process Play? Fermentation 2024, 10, 591. https://doi.org/10.3390/fermentation10110591
Rühl J, Engelhart M. Evaluating the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis—What Role Does the Activated Sludge Process Play? Fermentation. 2024; 10(11):591. https://doi.org/10.3390/fermentation10110591
Chicago/Turabian StyleRühl, Johannes, and Markus Engelhart. 2024. "Evaluating the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis—What Role Does the Activated Sludge Process Play?" Fermentation 10, no. 11: 591. https://doi.org/10.3390/fermentation10110591
APA StyleRühl, J., & Engelhart, M. (2024). Evaluating the Performance of Anaerobic Digestion with Upstream Thermal Hydrolysis—What Role Does the Activated Sludge Process Play? Fermentation, 10(11), 591. https://doi.org/10.3390/fermentation10110591