The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Process
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statista. Available online: https://www.statista.com/statistics/263930/worldwide-production-of-rapeseed-by-country (accessed on 2 January 2023).
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Tech. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem. Eng. J. 2022, 180, 108373. [Google Scholar] [CrossRef]
- Chmielewska, A.; Kozłowska, M.; Rachwał, D.; Wnukowski, P.; Amarowicz, R.; Nebesny, E.; Rosicka-Kaczmarek, J. Canola/rapeseed protein–nutritional value, functionality and food application: A review. Crit. Rev. Food Sci. 2021, 61, 3836–3856. [Google Scholar] [CrossRef]
- Boroojeni, F.G.; Männer, K.; Boros, D.; Wiśniewska, M.; Kühnel, S.; Beckmann, K.; Lukaszczuk, M.; Zentek, J. Spontaneous and enzymatic fermentation of rapeseed cake for broiler nutrition. Anim. Feed. Sci. Tech. 2022, 284, 115135. [Google Scholar] [CrossRef]
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.S.; Zerehdaran, S. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci. 2018, 216, 183–190. [Google Scholar] [CrossRef]
- Drażbo, A.; Ognik, K.; Zaworska, A.; Ferenc, K.; Jankowski, J. The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poult. Sci. 2018, 97, 3910–3920. [Google Scholar] [CrossRef]
- Khajali, F.; Slominski, B.A. Factors that affect the nutritive value of canola meal for poultry. Poult. Sci. 2012, 91, 2564–2575. [Google Scholar] [CrossRef] [PubMed]
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Kierończyk, B.; Józefiak, D. The Effect of Solid-State Fermentation on the Nutritive Value of Rapeseed Cakes and Performance of Broiler Chickens. Fermentation 2023, 9, 435. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Y.; Zhang, J.; Chen, J.; Wu, D.; Wang, L. Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation. Int. J. Food Sci. Tech. 2015, 50, 619–625. [Google Scholar] [CrossRef]
- He, R.; He, H.Y.; Chao, D.; Ju, X.; Aluko, R. Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food Bioprocess. Tech. 2014, 7, 1344–1353. [Google Scholar] [CrossRef]
- He, R.; Ju, X.; Yuan, J.; Wang, L.; Girgih, A.T.; Aluko, R.E. Antioxidant activities of rapeseed peptides produced by solid-state fermentation. Food Res. Int. 2012, 49, 432–438. [Google Scholar] [CrossRef]
- Song, Y.; Sun, L.; Zhang, S.; Fan, K.; Wang, H.; Shi, Y.; Shen, Y.; Wang, W.; Zhang, J.; Han, X.; et al. Enzymes and microorganisms jointly promote the fermentation of rapeseed cake. Front. Nutr. 2022, 9, 989410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, L.; Zhang, Z.; Ding, L.; Hang, S. Combination of fiber-degrading enzymatic hydrolysis and lactobacilli fermentation enhances utilization of fiber and protein in rapeseed meal as revealed in simulated pig digestion and fermentation in vitro. Anim. Feed. Sci. Tech. 2021, 278, 115001. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, Y.; Kriisa, M.; Anderson, M.; Laaksonen, O.; Kütt, M.L.; Föste, M.; Korzeniowska, M.; Yang, B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chem. 2023, 409, 135339. [Google Scholar] [CrossRef] [PubMed]
- Buzek, A.; Zaworska-Zakrzewska, A.; Muzolf-Panek, M.; Łodyga, D.; Lisiak, D.; Kasprowicz-Potocka, M. Phytase supplementation of growing-finishing pig diets with extruded soya seeds and rapeseed meal improves bone mineralization and carcass and meat quality. Life 2023, 13, 1275. [Google Scholar] [CrossRef] [PubMed]
- Zentek, J.; Boroojeni, F.G. (Bio) Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed. Sci. Tech. 2020, 268, 114576. [Google Scholar] [CrossRef]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil cakes and their biotechnological applications—A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- AOAC-Association of Official Analytical Chemists. Official Methods of Analysis, Agricultural Chemicals, 19th ed.; AOAC: Gaithersburg, MD, USA, 2007; pp. 46–48. [Google Scholar]
- Hsu, H.W.; Vavak, D.L.; Satterlee, L.; Miller, G.A. A multienzyme technique for estimating protein digestibility. J. Food Sci. 1977, 42, 1269–1273. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Ciak, M.; Rybiński, W.; Bocianowski, J.; Börner, A. Diversity of the composition and content of soluble carbohydrates in seeds of the genus Vicia (Leguminosae). Genet. Resour. Crop Evol. 2018, 65, 541–554. [Google Scholar] [CrossRef]
- Raney, J.P.; McGregor, D.I. Determination of glucosinolate content by gas liquid chromatography of trimethylsilyl derivatives of desulfated glucosinolates. In Oil Crops: Brassica Subnetwork, Proceedings of the Third Workshop Quality Training, and Chinese Project Reports, Shanghai, China, 21–24 April 1990; Omran, A., Ed.; IDRC: Ottawa, ON, Canada, 1993; pp. 14–19. [Google Scholar]
- Chiang, G.; Lu, W.Q.; Piao, X.S.; Hu, J.K.; Gong, L.M.; Thacker, P.A. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 263–271. [Google Scholar] [CrossRef]
- Filipe, D.; Vieira, L.; Ferreira, M.; Oliva-Teles, A.; Salgado, J.; Belo, I.; Peres, H. Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation. Animals 2023, 13, 2883. [Google Scholar] [CrossRef] [PubMed]
- Kumitch, H.M.; Stone, A.; Nosworthy, M.G.; Nickerson, M.T.; House, J.D.; Korber, D.R.; Tanaka, T. Effect of Fermentation Time on the Nutritional Properties of Pea Protein-Enriched Flour Fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 104–113. [Google Scholar] [CrossRef]
- Diarra, S.S.; Omelanga, F.; Waedala, H.; Niufilia, E.; Prasad, H.; Manu, L. Allzyme SSF supplementation improves the utilization of sweet potato (Ipomoea batatas) vine meal by growing pigs. J. Appl. Anim. Res. 2018, 46, 583–586. [Google Scholar] [CrossRef]
- Pustjens, A.M.; de Vries, S.; Bakuwel, M.; Gruppen, H.; Gerrits, W.J.; Kabel, M.A. Unfermented recalcitrant polysaccharide structures from rapeseed (Brassica napus) meal in pigs. Ind. Crop Prod. 2014, 58, 271–279. [Google Scholar] [CrossRef]
- Jakobsen, G.V.; Jensen, B.B.; Knudsen, K.E.B.; Canibe, N. Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim. Feed. Sci. Tech. 2015, 208, 198–213. [Google Scholar] [CrossRef]
- Bau, H.M.; Villaume, C.; Lin, C.F.; Evrard, J.; Quemener, B.; Nicolas, J.P.; Mejean, L. Effect of a solid-state fermentation using Rhizopus oligosporus sp. T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal. J. Sci. Food Agric. 1994, 65, 315–322. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Borowczyk, P.; Zaworska, A.; Nowak, W.; Frankiewicz, A.; Gulewicz, P. The effect of dry yeast fermentation on chemical composition and protein value of blue lupin seeds. Food Technol. Biotech. 2016, 54, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Kasprowicz-Potocka, M.; Zaworska, A.; Gulewicz, P.; Nowak, P.; Frankiewicz, A. The effect of fermentation of high alkaloid seeds of Lupinus angustifolius var. Karo by Saccharomyces cerevisieae, Kluyveromyces lactis and Candida utilis on the chemical and microbial composition of products. J. Food Process Pres. 2018, 42, e13487. [Google Scholar] [CrossRef]
- Lücke, F.K.; Fritz, V.; Tannhäuser, K.; Arya, A. Controlled fermentation of rapeseed presscake by Rhizopus, and its effect on some components with relevance to human nutrition. Food Res. Int. 2019, 120, 726–732. [Google Scholar] [CrossRef]
- Kaczmarek, P.; Korniewicz, D.; Lipiński, K.; Mazur, M. Chemical composition of rapeseed products and their use in pig nutrition. Pol. J. Natur. Sci. 2016, 31, 545–562. [Google Scholar]
- Misra, A.K.; Mishra, A.S.; Tripathi, M.K.; Prasad, R.; Vaithiyanathan, S.; Jakhmola, R.C. Optimization of solid-state fermentation of mustard (Brassica campestris) straw for production of animal feed by white rot fungi (Ganoderma lucidum). Asian-Australas. J. Anim. Sci. 2006, 20, 208–213. [Google Scholar] [CrossRef]
- Vig, A.P.; Walia, A. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fiber and phytic acid in rapeseed (Brassica napus) meal. Bioresour. Technol. 2001, 78, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Pavlović, I.; Redovniković, I.R.; Salopek-Sondi, B. Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chem. 2018, 269, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kies, K. Phytase—Mode of action. In Phytase in Animal Nutrition and Waste Management; Coelho, M.B., Kornegay, E.T., Eds.; BASF Corporation: Ludwigshafen, Germany, 1996; pp. 205–212. [Google Scholar]
Name of Fermented Product | Enzyme | Name/Activity (Unit) |
---|---|---|
PHYL | 6-phytase | Liquid, OptiPhos 500, 500 FTU/kg |
RON NP | 6-phytase | RONOZYME NP; 1.5 mln FYT/ kg |
RON HI | 6-phytase | RONOZYME HiPhos; 1.0 mln FYT/kg |
RON R | α-amylase | RONOZYME RUMISTAR, 300,000 KNU/kg |
RON WX | endo 1,4-β-xylanase | RONOZYME WX, 200,000 FXU/kg |
RON VP | endo-1,3(4)-β-glucanase | RONOZYME VP, 10,000 FBG/kg |
RON A | α-amylase, endo-1,3(4)-β-glucanase | RONOZYME A, 40,000 kNU/kg, 70,000 FBG/kg |
RON M | endo-1,4-β-xylanase; endo-1,3(4)-β-glucanase; endo-1,4-β-glucanase | RONOZYME® MultiGrain |
RON NP+M | endo-1,4-β-glucanase, endo-1,2(4)-β-glucanase, endo- 1,2-β-xylanase, 6-phytase | RONOZYME NP and RONOZYME® MultiGrain |
RON NP+A | α-amylase, endo-1,3(4)-β-glucanase, 6-phytase | RONOZYME NP and RONOZYME A |
RON NP+M+R | α-amylase, endo-1,4-β-glucanase, endo-1,2(4)-β-glucanase, endo- 1,2-β-xylanase, 6-phytase | RONOZYME NP and RONOZYME® MultiGrain and RONOZYME RUMISTAR. |
Item | Raw RSM | Fermented Products | p-Value | SEM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHYL | RON NP | RON HI | RON R | RON WX | RON VP | RON A | RON M | RON NP+M | RON NP+A | RON NP+M+R | ||||
DM | 88.86 D | 93.67 AB | 93.46 AB | 93.25 BC | 93.43 ABC | 93.02 C | 93.24 BC | 93.72 A | 93.30 ABC | 93.37 ABC | 93.35 ABC | 93.34 ABC | <0.0001 | 0.12 |
CP | 39.39 A | 38.04 BCD | 38.46 ABC | 38.92 AB | 38.75 ABC | 38.79 ABC | 37.89 BCD | 37.28 D | 39.29 A | 38.34 ABC | 39.40 A | 37.77 CD | <0.0001 | 1.15 |
TP | 34.17 AB | 32.70 C | 32.97 C | 33.18 BC | 32.94 C | 32.89 C | 32.32 CD | 31.53 D | 33.37 ABC | 32.81 C | 34.33 A | 32.40 CD | 0.0003 | 1.29 |
CF | 15.52 EF | 16.71 A | 15.95 BCDE | 15.85 CDE | 16.33 ABC | 16.09 BCD | 16.39 ABC | 16.21 BCD | 15.17 F | 16.41 AB | 15.75 DE | 15.82 DE | <0.0001 | 0.64 |
P | 1.31 ABC | 1.33 AB | 1.32 AB | 1.31 ABC | 1.29 BC | 1.29 BC | 1.20 D | 1.26 C | 1.32 AB | 1.36 A | 1.25 C | 1.30 ABC | <0.0001 | 0.07 |
Phyt-P | 0.68 A | 0.10 I | 0.12 H | 0.16 G | 0.49 C | 0.51 B | 0.45 E | 0.47 D | 0.49 D | 0.19 F | 0.19 F | 0.18 FG | <0.0001 | 0.02 |
Phyt-P/P | 52.0 A | 7.5 F | 9.3 F | 12.5 E | 37.9 BC | 39.5 B | 37.5 C | 37.3 C | 36.7 C | 13.8 DE | 15.4 D | 13.6 DE | <0.0001 | 1.70 |
Item | Raw RSM | Fermented Products | p-Value | SEM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHYL | RON NP | RON HI | RON R | RON WX | RON VP | RON A | RON M | RON NP+M | RON NP+A | RON NP+R+M | ||||
Fructose | 1.01 F | 4.38 E | 8.08 D | 5.52 E | 15.11 A | 13.59 A | 9.94 CD | 12.85 AB | 11.02 BC | 10.04 CD | 9.79 CD | 9.39 CD | <0.0001 | 0.48 |
Galactose | 0.00 G | 0.18 F | 0.25 E | 0.19 F | 0.34 AB | 0.32 BC | 0.37 A | 0.31 BCD | 0.28 DE | 0.27 E | 0.25 E | 0.23 E | <0.0001 | 0.01 |
Glucose | 1.60 DE | 1.39 E | 2.26 C | 1.61 E | 3.27 A | 3.02 AB | 2.39 C | 3.00 AB | 2.70 ABC | 2.56 BC | 2.35 C | 2.10 CD | <0.0001 | 0.09 |
Saccharose | 75.79 A | 0.49 B | 0.56 B | 0.61 B | 0.64 B | 0.79 B | 0.88 B | 0.90 B | 1.21 B | 0.58 B | 0.59 B | 0.82 B | <0.0001 | 1.86 |
Maltose | 0.00 C | 0.00 C | 0.25 A | 0.14 B | 0.31 A | 0.14 B | 0.00 C | 0.28 A | 0.00 C | 0.00 C | 0.00 C | 0.00 C | <0.0001 | 0.02 |
Maltotriose | 0.00 E | 0.20 D | 0.40 BC | 0.42 BC | 0.55 A | 0.42 BC | 0.34 C | 0.41 BC | 0.44 BC | 0.38 BC | 0.37 BC | 0.48 AB | <0.0001 | 0.02 |
D-chiro-inositol | 0.00 F | 0.15 CDE | 0.32 B | 0.23 BC | 0.17 CD | 0.21 BCD | 0.18 CD | 0.27 AB | 0.34 A | 0.08 E | 0.12 DE | 0.15 CDE | <0.0001 | 0.01 |
Mio-inositol | 0.70 C | 2.69 A | 0.44 D | 1.53 B | 0.37 D | 0.36 D | 0.41 D | 0.37 D | 0.40 D | 0.46 D | 0.36 D | 0.36 D | <0.0001 | 0.09 |
Mannitol | 0.30 C | 2.02 B | 3.75 A | 4.59 A | 1.09 BC | 1.20 BC | 0.68 C | 2.13 BC | 4.14 A | 0.81 BC | 1.04 BC | 0.55 BC | 0.0003 | 0.22 |
Sorbitol | 0.00 B | 0.23 A | 0.00 B | 0.00 B | 0.14 AB | 0.17 AB | 0.30 A | 0.14 AB | 0.00 B | 0.18 AB | 0.16 AB | 0.33 A | <0.0001 | 0.02 |
Galactinol | 2.27 A | 1.11 BC | 1.15 B | 1.11 BC | 1.20 B | 1.20 B | 1.23 B | 1.12 BC | 1.18 B | 1.19 B | 1.13 CB | 1.03 B | <0.0001 | 0.03 |
Raffinose | 3.97 A | 2.74 DE | 3.26 BC | 2.95 CD | 3.62 AB | 3.39 BC | 2.30 E | 3.44 B | 3.60 AB | 2.55 DE | 3.29 BC | 3.22 BC | <0.0001 | 0.07 |
Stachyose | 27.17 A | 16.35 CD | 18.73 BC | 17.47 BCD | 20.26 B | 20.14 B | 17.37 BCD | 19.33 B | 19.99 B | 15.12 D | 18.98 BC | 18.43 BC | <0.0001 | 0.37 |
DGG | 0.74 A | 0.59 B | 0.41 CD | 0.48 CD | 0.44 CDE | 0.45 CDE | 0.43 CDE | 0.38 E | 0.43 BCD | 0.45 CDE | 0.50 C | 0.46 CD | <0.0001 | 0.01 |
1-Kestose | 0.61 B | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 2.59 A | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | <0.0001 | 0.09 |
Total carbohydrate | 114.43 A | 33.92 E | 41.21 CD | 38.46 DE | 48.61 B | 46.54 B | 40.97 CD | 46.03 BC | 46.96 B | 36.89 DE | 40.06 D | 38.58 DE | <0.0001 | 1.93 |
Only RFO | 31.14 A | 19.08 DE | 21.99 BCED | 20.42 CDE | 23.88 B | 23.54 BC | 19.66 CDE | 22.78 BCD | 23.59 BC | 17.68 F | 22.27 BCDE | 21.64 BCDE | <0.0001 | 0.43 |
Item | Raw RSM | Fermented Products | p-Value | SEM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHYL | RON NP | RON HI | RON R | RON WX | RON VP | RON A | RON M | RON NP+M | RON NP+A | RON NP+M+R | ||||
Gluconapine | 2.44 A | 0.32 C | 0.32 D | 0.32 D | 0.43 B | 0.32 D | 0.32 D | 0.37 C | 0.32 D | 0.32 B | 0.43 B | 0.37 C | <0.0001 | 0.05 |
Glucobrassicanapine | 0.79 A | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | 0.11 B | <0.0001 | 0.02 |
Progoitrin | 5.96 A | 0.37 BC | 0.32 C | 0.34 C | 0.43 B | 0.43 B | 0.38 BC | 0.43 B | 0.38 C | 0.37 BC | 0.43 B | 0.43 B | <0.0001 | 0.14 |
Napoleiferyne | 0.34 A | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | 0.00 B | <0.0001 | 0.01 |
4-OH-glucobrassisine | 0.68 A | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.00 C | 0.05 B | 0.00 C | <0.0001 | 0.02 |
Total glucosinolate | 10.20 A | 0.80 DE | 0.75 E | 0.77 DE | 1.02 B | 0.86 CD | 0.86 CB | 0.91 C | 0.80 DE | 0.91 C | 1.07 B | 1.02 B | <0.0001 | 0.23 |
Total glucosinolate alkene | 9.49 A | 0.80 D | 0.75 D | 0.75 D | 0.96 B | 0.86 C | 0.86 C | 0.91 BC | 0.75 D | 0.86 C | 0.96 B | 0.91 BC | <0.0001 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprowicz-Potocka, M.; Zaworska-Zakrzewska, A.; Łodyga, D.; Józefiak, D. The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal. Fermentation 2024, 10, 107. https://doi.org/10.3390/fermentation10020107
Kasprowicz-Potocka M, Zaworska-Zakrzewska A, Łodyga D, Józefiak D. The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal. Fermentation. 2024; 10(2):107. https://doi.org/10.3390/fermentation10020107
Chicago/Turabian StyleKasprowicz-Potocka, Małgorzata, Anita Zaworska-Zakrzewska, Dagmara Łodyga, and Damian Józefiak. 2024. "The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal" Fermentation 10, no. 2: 107. https://doi.org/10.3390/fermentation10020107
APA StyleKasprowicz-Potocka, M., Zaworska-Zakrzewska, A., Łodyga, D., & Józefiak, D. (2024). The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal. Fermentation, 10(2), 107. https://doi.org/10.3390/fermentation10020107